EMC Technologies Pty. Ltd. ABN 82 057 105 549

Melbourne 176 Harrick Road Keilor Park, Vic 3042

Sydney Unit 3/87 Station Road Seven Hills, NSW 2147 Tel: +61 3 9365 1000 Tel: +61 2 9624 2777

Email: emc-general@emctech.com.au Web: www.emctech.com.au

RADIO TEST REPORT

REPORT NUMBER: M2001003-1

TEST STANDARD: FCC PART 15 SUBPART C SECTION 15.247 ISED RSS-247 SECTION 5.0

- CLIENT: DIGITAL MINING TECHNOLOGY
- **DEVICE: CAS-GPS NODE**
- MODEL: PROD1116-E2
- FCC ID: YIY-PROD11162
 - IC ID: 8903A-PROD11162

DATE OF ISSUE: 15 APRIL 2020

EMC Technologies Pty Ltd reports apply only to the specific samples tested under stated test conditions. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. EMC Technologies Pty Ltd shall have no liability for any deductions, inferences or generalisations drawn by the client or others from EMC Technologies Pty Ltd issued reports. This report shall not be used to claim, constitute or imply product endorsement by EMC Technologies Pty Ltd.

Accredited for compliance with ISO/IEC 17025 - Testing. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

Equipment Under Test (EUT): CAS-GPS Node

REVISION TABLE

Version	Sec/Para Changed	Change Made	Date
1		Initial issue of document	15/04/2020

CONTENTS

1	Test	Summary	6
2	Test	Facility	6
	2.1	General	6
	2.2	Test Laboratory/Accreditations	6
3	Test	Equipment Calibration	7
4	Mea	surement Uncertainty	7
5	Devi	ce Details	8
	5.1	EUT (Transmitter) Details	8
	5.2	EUT (Host) Details	8
	5.3	Test Configuration	8
	5.4	Modifications	8
	5.5	Deviations from the Standard	8
6	Resu	ılts	9
	6.1	§15.203/ RSS-Gen 6.8 Antenna Requirement	9
	6.2	§15.205/ RSS-Gen 8.10/ RSS-247 3.3 Restricted Bands of Operation	9
	6.3	§15.207/ RSS-Gen 8.8 Conducted Limits	9
	6.4	§15.209/ RSS-Gen 8.9 Radiated emission limits; general requirements	9
	6.5	§15.247(a)(2)/ RSS-247 5.2(a) 6 dB bandwidth	9
	6.5.1	Test Procedure	9
	6.5.2	Limits	9
	6.5.3	Results	9
	6.6	§15.247(b)(3)/ RSS-247 5.4(d) Peak Output Power	. 11
	6.6.1	Test Procedure	. 11
	6.6.2	Limits	. 11
	6.6.3	Results	. 11
	6.7	§15.247(d)/ RSS-247 5.5 Out-of-Band/Spurious Emissions	
	6.7.1		
	6.7.2	Evaluation of field strength	. 15
	6.7.3		. 15
	6.7.4		. 17
	6.7.5		
	6.7.6		
	6.7.7		
	6.8	§15.247(d)/ §RSS-247 5.5 Band Edge Emission Measurements	
	6.9	§15.247(e)/ RSS-247 5.2(b) Power Spectral Density	
	6.9.1	•	
	6.9.2		
	6.9.3		
	6.10	§15.247(i)/ §RSS-Gen 3.4/§RSS-102 Maximum Permissible Exposure	
	6.11	§15.215/ §RSS-Gen 6.7 Occupied Bandwidth – 99% power	. 31

6.11.1	Test procedure	31
6.11.2	Limits	31
6.11.3	Results	31

GRAPHS

Graph 6-1: 6 dB bandwidth, 22 MHz Bandwidth	10
Graph 6-2: 6 dB bandwidth, 80 MHz Bandwidth	10
Graph 6-3: Single Pulse, 22 MHz Bandwidth	12
Graph 6-4: Number of Pulses, 22 MHz Bandwidth	12
Graph 6-5: Single Pulse, 80 MHz Bandwidth	13
Graph 6-6: Number of Pulses, 80 MHz Bandwidth	
Graph 6-7: Max EIRP Power, 22 MHz Bandwidth	14
Graph 6-8: Max EIRP Power, 80 MHz Bandwidth	14
Graph 6-9: 100 kHz bandwidth reference level, 22 MHz Bandwidth	16
Graph 6-10: 100 kHz bandwidth reference level, 80 MHz Bandwidth	16
Graph 6-11: Transmitter Spurious Emissions, 9kHz – 30 MHz, 22 MHz Bandwidth	
Graph 6-12: Transmitter Spurious Emissions, 9kHz – 30 MHz, 80 MHz Bandwidth	
Graph 6-13: Transmitter Spurious Emissions, 30 – 1000 MHz, 22 MHz Bandwidth	18
Graph 6-14: Transmitter Spurious Emissions, 30 – 1000 MHz, 80 MHz Bandwidth	
Graph 6-15: Transmitter Spurious Emissions, 1 – 18 GHz, 22 MHz Bandwidth, Peak	20
Graph 6-16: Transmitter Spurious Emissions, 1 – 18 GHz, 80 MHz Bandwidth, Peak	21
Graph 6-17: Transmitter Spurious Emissions, 1 – 18 GHz, 22 MHz Bandwidth, Average	22
Graph 6-18: Transmitter Spurious Emissions, 1 – 18 GHz, 80 MHz Bandwidth, Average	23
Graph 6-19: Transmitter Spurious Emissions, 18 – 26 GHz, 22 MHz Bandwidth, Peak	24
Graph 6-20: Transmitter Spurious Emissions, 18 – 26 GHz, 80 MHz Bandwidth, Peak	24
Graph 6-21: Transmitter Spurious Emissions, 18 – 26 GHz, 22 MHz Bandwidth, Average	25
Graph 6-22: Transmitter Spurious Emissions, 18 – 26 GHz, 80 MHz Bandwidth, Average	25
Graph 6-23: 22 MHz Bandwidth, Lower Band-edge, Peak	26
Graph 6-24: 22 MHz Bandwidth, Upper Band edge, Peak	27
Graph 6-25: 22 MHz Nominal Bandwidth, Upper Band edge, Average	27
Graph 6-26: 80 MHz Bandwidth, Lower Band-edge, Peak	
Graph 6-27: 80 MHz Bandwidth, Upper Band edge, Peak	
Graph 6-28: 80 MHz Bandwidth, Upper Band edge, Average	29
Graph 6-29: Radiated – Power Spectral Density, 22 MHz Bandwidth	
Graph 6-30: Radiated – Power Spectral Density, 80 MHz Bandwidth	
Graph 6-31: Occupied bandwidth, 22 MHz Bandwidth	32
Graph 6-32: Occupied bandwidth, 80 MHz Bandwidth	32

TABLES

Table 6-1: 6dB Bandwidth	
Table 6-2: Duty Cycle1	1
Table 6-3: Maximum peak power 1	
Table 6-4: 100 kHz reference level measurement1	6
Table 6-5: Transmitter Spurious Emissions, 30 – 1000 MHz, 22 MHz Bandwidth 1	8
Table 6-6: Transmitter Spurious Emissions, 30 – 1000 MHz, 80 MHz Bandwidth 1	9
Table 6-7: Transmitter Spurious Emissions, 1 – 18 GHz, 22 MHz Bandwidth, Peak	0
Table 6-8: Transmitter Spurious Emissions, 1 – 18 GHz, 80 MHz Bandwidth, Peak	1
Table 6-9: Transmitter Spurious Emissions, 1 – 18 GHz, 22 MHz Bandwidth, Average 2	
Table 6-10: Transmitter Spurious Emissions, 1 – 18 GHz, 80 MHz Bandwidth, Average 2	3
Table 6-11: 22 MHz Nominal Bandwidth, Lower Band-edge	6
Table 6-12: 22 MHz Nominal Bandwidth, Band edge 2	7
Table 6-13: 80 MHz Nominal Bandwidth, Lower Band-edge	8
Table 6-14: 80 MHz Bandwidth, Band edge 2	9
Table 6-15: Power spectral density	0
Table 6-16: Occupied Bandwidth	1

