

www.lsr.com

TEST REPORT #: 315334-1 LSR Job #: C-2509

<u>Compliance Testing of</u>: Bluetooth LED Large Area Light with Built-in Charger

<u>Prepared For:</u> Stanley Black and Decker Attn: Kirwan Magdamo and Crystal Young 708 E. Joppa Road Towson, MD 21286

This Test Report is issued under the Authority of: John Johnston, EMC Engineer

Signature:

Date: 8/30/16

This Test Report may not be reproduced, except in full, without written approval of LS Research, LLC.

TABLE OF CONTENTS

EXHIBIT 1	INTRODUCTION	.3
1.1	Client Information	.3
1.2	Equipment Under Test (EUT) Information	.3
1.3	Product Description	.3
1.4	Compliance Statement	.3
EXHIBIT 2	MPE Calculations	.4

Prepared For: Stanley Black and Decker	Model #: DCL070	Report #: 315334-1
EUT: Bluetooth LED Large Area Light with Built-in Charger	Serial #: 000070; 000281; 000048	LSR Job #: C-2509

EXHIBIT 1 INTRODUCTION

1.1 Client Information

Manufacturer Name:	Stanley Black and Decker
Address:	701 E Joppa Road
	Towson, MD 21286
Contact Name:	Kirwan Magdamo and Crystal Young

<u>1.2</u> Equipment Under Test (EUT) Information

Product Name:	Bluetooth LED Large Area Light with Built-In Charger
Model Number:	DCL070
Serial Number:	000070; 000281; 000048

<u>1.3 Product Description</u>

The DCL070 Bluetooth (BLE) LED Area Light with Built-in Charger is a corded and cordless light or charger used to illuminate work areas. The unit is capable of operating on a 20 V battery or AC power. Additionally, the DCL070 may charge the 20 V battery when connected to AC power. Users can connect to and communicate with the DCL070 via the DEWALT Tool Connect App using a smartphone or tablet. The DCL070 can be programmed to turn on or off at scheduled time or intervals automatically.

<u>1.4 Compliance Statement</u>

The Bluetooth LED Large Area Light with Built-in Charger was evaluated against the limits of OET Bulletin 65. As such, the Bluetooth LED Large Area Light with Built-in Charger is found to be compliant as a mobile device.

Prepared For: Stanley Black and Decker	Model #: DCL070	Report #: 315334-1
EUT: Bluetooth LED Large Area Light with Built-in Charger	Serial #: 000070; 000281; 000048	LSR Job #: C-2509

EXHIBIT 2 MPE Calculations

A. Mobile (MPE)

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time
Range	Strength (E)	Strength (H)	(S)	$ E ^2$, $ H ^2$ or S
(MHz)	(V/m)	(A/m)	(mW/cm ²)	(minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	$(180/f^2)^*$	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30
f = frequency in N	ИНz	*Plane-wave equ	ivalent power den	sity

OFT Dullatin CF limits for Conservation vehicles // Incontrolled F

Prepared For: Stanley Black and Decker	Model #: DCL070	Report #: 315334-1
EUT: Bluetooth LED Large Area Light with Built-in Charger	Serial #: 000070; 000281; 000048	LSR Job #: C-2509

Frequency Range (MHz)	Electric Field (V/m rms)	Magnetic Field (A/m rms)	Power Density (W/m ²)	Reference Period (minutes)
0.003-10 ²¹	83	90	1	Instantaneous*
0.1-10	1 -	0.73/ f	5 <u>-</u>	6**
1.1-10	$87/f^{0.5}$	-	-	6**
10-20	27.46	0.0728	2	6
20-48	$58.07/f^{0.25}$	$0.1540/f^{0.25}$	$8.944/f^{0.5}$	6
48-300	22.06	0.05852	1.291	6
300-6000	$3.142 f^{0.3417}$	$0.008335 f^{0.3417}$	$0.02619 f^{0.6834}$	6
6000-15000	61.4	0.163	10	6
15000-150000	61.4	0.163	10	616000/ f ^{1.2}
150000-300000	$0.158 f^{0.5}$	$4.21 \ge 10^{-4} f^{0.5}$	$6.67 \ge 10^{-5} f$	616000/ f ^{1.2}
Note: f is frequency *Based on nerve stin ** Based on specific	in MHz. nulation (NS). absorption rate (SAR).		· · ·

RSS 102 limits for General population/Uncontrolled Exposure

Per RSS 102 issue 5 section 2.5.2, RF exposure evaluation is required if a separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

- below 20 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);
- at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 22.48/*f*^{0.5}W (adjusted for tune-up tolerance), where *f* is in MHz;
- at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance);
- at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $1.31 \times 10^{-2} f^{0.6834}$ W (adjusted for tune-up tolerance), where *f* is in MHz;
- at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance).

Prepared For: Stanley Black and Decker	Model #: DCL070	Report #: 315334-1
EUT: Bluetooth LED Large Area Light with Built-in Charger	Serial #: 000070; 000281; 000048	LSR Job #: C-2509

The following MPE calculations are based on the -0.726 dBm measured, peak conducted output provided to the antenna. The peak gain of the antenna is 0 dBi. <u>Prediction of MPE limit at a given distance</u>

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal:	-0.73 (dBm)
Maximum peak output power at antenna input terminal:	0.845 (mW)
Antenna gain(typical):	0 (dBi)
Maximum antenna gain:	1.000 (numeric)
Prediction distance:	<u>20</u> (cm)
Prediction frequency:	2402 (MHz)
MPE limit for uncontrolled exposure at prediction frequency:	<u>1</u> (mW/cm^2)
Power density at prediction frequency:	0.000168 (mW/cm^2)
Maximum allowable antenna gain:	37.7 (dBi)
Margin of Compliance at 20 cm =	37.7 dB

Power Density = <u>0.000168 mW/cm²</u> = <u>0.00168 W/m²</u>

RF Exposure Evaluation:

Evaluated against exposure limits: General Public Use \boxtimes Controlled Use \square

Duty cycle used in evaluation: 100 %

Standard(s)/Procedure(s) used for evaluation (e.g. IEEE C95.3): OET Bulletin 65 and RSS 102 Measurement distance: 20 cm

RF field strength value: 0.00168 V/m \square A/m \square W/m² \boxtimes Measured \square Computed \square Calculated \boxtimes

The calculated power density of the EUT was found to be below the 1.0 mW/cm² OET Bulletin 65 MPE Limit. Per RSS 102 issue 5 section 2.5.2, since the EUT operates at 0.846 mW, which is less than

1.31 x 10⁻² * (2402)^{0.6834} W = 2.676 W

The EUT is excluded from routine evaluation.

Prepared For: Stanley Black and Decker	Model #: DCL070	Report #: 315334-1
EUT: Bluetooth LED Large Area Light with Built-in Charger	Serial #: 000070; 000281; 000048	LSR Job #: C-2509