APPENDIX D CALIBRATION DOCUMENTS

- 1. SN: 1380 Probe Calibration Certificate
- 2. SN: DV900V2 Antenna Calibration Certificate
- 3. SN: 442 DAE3 Data Acquisition Electronics Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client EMC Technologies

Certificate No: ET3-1380_Dec16

S

С

S

bject	ET3DV6 - SN:1380		
alibration procedure(s)		CAL-12.v9, QA CAL-23.v5, QA ure for dosimetric E-field probes	CAL-25.v6
alibration date:	December 8, 2016		
he measurements and the unc	ertainties with confidence prot ucted in the closed laboratory f	al standards, which realize the physical units ability are given on the following pages and a facility: environment temperature $(22 \pm 3)^{\circ}$ C a	are part of the certificate.
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
Power sensor NRP-Z91	SN: 103244	06-Apr-16 (No. 217-02288)	Apr-17
	SN: 103245	06-Apr-16 (No. 217-02289)	Apr-17
Power sensor NRP-Z91		05 4 10 (N=- 017 00000)	Apr-17
the second se	SN: S5277 (20x)	05-Apr-16 (No. 217-02293)	
Reference 20 dB Attenuator	SN: S5277 (20x) SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
Reference 20 dB Attenuator Reference Probe ES3DV2			
Reference 20 dB Attenuator Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4	SN: 3013 SN: 660	31-Dec-15 (No. ES3-3013_Dec15) 7-Dec-16 (No. DAE4-660_Dec16)	Dec-16 Dec-17
Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	SN: 3013 SN: 660	31-Dec-15 (No. ES3-3013_Dec15) 7-Dec-16 (No. DAE4-660_Dec16) Check Date (in house)	Dec-16 Dec-17 Scheduled Check
Power meter E4419B	SN: 3013 SN: 660 ID SN: GB41293874	31-Dec-15 (No. ES3-3013_Dec15) 7-Dec-16 (No. DAE4-660_Dec16) Check Date (in house) 06-Apr-16 (in house check Jun-16)	Dec-16 Dec-17 Scheduled Check In house check: Jun-18
Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A	SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087	31-Dec-15 (No. ES3-3013_Dec15) 7-Dec-16 (No. DAE4-660_Dec16) Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 04-Aug-99 (in house check Jun-16)	Dec-16 Dec-17 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 In house check: Jun-18
Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A	SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087 SN: 000110210	31-Dec-15 (No. ES3-3013_Dec15) 7-Dec-16 (No. DAE4-660_Dec16) Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16)	Dec-16 Dec-17 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18
Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	SN: 3013 SN: 660 ID SN: GB41293874 SN: WY41498067 SN: 000110210 SN: US3642U01700 SN: US37390585	31-Dec-15 (No. ES3-3013_Dec15) 7-Dec-16 (No. DAE4-660_Dec16) Check Date (in house) 06-Apr-16 (in house check Jun-16) 04-Aug-99 (in house check Jun-16) 18-Oct-01 (in house check Oct-16)	Dec-16 Dec-17 Scheduled Check In house check: Jun-18 In house check: Oct-17
Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	31-Dec-15 (No. ES3-3013_Dec15) 7-Dec-16 (No. DAE4-660_Dec16) Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 04-Aug-99 (in house check Jun-16)	Dec-16 Dec-17 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 In house check: Jun-18
Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E	SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US37390585 Name	31-Dec-15 (No. ES3-3013_Dec15) 7-Dec-16 (No. DAE4-660_Dec16) Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 04-Aug-99 (in house check Jun-16) 18-Oct-01 (in house check Oct-16) Function	Dec-16 Dec-17 Scheduled Check In house check: Jun-18 In house check: Oct-17

Certificate No: ET3-1380_Dec16

Page 1 of 11

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura s **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

Olossaly.	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
	i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close b) proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

information used in DASY system to align probe sensor X to the robot coordinate system

- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices c) used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ET3-1380_Dec16

Page 2 of 11

ET3DV6 - SN:1380

December 8, 2016

Probe ET3DV6

SN:1380

Manufactured: Calibrated: August 16, 1999 December 8, 2016

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ET3-1380_Dec16

Page 3 of 11

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

ET3DV6- SN:1380

December 8, 2016

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1380

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.61	1.55	1.66	± 10.1 %
DCP (mV) ^B	95.8	95.6	95.0	1