RADIO TEST REPROT

CERTIFICATE OF COMPLIANCE

UL UL	
Device: Model Number: Serial Number: Equivalent Model Numbers:	CAS-GPS Node PROD1116-E2 116320010035 PROD1116-E2X PROD1116-S2, PROD1116-L2, PROD1116-P2 PROD1116-S2X, PROD1116-L2X, PROD1116-P2X
Manufacturer:	DIGITAL MINING TECHNOLOGY
Radio Module: Part Number: FCC ID: IC ID:	Time of Flight, 2.4 GHz nanoPAN 5375 RF Module MN5375V2 YIY-PROD11162 8903A-PROD11162
Tested for: Address: Phone Number: Contact: Email:	DIGITAL MINING TECHNOLOGY 3 CO-WYN CLOSE, FOUNTAINDALE NSW 2258, AUSTRALIA +61 2 4336 1800 P C SHIVALINGAM Pc.Shivalingam@wabtec.com
Standard:	FCC Part 15, Subpart C, Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz
	ISED RSS-247, Issue 2, Section 5 Standard specifications for frequency hopping systems and digital transmission systems operating in the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz
Result:	The CAS-GPS Node complied with the applicable requirements above standards. Refer to Report M2001003-1 for full details.
Test Date(s):	14 – 17 January and 06 February 2020
Issue Date:	15 April 2020
	Willen XMAN
Test Engineer(s):	Wilson Xiao
Attestation:	I hereby certify that the device(s) described herein were tested as described in this report and that the data included is that which was obtained during such testing.
Authorised Signatory:	Chris Zombolas Managing Director EMC Technologies Pty Ltd
	Issued by: EMC Technologies Pty. Ltd., Harrick Road, Keilor Park, VIC, 3042, Australia. Phone: +61 3 9365 1000 eneral@emctech.com.au Web: www.emctech.com.au
Accreditation No.5292	This document shall not be reproduced except in full.

RADIO REPORT FOR CERTIFICATION

Page 6 of 32

1 TEST SUMMARY

Sec.	Description	FCC	ISED	Result(s)
6.1	Antenna Requirement	§15.203	§RSS-Gen 6.8	Complied
6.2	Restricted Bands of Operation	§15.205	§RSS-Gen 8.10	Complied
6.3	Conducted Limits	§15.207	§RSS-Gen 8.8	Not Applicable
6.4	Radiated emission limits; general requirements	§15.209	§RSS-Gen 8.9	Complied
6.5	6 dB Bandwidth	§15.247(a)(2)	§RSS-247 5.2(a)	Complied
6.6	Peak Output Power	§15.247(b)(3)	§RSS-247 5.4(d)	Complied
6.7	Out-of-Band/Spurious Emissions	§15.247(d)	§RSS-247 5.5	Complied
6.8	Band-Edge Emission Measurements	§15.247(d)	§RSS-247 5.5	Complied
6.9	Power spectral density	§15.247(e)	§RSS-247 5.2(b)	Complied
6.10	Maximum Permissible Exposure	§15.247(i)	§RSS-102	Complied
6.11	Occupied Bandwidth – 99% power	§15.215	§RSS-Gen 6.7	Complied

2 TEST FACILITY

2.1 General

EMC Technologies Pty Ltd is accredited by the FCC as a test laboratory able to perform compliance testing for the public. EMC Technologies Pty Ltd has also been designated as a Conformity Assessment Body (CAB) by Australian Communications and Media Authority (ACMA) under the APECTEL MRA and is designated to perform compliance testing on equipment subject to Declaration of Conformity (DoC) and Certification under Parts 15 and 18 of the FCC Commission's rules – **Registration Number 494713 & Designation number AU0001**.

EMC Technologies Pty Ltd is also an ISED Canada recognized testing laboratory – **ISED** company number: 3569B and CAB identifier number: AU0001.

2.2 Test Laboratory/Accreditations

NATA is the Australian National laboratory accreditation body and has accredited EMC Technologies to operate to the IEC/ISO17025 requirements. A major requirement for accreditation is the assessment of the company and its personnel as being technically competent in testing to the standards. This requires fully documented test procedures, continued calibration of all equipment to the National Standard at the National Measurements Institute (NMI) and an internal quality system similar to ISO 9002. NATA has mutual recognition agreements with the National Voluntary Laboratory Accreditation Program (NVLAP) and the American Association for Laboratory Accreditation (A²LA).

All testing in this report has been conducted in accordance with EMC Technologies' scope of NATA accreditation to ISO 17025 for both testing and calibration and ISO 17020 for Inspection – **Accreditation Number 5292**.

The current full scope of accreditation can be found on the NATA website: www.nata.com.au

3 TEST EQUIPMENT CALIBRATION

Measurement instrumentation and transducers were calibrated in accordance with the applicable standards by an independent NATA registered laboratory such as Keysight Technologies (Australia) Pty Ltd or the National Measurement Institute (NMI) or in-house. All equipment calibration is traceable to Australian national standards at the National Measurements Institute.

Equipment Type	Make/Model/Serial Number	Last Cal. dd/mm/yyyy	Due Date dd/mm/yyyy	Cal. Interval
Chamber	Frankonia SAC-3-2 (R-144)	17/07/2017	17/07/2020	3 Year ^{*1}
EMI Receiver	R&S ESW26 Sn: 101306 (R-143)	27/05/2019	14/05/2020	1 Year*2
	EMCO 6502 Active Loop Antenna Sn: 9311-2801 (A-231)	16/11/2018	16/11/2020	2 Year ^{*2}
Antennas	SUNOL JB1 Sn. A061917 (A-425)	09/04/2019	09/04/2021	2 Year ^{*2}
	EMCO 3115 Horn Antenna Sn: 9501-4398 (A-406)	16/01/2019	16/01/2022	3 Year*1
	ETS-Lindgren 3160-09 Horn Antenna Sn. 66032 (A-307)	12/06/2018	12/06/2021	3 Year ^{*1}
	Huber & Suhner Sucoflex 104A Sn: 503055 (C-457)	03/01/2020	03/01/2021	1 Year ^{*1}
Cables* ³	Huber & Suhner Sucoflex 104A Sn: 507100 (C-478)	03/01/2020	03/01/2021	1 Year ^{*1}
	Huber & Suhner Sucoflex 104A Sn: 503061 (C-463)	03/01/2020	03/01/2021	1 Year ^{*1}

Note *1. Internal NATA calibration.

Note *2. External NATA / A2LA calibration.

Note *3. Cables are verified before measurements are taken.

4 MEASUREMENT UNCERTAINTY

EMC Technologies has evaluated the equipment and the methods used to perform the emissions testing. The estimated measurement uncertainties for emissions tests shown within this report are as follows:

Radiated Emissions:	9 kHz to 30 MHz	±4.1 dB
	30 MHz to 300 MHz	±5.1 dB
	300 MHz to 1000 MHz	±4.7 dB
	1 GHz to 18 GHz	±4.6 dB
	18 GHz to 40 GHz	±4.6 dB
Peak Output Power:		±1.5 dB

The above expanded uncertainties are based on standard uncertainties multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Application of measurement uncertainty for this report:

The referenced uncertainty standard specifies that determination of compliance shall be based on measurements <u>without</u> taking into account measurement instrumentation uncertainty. However, the measurement uncertainty shall appear in the test report.

5 Device Details

(Information supplied by the Client)

CAS-GPS Intelligent multi-purpose node comprises of a high-performance GPS receiver, Vehicle to Vehicle (V2V) radio transceiver, high accuracy Ranging RF transceiver (ToF), RS-232/485 communications, Digital Input (2) / Output (1), Personal Area Network (PAN) and internal battery.

5.1 EUT (Transmitter) Details

Radio:	Time of Flight, 2.4 GHz nanoPAN 5375 RF Module
Manufacturer:	Nanotron Technologies GmbH
Frequency band:	2400 - 2483.5 MHz
Number of Channels:	1
Operating Frequency:	2437 or 2442 MHz
Nominal Bandwidth:	22 or 80 MHz (declared by client)
Modulation:	CSS
Antenna:	Integral PCB antenna
Antenna gain:	2 dBi (max)

5.2 EUT (Host) Details

Test Sample:	CAS-GPS Node
Model Number:	PROD1116-E2
Serial Number:	116320010035
Variant Model:	PROD1116-E2, CAS-GPS Light Vehicle Expandable Node.
	PROD1116-E2X, CAS-GPS Light Vehicle Expandable Node XTD
	PROD1116-L2, CAS-GPS Light Vehicle Node
	PROD1116-L2X, CAS-GPS Light Vehicle Node XTD
	PROD1116-S2, CAS-GPS Type S Node
	PROD1116-S2X, CAS-GPS Type S Node XTD
	PROD1116-P2, CAS-GPS Type P Node
	PROD1116-P2X, CAS-GPS Type P Node XTD
Supply Rating:	12V/24V DC, 3A/1.5A
Manufacturer:	Digital Mining Technology

5.3 Test Configuration

Testing was performed with the EUT set to transmit continuously with modulation applied. TOF parameter "Power: 100" was set via PT Manager 0.03.121.

5.4 Modifications

No modifications were required to achieve compliance.

5.5 Deviations from the Standard

Note any deviations to the standard

6 **RESULTS**

6.1 §15.203/ RSS-Gen 6.8 Antenna Requirement

CAS-GPS Node with 2.4 GHz nanoPAN 5375 RF Module incorporates two integral PCB antennas and cannot be replaced by another type.

Antenna Type: PCB Chip Antenna gain: 2.0 dBi Connector: Not Applicable

The above installation will prevent any unauthorised switching of antennas.

6.2 §15.205/ RSS-Gen 8.10/ RSS-247 3.3 Restricted Bands of Operation

The provisions of the §15.205/ RSS-Gen 8.10/ RSS-247 3.3 restricted bands of operation and §15.209 radiated emissions limits have been met, refer to section 6.7

6.3 §15.207/ RSS-Gen 8.8 Conducted Limits

The device is battery DC powered and does not connect directly or indirectly to the AC mains network. Test was not applicable.

6.4 §15.209/ RSS-Gen 8.9 Radiated emission limits; general requirements

The provisions of the §15.205/ RSS-Gen 8.10/ RSS-247 3.3 restricted bands of operation and §15.209/ RSS-Gen 8.9 radiated emissions limits have been met, refer to section 6.7

6.5 §15.247(a)(2)/ RSS-247 5.2(a) 6 dB bandwidth

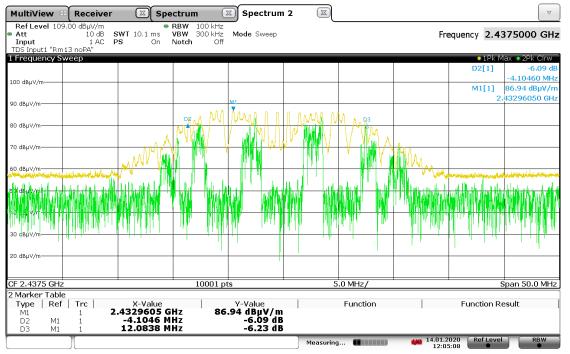
6.5.1 Test Procedure

The tests were performed in accordance with ANSI C63.10: 2013 Clause 11.8 DTS bandwidth.

The 6 dB bandwidth was measured while the device was transmitting with typical modulation applied. The resolution bandwidth of 100 kHz and the video bandwidth of 300 kHz were utilised when measuring the bandwidth.

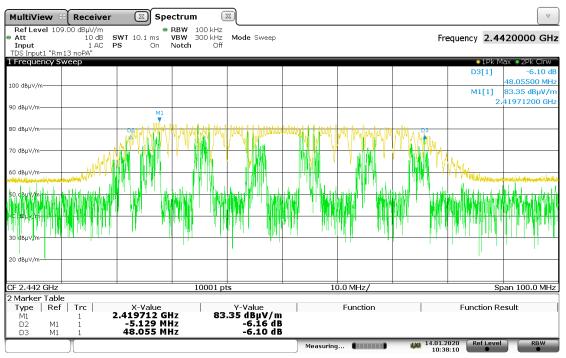
6.5.2 Limits

In the band 2400-2483.5MHz, the minimum 6 dB bandwidth is to be at least 500 kHz.


6.5.3 Results

Frequency [MHz]	Nominal Bandwidth	6 dB Bandwidth [kHz]	Limit [kHz]
2437	22 MHz	16187	>= 500
2442	80 MHz	53184	>= 500

Table 6-1: 6dB Bandwidth



12:05:08 14.01.2020

10:38:10 14.01.2020

Graph 6-2: 6 dB bandwidth, 80 MHz Bandwidth

6.6 §15.247(b)(3)/ RSS-247 5.4(d) Peak Output Power

6.6.1 Test Procedure

The field strength of the fundamental transmitted frequency was measured inside a semianechoic chamber compliant with ANSI C63.4: 2014 in accordance to ANSI C63.10: 2013 clause 11.9.2.2.4.

The EUT was positioned on a test turn-table and rotated through 360° to determine the highest emissions. The measurement antenna was also varied between 1 and 4 metres height. Different orientations of the EUT (x, y and z-axis) and measurement antenna polarisations (vertical and horizontal) were investigated to produce the highest emission EIRP.

All measurements were made at a distance of 3 metres.

6.6.2 Limits

The maximum peak conducted output power at 2400-2483.5 MHz is 1 Watts or 30 dBm.

6.6.3 Results

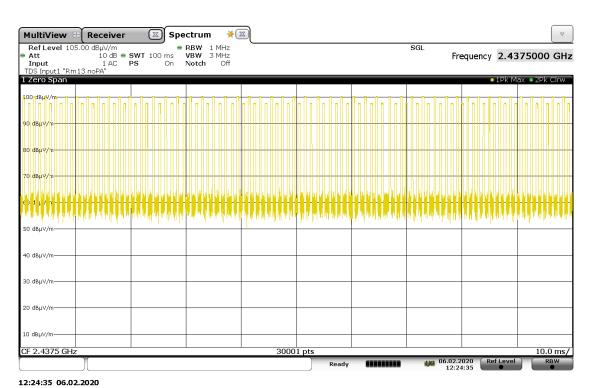
Frequency [MHz]	Nominal Bandwidth	Single Pulse Time [ms]	Number of Pulses in 100 ms	Duty Cycle (D)	Correction Factor (dB)*
2437	22 MHz	0.37675	98	36.92%	4.327
2442	80 MHz	0.37669	103	38.80%	4.112

Table 6-2: Duty Cycle

Note: Correction factor = $10 * \log (1/D)$

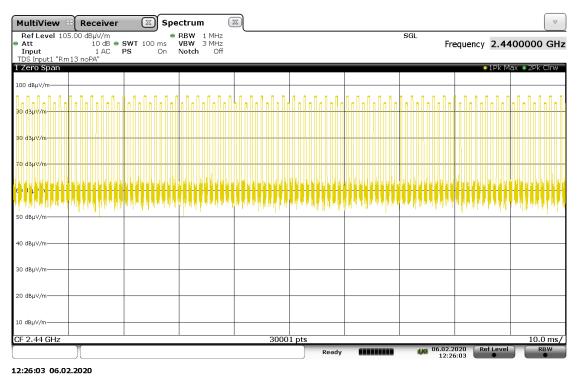
Table 6-3: Maximum peak power

Freq.	E-Field	@ 3 m	Correction Factor	EIRP	Antenna Gain	Equivalent Conducted	Limit	Results	
[MHz]	dBuV/m	dBm	(dB)	(dBm)	(dBi)	Output Power (dBm)	(dBm)	Results	
2437	92.95	-2.28	4.327	2.05	2	0.05	30	Complied	
2442	93.75	-1.48	4.11	2.63	2	0.63	30	Complied	


The measured radiated field strength is converted to equivalent conducted output power for checking compliance (KDB 558074 D01 Section 3).