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	245.1	±3.3 %
		Y	0.0	0.0	1.0		224.0	
		Z	0.0	0.0	1.0		249.3	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: ET3-1380_Dec16

Page 4 of 11

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

December 8, 2016

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1380

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
300	45.3	0.87	8.02	8.02	8.02	0.20	2.80	± 13.3 %
450	43.5	0.87	7.35	7.35	7.35	0.25	2.80	± 13.3 %
750	41.9	0.89	6.66	6.66	6.66	0.63	2.10	± 12.0 %
900	41.5	0.97	6.26	6.26	6.26	0.62	2.08	± 12.0 %
1640	40.3	1.29	5.47	5.47	5.47	0.73	2.27	± 12.0 %
1810	40.0	1.40	5.18	5.18	5.18	0.80	2.02	± 12.0 %
1950	40.0	1.40	4.98	4.98	4.98	0.80	2.09	± 12.0 %
2450	39.2	1.80	4.62	4.62	4.62	0.80	1.86	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. ⁶ At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters. ⁶ Apha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: ET3-1380_Dec16

Page 5 of 11

December 8, 2016

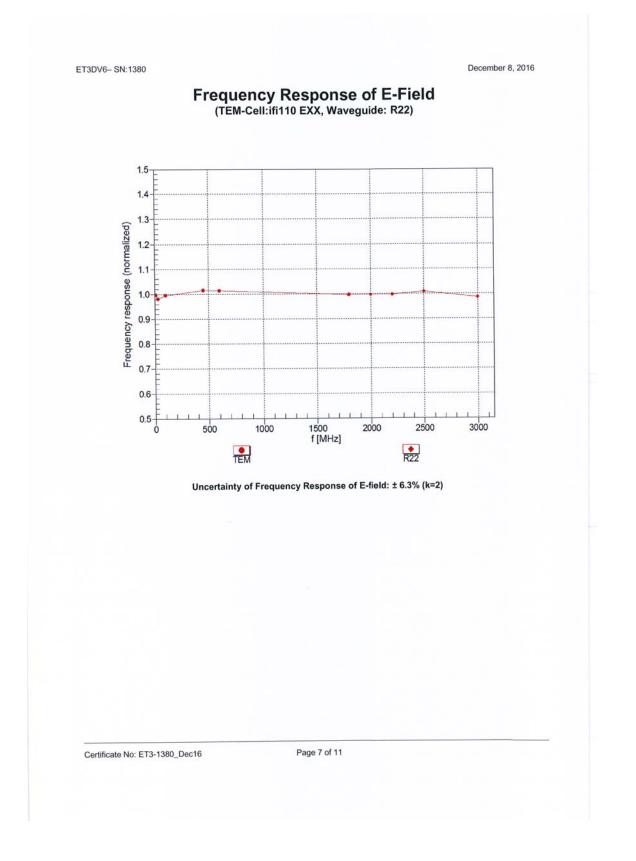
DASY/EASY - Parameters of Probe: ET3DV6 - SN:1380

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
300	58.2	0.92	7.82	7.82	7.82	0.11	2.30	± 13.3 %
450	56.7	0.94	7.62	7.62	7.62	0.15	2.30	± 13.3 %
750	55.5	0.96	6.38	6.38	6.38	0.56	2.05	± 12.0 %
900	55.0	1.05	6.20	6.20	6.20	0.66	1.94	± 12.0 %
1810	53.3	1.52	4.72	4.72	4.72	0.80	2.39	± 12.0 %
1950	53.3	1.52	4.76	4.76	4.76	0.80	2.33	± 12.0 %
2450	52.7	1.95	4.14	4.14	4.14	0.80	1.58	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