MultiView 😁	Receiver	🖾 Sr	ectrum (X					
Ref Level 112. Att Input TDS Input1 "Rm1	10 dB 👄 f 1 AC 🛛 🖡	SWT 10 ms PS On	RBW 10 MHz VBW 10 MHz Notch Off				sgl Fr	equency 2.43	375000 GHz
1 Zero Span								●1Pk M	ax •2Pk Clrw
110 dBµV/m								D2[1]	376.750 μs
100 dbpv/m					profession of			M1[1]	76.63 dBµV/m 4.423250 ms
90 dBµV/m									
00 40 41 (m									
,80,dBµV/m dalata na dalata na na ana ana ana ana ana ana ana an	and the period And the period								erenteret interet Letteretere
70 dBµV/m		1			- I*				r
60 dBµV/m									
50 dBµV/m									
40 dBµV/m									
30 dBµV/m									
20 dBµV/m									
CF 2.4375 GHz				1000	1 nts				1.0 ms/
)[1000	Ready	0000000	400 16.01.2 15:1		
15:19:15 16.01.	2020								

Graph 6-4: Number of Pulses, 22 MHz Bandwidth



MultiView 😣	Receiver	🖾 Spe	ctrum [
Ref Level 112.0 Att Input TDS Input1 "Rm1:	10 dB • S 1 AC PS	WT 10 ms 🖷 🕻	NBW 10 MHz NBW 10 MHz Notch Off				sgl Fr	equency 2.44	120000 GHz
1 Zero Span	0 110171								lax 🍳 2Pk Clrw
110 dBµV/m								D2[1]	
									376.690 μs
100 dBµV/m								M1[1]	74.45 dBµV/m
100 uBpv/m	and the state of the state				()		-		4.288250 ms
90 dBµV/m									
80 d9uV/m	edin dinde	والطاقة الموسكة	ng ng Malay		line white	and the second	nu in	di terrinata	ni aniahaay
Another Arthe			altered A debute	natesi 🔨 🕴 🕇 👘 🖬 🖓		Adapter Antipital	Lik white	an waalifika	
70 dBµV/m		. do	a de la companya de la	and the	1 A. 1997	-1		1.0.0.1	
60 dBµV/m									
50 dBµV/m									
40 dBµV/m									
40 ubµv/m									
30 dBµV/m									
20 dBµV/m									
20 0001/11									
				1000					
CF 2.442 GHz				1000			16.01		1.0 ms/
L	٦				Ready		## 16.01. 14:4		KBW

MultiView 🕄 Receive	er 🖾 Spectrum	X			
Ref Level 112.00 dBµV/m ● Att 10 dB Input 1 AC TDS Input1 "Rm13 noPA"	RBW 1 SWT 10.1 ms VBW 3 PS On Notch		SGL Count 1000/	1000 Frequency	2.4375000 GHz
1 Frequency Sweep					●1Rm Avg
110 dBµV/m				M	t[1] <mark>80.51 dBµ∀/m</mark> 2.43750000 GHz
100 dBµV/m					
90 dBµV/m					
80 dBµV/m					
70 dBµV/m					
60. dBµV/m					
50 dBµV/m					
40 dBµV/m					
30 dBµV/m					
20 dBµV/m					
CF 2.4375 GHz	1	0001 pts	5.0 MHz/		Span 50.0 MHz
2 Marker Table Type Ref Trc M1 1	X-Value 2.4375 GHz	Y-Value 80.51 dBµV/m	Function Band Power/27.0 MHz		tion Result dBµV/m
		•	Ready		f Level RBW

15:28:10 16.01.2020

Graph 6-7: Max EIRP Power, 22 MHz Bandwidth

15:09:29 16.01.2020

Graph 6-8: Max EIRP Power, 80 MHz Bandwidth

6.7 §15.247(d)/ RSS-247 5.5 Out-of-Band/Spurious Emissions

6.7.1 Test procedure

Radiated out-of-band/spurious emissions measurements were performed in a semi-anechoic chamber compliant with ANSI C63.4: 2014.

The test frequency range was sub-divided into smaller bands with the defined resolution bandwidths to permit reliable display and identification of emissions.

Frequency range [MHz]	Measurement Bandwidth [kHz]	Measurement Distance [m]	Antenna
0.009 to 0.150	0.2	3	0.6 metre loop antenna
0.150 to 30	9	3	0.6 metre loop antenna
30 to 1000	120	3	Biconilog hybrid
1000 to 18 000	1000	3	Standard gain or broadband
18 000 to 40 000	1000	1	horn

EUT was set at a height of 0.8 m for measurements below 1000 MHz and set at a height of 1.5 m for measurements above 1000 MHz.

The sample was slowly rotated with the spectrum analyser set to Max-Hold. This was performed for at least two antenna heights. When an emission was located, it was positively identified and its maximum level found by rotating the automated turntable and by varying the antenna height. For below 1000 MHz the emissions were measured with a Quasi-Peak detector, and for above 1000 MHz the emissions were measured with Peak and Average detectors.

EUT was investigated on all three axes (x, y, and z) with the loop antenna. Measurements on the worst axis are presented below.

The measurement data for each frequency range was corrected for cable losses, antenna factors and preamplifier gain. This process was performed for both horizontal and vertical polarisations of the measurement antenna.

6.7.2 Evaluation of field strength

Field strengths were calculated automatically by the software using pre-stored calibration data. The method of calculation is shown below:

$$E = V + AF - G + L$$

Where: $E = \text{Radiated Field Strength in dB}\mu\text{V/m}$.

V = EMI Receiver Voltage in dBµV/m.

AF = Antenna Factor in dB (stored as a data array).

G = Preamplifier Gain in dB (stored as a data array).

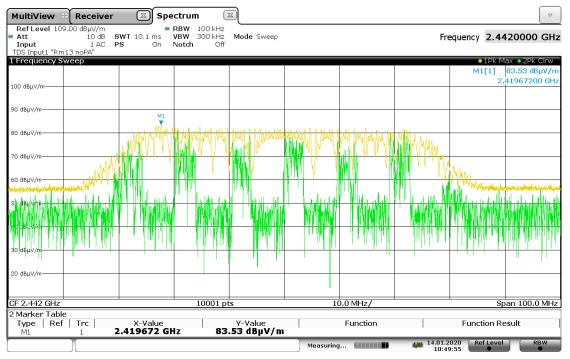
L = Cable loss in dB (stored as a data array of Insertion Loss versus frequency).

6.7.3 Limits

The limit applied is in accordance with the out-of-band/spurious emissions limit defined in §15.247(d).

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

The in-band peak PSD in 100 kHz bandwidth were measured on all three channels. The maximum PSD level was used to establish the limit. However, the general limits of §15.209 apply for the restricted bands of operation defined in §15.205.

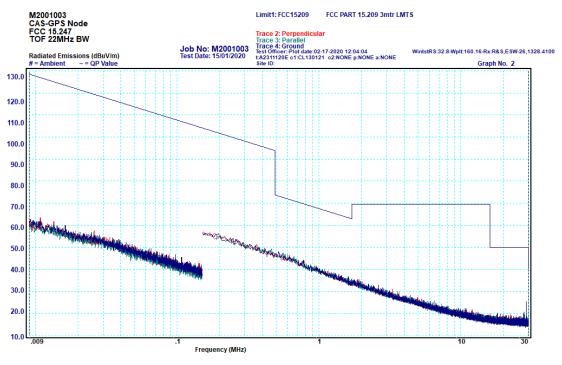


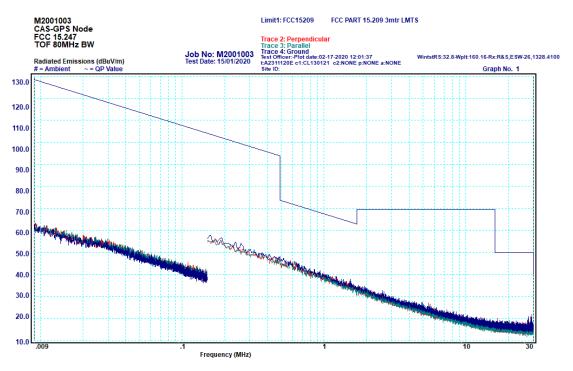
	Freq. (MHz)	Nominal Bandwidth	Peak at 3 m (dBµV/m)	Limit at 3m (dBµV/m)	
	2437	22 MHz	87.23	67.23	
	2442	80 MHz	83.53	-	
MultiView 🗄 Recei	iver 🖾 Spect	rum 🖾 Spectro	um 2 🖾		
Ref Level 109.00 dBµV, Att 10 Input 1 / TDS Input1 "Rm 13 noPA"	dB SWT 10.1 ms VB	W 100 kHz W 300 kHz Mode Swee otch Off	p	Frequen	cy 2.4375000 GHz
I Frequency Sweep					● 1Pk Max ● 2Pk Clrw M1[1] 87.23 dBµV/m
100 dBµV/m					2.43193560 GHz
90 dBµV/m		M1			
		an MI MAN A	A A AMA AMA		
30 dBµV/m			I II M I I MM		
70 dBµV/m	- MAN	NY VIIIN DV		Am -	
50. dBuV/m	MANY Y				
50 dBµV/m Hite Link Leven and a state of the	www.			· · · · · · · · · · · · · · · · · · ·	للمانية المانية المانية المانية المحالية المراجعة المحالية المحالية المحالية المحالية المحالية المحالية المحالي
57 BBUY/0 <mark>-1-1101-11-0-11-</mark>			' INNAN' INAN' I		
0 = e,r ;/+ 					
30 dBµV/m		· · · · · · · · · · · · · · · · · · ·			
20 dBµV/m					
CF 2.4375 GHz		10001 pts	5.0 MHz/		Span 50.0 MHz
		10001 pts	Measuring	14.01.2020 12:19:02	Ref Level RBW

Table 6-4: 100 kHz reference level measurement

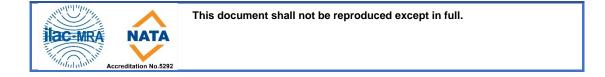
12:19:03 14.01.2020

^{10:49:57 14.01.2020}



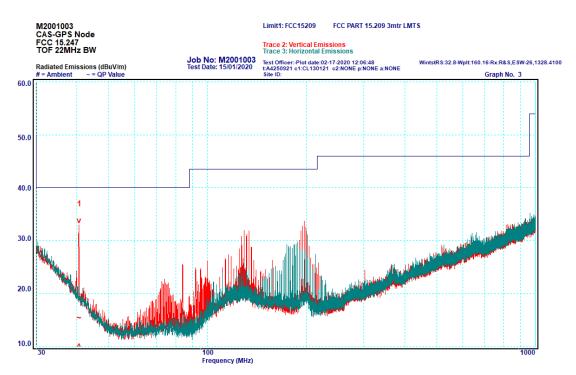

6.7.4 Transmitter Spurious Emissions: 9 kHz to 30 MHz

All emissions measured in the frequency band 9kHz - 30MHz complied with the requirements of the standard.


Graph 6-11: Transmitter Spurious Emissions, 9kHz - 30 MHz, 22 MHz Bandwidth

No peaks were measured within 10 dB of the limit.

Graph 6-12: Transmitter Spurious Emissions, 9kHz – 30 MHz, 80 MHz Bandwidth


No peaks were measured within 10 dB of the limit.

6.7.5 Transmitter Spurious Emissions: 30 - 1000 MHz

All emissions measured in the frequency band 30 - 1000 MHz complied with the requirements of the standard.

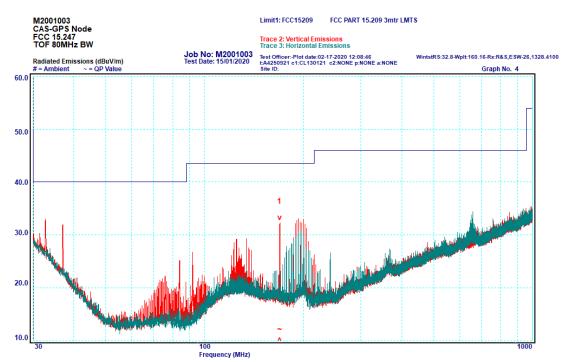
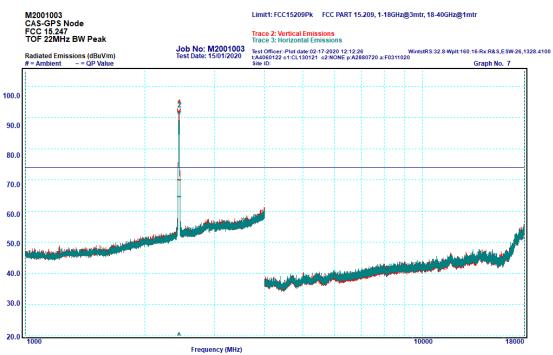

Graph 6-13: Transmitter Spurious Emissions, 30 – 1000 MHz, 22 MHz Bandwidth

Table 6-5: Transmitter Spurious Emissions, 30 – 1000 MHz, 22 MHz Bandwidth

	Peak	Frequency		(Quasi Peak	
		Frequency [MHz]	Polarisation	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	1	40.69	Vertical	15.4	40.0	-24.6

Graph 6-14: Transmitter Spurious Emissions, 30 – 1000 MHz, 80 MHz Bandwidth Table 6-6: Transmitter Spurious Emissions, 30 – 1000 MHz, 80 MHz Bandwidth

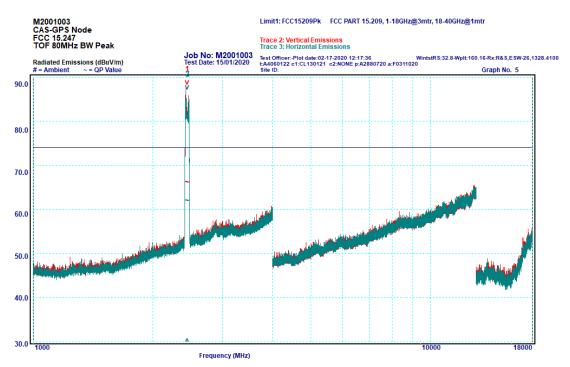

	Peak	Frequency [MHz]		Quasi Peak		
			Polarisation	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	1	169.55	Vertical	12.1	43.5	-31.4

6.7.6 Transmitter Spurious Emissions: 1 - 18 GHz

All emissions measured in the frequency band $1-18\ \text{GHz}$ complied with the requirements of the standard.