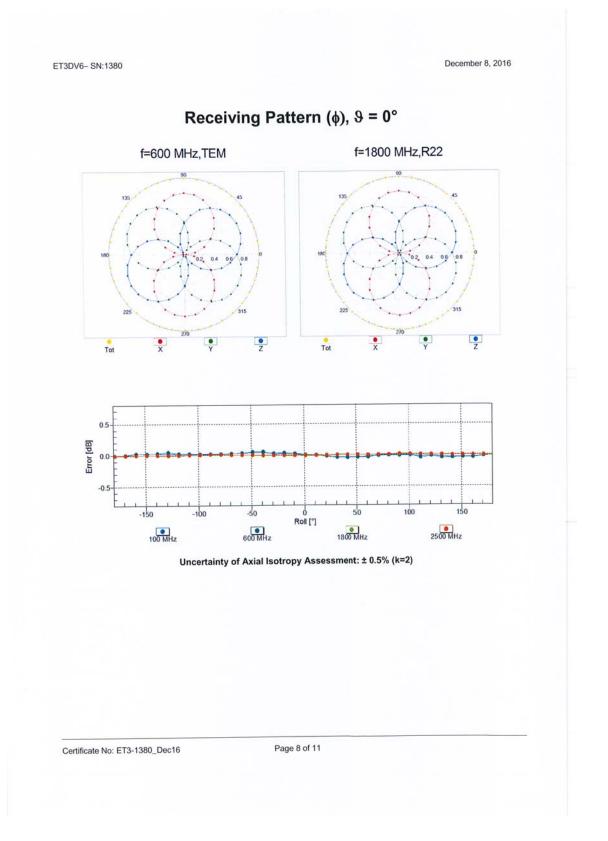
^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency

below 500 km² is ± 10, 25, 40, 50 and 70 km² to Conv assessments at 50, 54, 125, 100 and 225 km² to spectral, note 5 of 12 inductory validity can be extended to ± 110 km².
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip dimeter from the houndary.


diameter from the boundary.

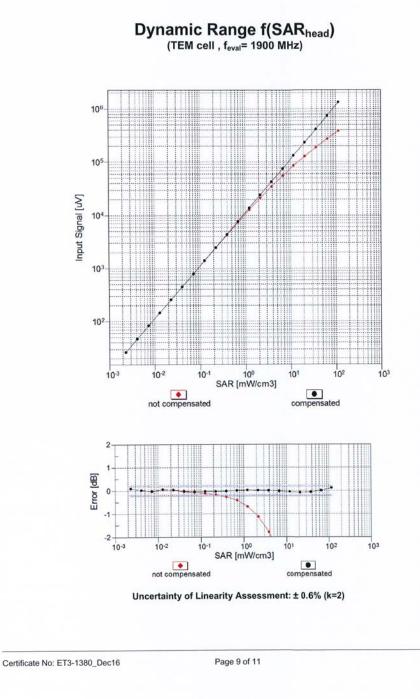
Certificate No: ET3-1380_Dec16

Page 6 of 11

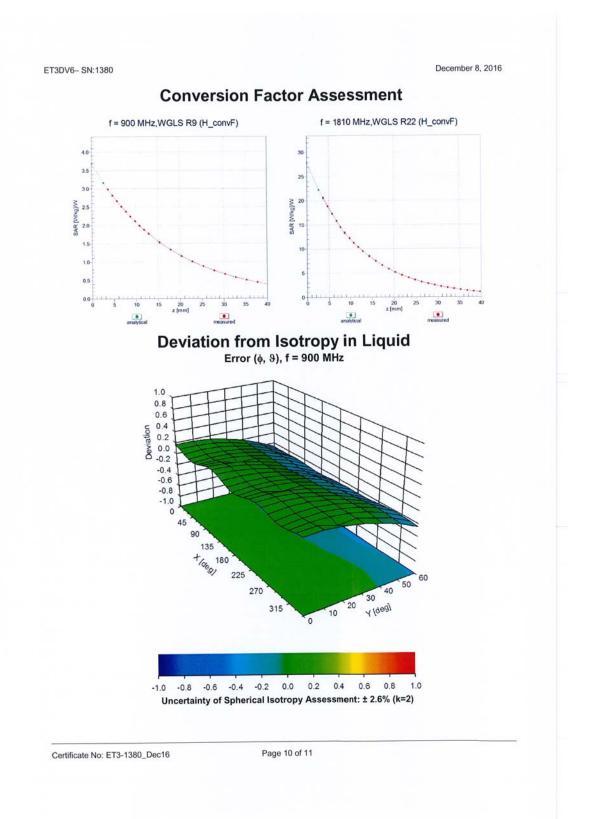


Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.



Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.


ET3DV6- SN:1380

December 8, 2016

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

ET3DV6- SN:1380

December 8, 2016

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1380

Sensor Arrangement	Triangular
Connector Angle (°)	-18.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Certificate No: ET3-1380_Dec16

Page 11 of 11

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SWISS

REIBRAT

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client EMC Technologies

Certificate No: D900V2-047_Dec14

Accreditation No.: SCS 108

Object	D900V2 - SN: 04	7	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	December 09, 20)14	
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& [*]	rtainties with confidence p sted in the closed laborato FE critical for calibration)	ional standards, which realize the physical un robability are given on the following pages ar ry facility: environment temperature (22 \pm 3)°(and are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
ower sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Reference 20 dB Attenuator Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3			Apr-15 Dec-14
Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe ES3DV3 DAE4	SN: 5047.2 / 06327 SN: 3205 SN: 601	03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14)	Apr-15 Dec-14 Aug-15
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	SN: 5047.2 / 06327 SN: 3205 SN: 601	03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	Apr-15 Dec-14 Aug-15 Scheduled Check
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	SN: 5047.2 / 06327 SN: 3205 SN: 601	03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14)	Apr-15 Dec-14 Aug-15
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005	03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13)	Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15 Signature
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15 Signature
Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name	03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14) Function	Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15

Certificate No: D900V2-047_Dec14

Page 1 of 8

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D900V2-047_Dec14

Page 2 of 8

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.0 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.59 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	10.6 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.67 W/kg

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.0	1.05 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	1.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition		
SAR measured	250 mW input power	2.62 W/kg	
SAR for nominal Body TSL parameters	normalized to 1W	10.7 W/kg ± 17.0 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition		
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	1.71 W/kg	

Certificate No: D900V2-047_Dec14

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.7 Ω - 4.6 jΩ	
Return Loss	- 26.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.9 Ω - 7.0 jΩ	
Return Loss	- 22.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.410 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 07, 1998

Certificate No: D900V2-047_Dec14

Page 4 of 8

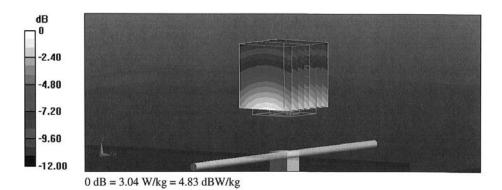
Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

DASY5 Validation Report for Head TSL

Date: 09.12.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 047

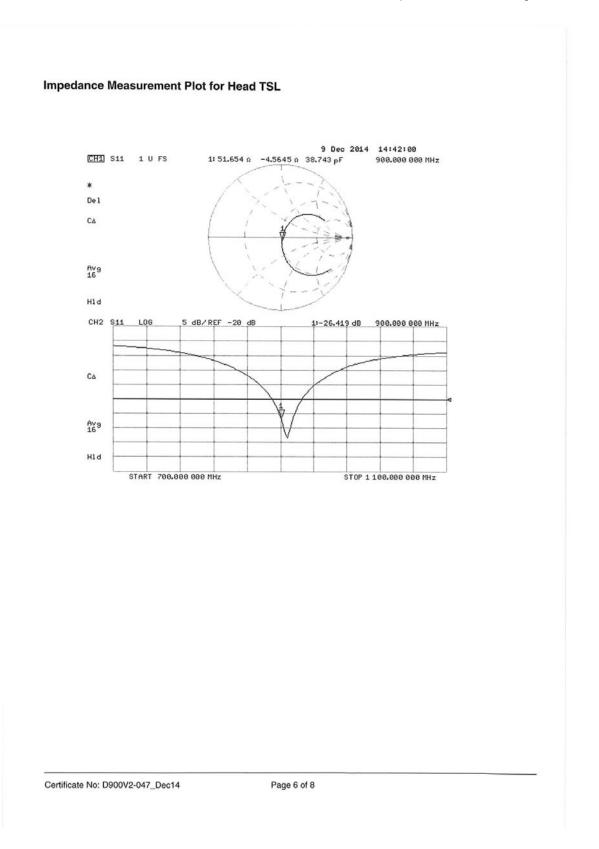

Communication System: UID 0 - CW; Frequency: 900 MHz Medium parameters used: f = 900 MHz; σ = 0.94 S/m; ϵ_r = 41; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.09, 6.09, 6.09); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.65 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.83 W/kg SAR(1 g) = 2.59 W/kg; SAR(10 g) = 1.67 W/kg Maximum value of SAR (measured) = 3.04 W/kg