Peak Measurement:

Graph 6-15: Transmitter Spurious Emissions, 1 – 18 GHz, 22 MHz Bandwidth, Peak

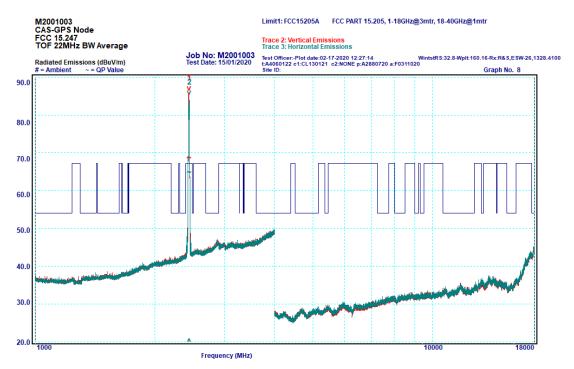

Table 6-7: Transmitter Spurious Emissions, 1 – 18 GHz, 22 MHz Bandwidth, Peak

ſ		Frequency			Peak	
	Peak	k Frequency [MHz]	Polarisation	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]
ſ	1*	2437.5	Vertical	N/A	N/A	N/A
	2*	2437.5	Horizontal	N/A	N/A	N/A

*Note: Peaks are the fundamental transmission and not subject to the spurious limits of the standard

Graph 6-16: Transmitter Spurious Emissions, 1 – 18 GHz, 80 MHz Bandwidth, Peak

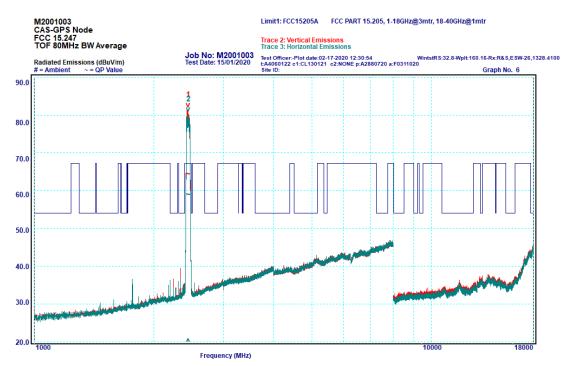
Table 6-8: Transmitter Spurious Emissions, 1 – 18 GHz, 80 MHz Bandwidth, Peak


	Frequency			Peak	
Peak	Frequency [MHz]	Polarisation	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]
1*	2442	Vertical	N/A	N/A	N/A
2*	2442	Horizontal	N/A	N/A	N/A

*Note: Peaks are the fundamental transmission and not subject to the spurious limits of the standard

Average Measurement:

Graph 6-17: Transmitter Spurious Emissions, 1 – 18 GHz, 22 MHz Bandwidth, Average


Table 6-9: Transmitter Spurious Emissions, 1 – 18 GHz, 22 MHz Bandwidth, Average

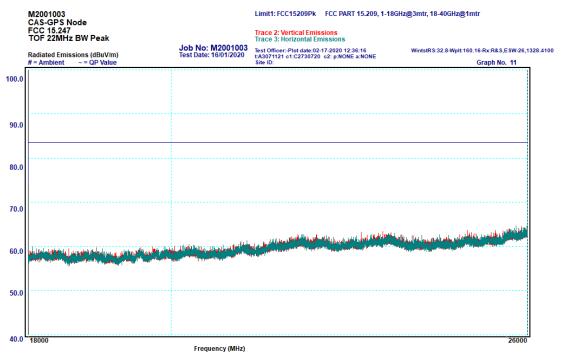
	Frequency			Peak	
Peak	Frequency [MHz]	Polarisation	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]
1*	2437.5	Vertical	N/A	N/A	N/A
2*	2437.5	Horizontal	N/A	N/A	N/A

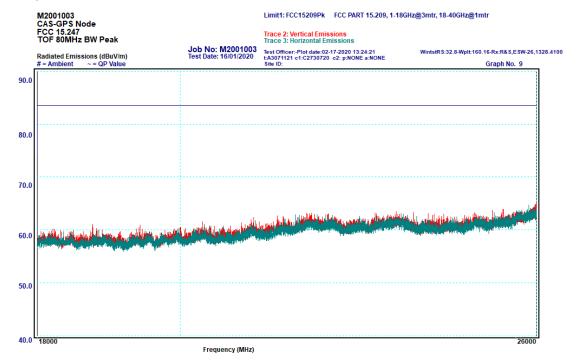
*Note: Peaks are the fundamental transmission and not subject to the spurious limits of the standard

Graph 6-18: Transmitter Spurious Emissions, 1 – 18 GHz, 80 MHz Bandwidth, Average Table 6-10: Transmitter Spurious Emissions, 1 – 18 GHz, 80 MHz Bandwidth, Average

	Frequency			Peak	
Peak	Frequency [MHz]	Polarisation	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]
1*	2442	Vertical	N/A	N/A	N/A
2*	2442	Horizontal	N/A	N/A	N/A

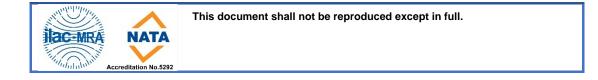
*Note: Peaks are the fundamental transmission and not subject to the spurious limits of the standard



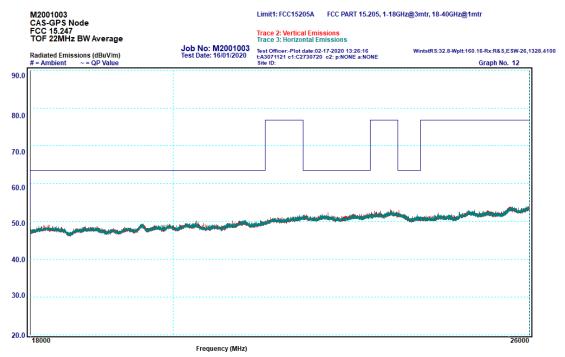

6.7.7 Transmitter Spurious Emissions: 18 – 26 GHz

All emissions measured in the frequency band 18 - 26 GHz complied with the requirements of the standard.

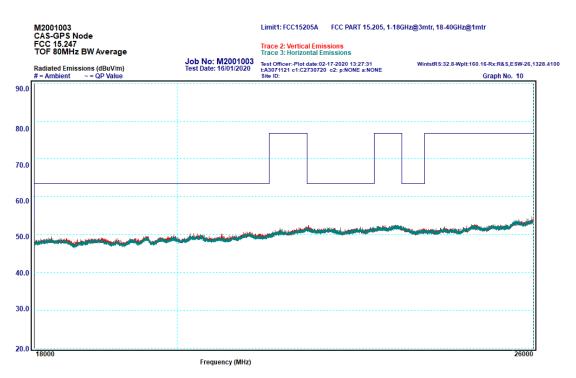
Peak Measurement:


Graph 6-19: Transmitter Spurious Emissions, 18 – 26 GHz, 22 MHz Bandwidth, Peak

No peaks were measured within 10 dB of the limit.


Graph 6-20: Transmitter Spurious Emissions, 18 – 26 GHz, 80 MHz Bandwidth, Peak

No peaks were measured within 10 dB of the limit.