Certificate No: D900V2-047_Dec14

Page 5 of 8

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

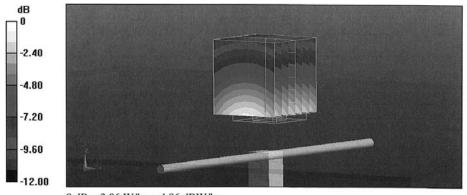
Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

DASY5 Validation Report for Body TSL

Date: 09.12.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 047

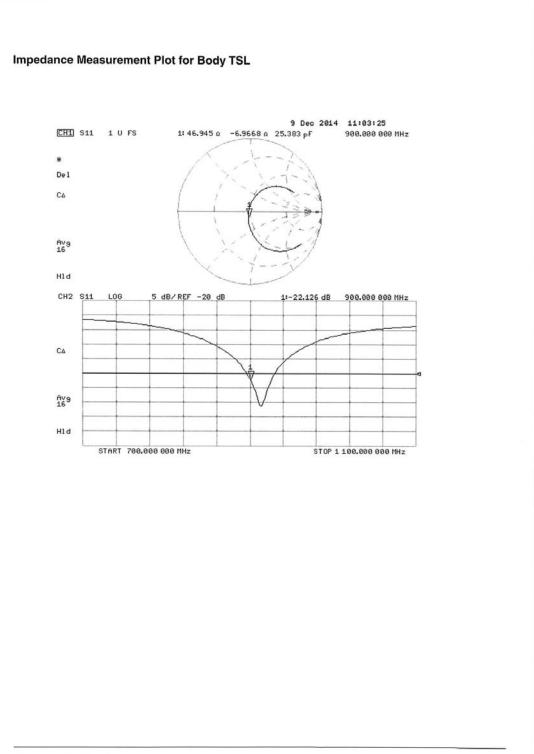

Communication System: UID 0 - CW; Frequency: 900 MHz Medium parameters used: f = 900 MHz; σ = 1.02 S/m; ϵ_r = 54.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.98, 5.98, 5.98); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

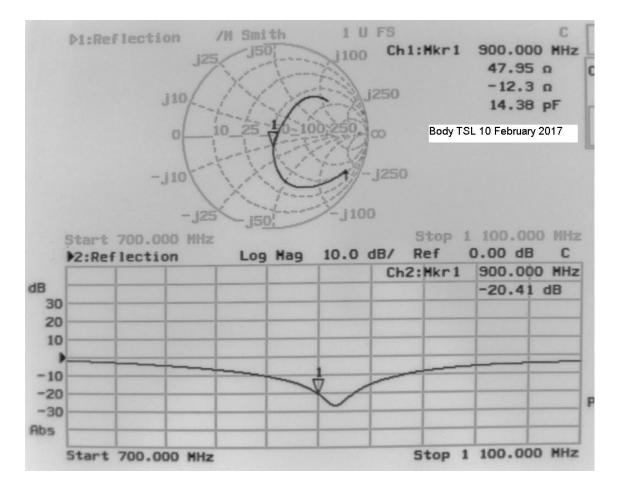
Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 56.98 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.86 W/kg SAR(1 g) = 2.62 W/kg; SAR(10 g) = 1.71 W/kg Maximum value of SAR (measured) = 3.06 W/kg