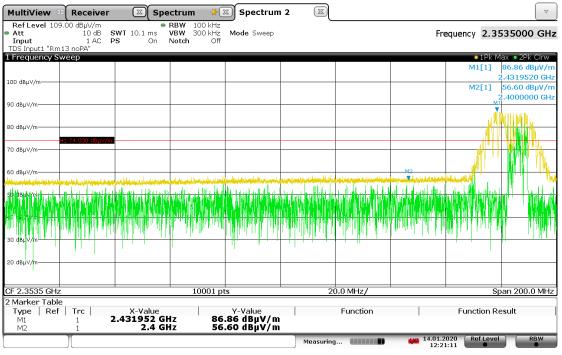
Average Measurement:

Graph 6-21: Transmitter Spurious Emissions, 18 – 26 GHz, 22 MHz Bandwidth, Average

No peaks were measured within 10 dB of the limit.

Graph 6-22: Transmitter Spurious Emissions, 18 – 26 GHz, 80 MHz Bandwidth, Average

No peaks were measured within 10 dB of the limit.



6.8 §15.247(d)/ §RSS-247 5.5 Band Edge Emission Measurements

Band-edge measurements were done using radiated in accordance to ANSI C63.10 clause 6.10. All emissions measured near the lower and higher band edge complied with the requirements of §15.247/ RSS-247 5.0.

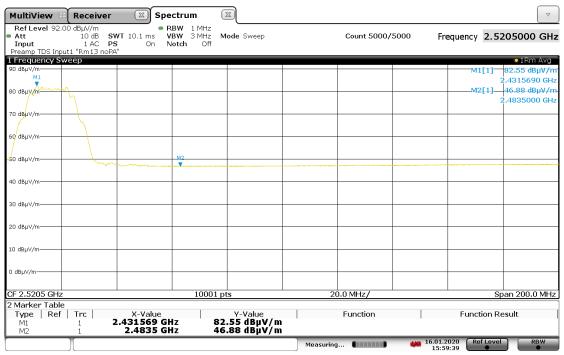
22 MHz Nominal Bandwidth:

12:21:12 14.01.2020

Graph 6-23: 22 MHz Bandwidth, Lower Band-edge, Peak

Table	6-11: 22 MHz	Nominal	Bandwidth,	Lower Ba	nd-edge

Measurement Type	Freq [MHz]	Measurement M2 [dBuV/m]	Measurement in-band M1 [dBuV/m]	Delta-Peak in-band [dB]	Result
Peak	2400	56.60	86.86	-30.26	Complied



MultiView 🕄	Receiver	🖾 Spe	ctrum 🛛 🧩 🛛	Spectrum S	2 🖾				
Ref Level 109.0 Att Input TDS Input1 "Rm13	10 dB 1 1 AC 1	SWT 10.1 ms	RBW 1 MHz VBW 3 MHz 1 Notch Off	Mode Sweep	_		Fre	equency 2.5	195000 GHz
1 Frequency Swe								• 1Pk №	1ax 💿 2Pk Clrw 🗋
								M1[1]	93.18 dBµV/m
									2.4313890 GHz
100 dBµV/m M1								M2[1]	64.35 dBµV/m
X									2.4835000 GHz
90 dBµV/m	4								
	M								
80 dBuV/m	_ <u>N</u>								
	74.000 dBuV/m								
70 BuV/m	74.000 uspv/m								
	- Inicase	a distance of the distance	had the second state of th				International Antonia Sport		
The control of the later	sul datarti	NUMER OF COMPANY AND	n se an	ol illini kato histori Janika Histori	alite ta dikadan ku ana a	and advantation for the state	l hiddhic ha contain hard for	ALMAN AND MANY AND	N O Y CHANNEL HUNDER
BB1 BB1	a la faithead	a linear real contra	in Lundel 1.1	وهالها لغال وجيواها	dual to distance	ົ້ວເປັນ ທີ່ ມີຕໍ່ມີເຕັ້ນໃດປາ	nd a linear constallad	n, annatala a	ditable intera-
				all Malender de la la	a na ang ang ang ang ang ang ang ang ang	יד היי אין אין אין אין אין אין אין אין א	a da an		
50 dBµV/m		histor to to a	the stead					· · · · · · · · · · · · · · · · · · ·	<u> </u>
40 dBµV/m									
30 dBµV/m									
20 dBµV/m									
20 000 0711									
CF 2.5195 GHz		1	10001 pt	rs	21).0 MHz/		<u>।</u> ९।	pan 200.0 MHz
2 Marker Table			10001 p		20	515			20010 11112
Type Ref	Trc	X-Value		Y-Value		Function		Function R	esult
M1		2.431389 GH		.18 dBµV/m					
M2	1	2.4835 GH	lz 64	.35 dBµV∕m					
					Aborted	000000000	## 14.01.2 12:23		RBW

12:23:58 14.01.2020

15:59:39 16.01.2020

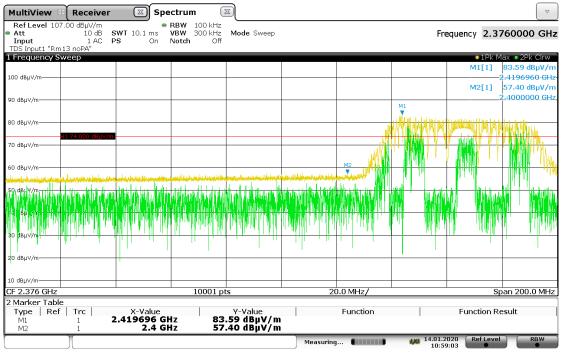

Graph 6-25: 22 MHz Nominal Bandwidth, Upper Band edge, Average

Table 6-12: 22	MHz Nominal	Bandwidth,	Band edge

Measurement Type	Freq [MHz]	Measurement [dBuV/m]	Limit [dBuV/m]	Result
Peak	2483.5	64.35	74.0	Complied
Average	2483.5	46.88	54.0	Complied

80 MHz Nominal Bandwidth:

10:59:04 14.01.2020

Graph 6-26: 80 MHz Bandwidth, Lower Band-edge, Peak

	~ ~				
Table 6-13:	80 MHz	Nominal	Bandwidth,	Lower Bana	-edge

Measurement Type	Freq [MHz]	Measurement M2 [dBuV/m]	Measurement in-band M1 [dBuV/m]	Delta-Peak in-band [dB]	Result
Peak	2400	57.40	83.59	-26.19	Complied

MultiView 🕫	Receiver	X	Spectru	n (X					
Ref Level 107.0 Att Input TDS Input1 "Rm13	10 dB 1 AC	SWT 10.1 PS		1 MHz 3 MHz I Off	Mode Sweep			Fre	equency 2.5	100000 GHz
1 Frequency Swe									• 1Pk №	1ax 💿 2Pk Clrw
									M2[1]	65.53 dBµV/m
100 dBµV/m										2.4835000 GHz
M1									M1[1]	91.48 dBµV/m
90 dBuym										2.4193290 GHz
So approved		America	0 a							
			e vin							
,89 , 1 1∨/m————										
	74.000 dBµV/r									
¹ D dBµV/m				M2						
	- L								 A second sec second second sec	
бо ави	<u>the device</u>	a situi	Ukakadi Pari Jak		Wheel Minister Head	en martin in the colour state	unterstation of the Alabertation of the		IN MININE IN THE MUTCHINE	
	n Latai		1.11	da al a cal	in the second of	الاستعمالي الأربالي المراجع	ad datal terrated as	u da da contribil a contra de	տ անվել է երկունել	 J. Matteries Mittanticity
	- 1.3 AM/M	1 1		n beau la ha		an taka manang di di kat	an a	י קורה יידי האודיי יידי	nde, lintaulie de de lei	ala da mandala da da da da
50 dBµV/m										
	[1
40 dBµV/m		-								
30 dBµV/m										
20 dBµV/m										
20 ubµv/m										
10 dBµV/m										
CF 2.51 GHz			•	10001 p	ts	20).0 MHz/		S	oan 200.0 MHz
2 Marker Table										
	Trc	X-Va			Y-Value		Function		Function R	esult
M1	1	2.41932		91	.48 dBµV/m					
M2	1	2.483	5 GHz	65	.53 dBµV∕m					
[]						Measuring		401.2 14.01.2 10:51	020 Ref Level	RBW