0 dB = 3.06 W/kg = 4.86 dBW/kg

Certificate No: D900V2-047_Dec14

Page 7 of 8



Certificate No: D900V2-047_Dec14

Page 8 of 8

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: DAE3-442_Dec16

S

С

s

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client EMC Technologies

Dbject	DAE3 - SD 000 D0	03 AE - SN: 442	
Calibration procedure(s)	QA CAL-06.v29		
	Calibration proced	lure for the data acquisition electron	onics (DAE)
alibration date:	December 06, 201	16	
"his calibration costificate desum	ante the taxon bills to police	nal atomicante unitate mating the obviously units	of managements (CI)
		nal standards, which realize the physical units bability are given on the following pages and a	
Il calibrations have been condur	ted in the closed laboratory	facility: environment temperature (22 ± 3)°C a	and humidity < 70%
i calibrations have been conduc	ted in the closed laboratory	racinty. environment temperature (22 1 0) 0 a	
alibration Equipment used (M&)	FE critical for calibration)		
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
eithley Multimeter Type 2001	SN: 0810278	09-Sep-16 (No:19065)	Sep-17
econdary Standards	ID #	Check Date (in house)	Scheduled Check
uto DAE Calibration Unit		05-Jan-16 (in house check)	In house check: Jan-17
alibrator Box V2.1	SE UMS 006 AA 1002	05-Jan-16 (in house check)	In house check: Jan-17
	Name	Function	Signature
Calibrated by:	Name Adrian Gehring	Function Technician	111
			Signature A. Gold i. v. B. Ulluu
Calibrated by: Approved by:	Adrian Gehring Fin Bomholt	Technician Deputy Technical Manager	101
Approved by:	Adrian Gehring Fin Bomholt	Technician	A. Goly i.v. Blum

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Sci C Ser S Sw

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle

data acquisition electronics
 information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery
 alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-442_Dec16

Page 2 of 5

DC Voltage Measurement A/D - Converter Resolution nominal

High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV
DASY measurement p	parameters: Aut	o Zero Time: 3	sec; Measuring	time: 3 sec

Calibration Factors	X	Y	z
High Range	404.393 ± 0.02% (k=2)	405.036 ± 0.02% (k=2)	405.251 ± 0.02% (k=2)
Low Range	3.98786 ± 1.50% (k=2)	3.98146 ± 1.50% (k=2)	3.99007 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	108.0 ° ± 1 °
,	10010 = 1

Certificate No: DAE3-442_Dec16

Page 3 of 5

Accredited for compliance with ISO/IEC 17025. The results of the test, calibrations and/or measurement included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200032.54	0.15	0.00
Channel X + Input	20003.98	-0.48	-0.00
Channel X - Input	-20000.70	4.57	-0.02
Channel Y + Input	200031.15	-1.19	-0.00
Channel Y + Input	20002.58	-1.91	-0.01
Channel Y - Input	-20003.37	1.99	-0.01
Channel Z + Input	200029.62	-2.74	-0.00
Channel Z + Input	20001.98	-2.38	-0.01
Channel Z - Input	-20005.29	0.14	-0.00

Appendix (Additional assessments outside the scope of SCS0108)

Low Range Reading (µV) Difference (µV) Error (%) Channel X + Input 2000.46 -0.48 -0.02 Channel X 200.51 + Input -0.26 -0.13 Channel X - Input -198.38 0.78 -0.39 Channel Y 2000.89 + Input 0.08 0.00 Channel Y 200.01 + Input -0.66 -0.33 Channel Y - Input -199.88 -0.67 0.34 Channel Z 2000.61 + Input -0.12 -0.01 Channel Z 199.64 + Input -1.12 -0.56 Channel Z - Input -200.58 -1.30 0.65

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-8.73	-10.67
	- 200	12.14	10.52
Channel Y	200	0.92	0.56
	- 200	-2.14	-1.99
Channel Z	200	-5.44	-5.11
	- 200	2.38	2.63

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	•	-0.69	-3.70
Channel Y	200	8.60		0.74
Channel Z	200	6.79	6.54	-

Certificate No: DAE3-442_Dec16

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15809	17169
Channel Y	15776	16492
Channel Z	15576	15140

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10M Ω

	Average (µV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.33	-1.12	1.98	0.60
Channel Y	-0.46	-3.68	1.44	0.70
Channel Z	-0.74	-2.26	1.24	0.74

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE3-442_Dec16

Page 5 of 5