10:57:21 14.01.2020

Graph 6-27: 80 MHz Bandwidth, Upper Band edge, Peak

MultiView	Receiver	🕱 Spe	ctrum	X					
Ref Level 92.0 Att Input Preamp TDS Inpu	10 dB SW 1 AC PS t1 "Rm13 noPA"	T 10.1 ms VI	BW 1 MHz BW 3 MHz otch Off	Mode Sweep		SGL Count 5000/50	00 Fre	quency 2.5	205000 GHz
1 Frequency Sw	reep								IRm Avg
90 dBµV/m				-				M1[1]	78.94 dBµV/m
									2.4223900 GHz
M1 ∰ dBµV/m								M2[1]_	47.00 dBuV/m
Minin		\wedge_{\wedge}							2.4835000 GHz
70 dBµV/m									
60 dBµV/m									
		$\langle \rangle$							
50 dBµV/m			M2						
				·····					
40 dBµV/m									
30 dBµV/m									
aa 10 11 1									
20 dBµV/m									
10 dBµV/m				-					
0 dBµV/m									
CF 2.5205 GHz			10001	nte		0.0 MHz/		c	pan 200.0 MHz
2 Marker Table			10001	pra	Z			3	part 20070 MHZ
Type Ref	Trc	X-Value		Y-Value		Function		Function R	esult
M1		.42239 GH:	, 7	8.94 dBuV/n		rancion		TUICUOTIK	caut
M2		2.4835 GH	ž 4	8.94 dBµV/n 7.00 dBµV/n	i				
	- -				````			/	

Graph 6-28: 80 MHz Bandwidth, Upper Band edge, Average

Table 6-14: 80 MHz Bandwidth, Band edge

Measurement Type	Freq [MHz]	Measurement [dBuV/m]	Limit [dBuV/m]	Result
Peak	2483.5	65.53	74.0	Complied
Average	2483.5	47.00	54.0	Complied

6.9 §15.247(e)/ RSS-247 5.2(b) Power Spectral Density

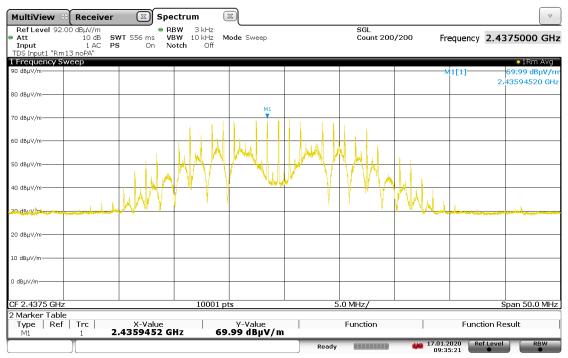
6.9.1 Test procedure

The tests were performed in accordance with ANSI C63.10: 2013 Clause 11.10 Maximum power spectral density level in the fundamental emissions.

Power spectral density measurements were made at 3 metres. The measurement resolution bandwidth was 3 kHz. The orientation of the EUT and the measurement antenna height and polarisation that produced the highest EIRP was used.

Power spectral density measurements were done at radiated method. The measurement resolution bandwidth was 3 kHz.

6.9.2 Limits

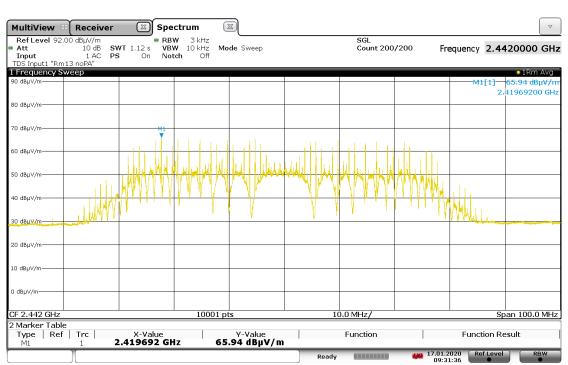

The maximum peak conducted power spectral density (PSD) is 8 dBm per 3 kHz.

6.9.3 Results

The measured radiated field strength is converted to equivalent conducted output power spectral density for checking compliance (KDB 558074 D01 Section 3).

Freq.	Freq. E-Field@3m		Correction	EIRP	Antenna	Equivalent	Limit	Deculto
[MHz]	dBuV/m	dBm	Factor (dB)	(dBm) Gain (dBi)		Conducted Output PSD (dBm)	(dBm)	Results
2437	69.99	-25.24	4.327	-20.91	2	-22.91	8	Complied
2442	65.94	-29.29	4.11	-25.18	2	-27.18	8	Complied

Table 6-15: Power spectral density



09:35:22 17.01.2020

Graph 6-29: Radiated – Power Spectral Density, 22 MHz Bandwidth

Page 31 of 32

09:31:36 17.01.2020

Graph 6-30: Radiated – Power Spectral Density, 80 MHz Bandwidth

6.10 §15.247(i)/ §RSS-Gen 3.4/§RSS-102 Maximum Permissible Exposure

The EUT complied with the applicable maximum permissible exposure levels. Refer to EMC Technologies report M2001003-4 and M2001003-5

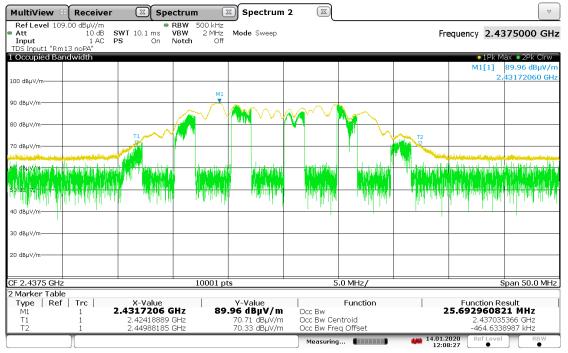
6.11 §15.215/ §RSS-Gen 6.7 Occupied Bandwidth – 99% power

6.11.1 Test procedure

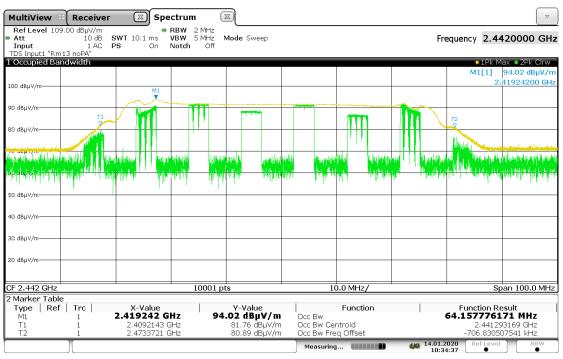
The bandwidth containing 99% power of the transmitted signal was measured using the procedure from ANSI C63.10 section 6.9.

6.11.2 Limits

The 99% power should be contained within the frequency band 2400 - 2483.5 MHz.


6.11.3 Results

Freq. [MHz]	Nominal Bandwidth	99% Bandwidth [MHz]	Low Frequency [MHz]	High Frequency [MHz]	Result
2437	22 MHz	25.69	2424.19	2449.88	Complied
2442	80 MHz	64.16	2409.21	2473.37	Complied



12:08:28 14.01.2020

Graph 6-31: Occupied bandwidth, 22 MHz Bandwidth

10:34:37 14.01.2020

Graph 6-32: Occupied bandwidth, 80 MHz Bandwidth

END OF REPORT

