

FCC Test Report

Report No.: HP190906DC012-FI

Applicant name: GUANGDONG ROULE ELECTRONICS CO.,LTD.

Applicant address: No. 12,Pingdong 3rd Road, Nanping Industry Community, Zhuhai City,GuangDong, China

Product name: Wireless Remote Control Doorbell

FCC ID: YI6RL-3881

Brand Name: RL; TeckNet; VOXON

Test model name: RL-3881

RL-2R3881; RL-2R3881B; RL-3881B; RL-3880; RL-2R3880;

Additional model: RL-2R3880B; RL-3880B; RL-3882; RL-2R3882; RL-3882B; RL-2R3882B; ...ect..see item 2.1 note 5

Test Date: Mar. 26, 2020~ April. 01, 2020

Issued Date: April. 23, 2020

Issued By: Hwa-Hsing (Dongguan) Testing Co., Ltd.

Lab Address: No.101, Bld N1,Yuyuan 2Rd, Yuyuan Industrial Park, HuangJiang Town, Dongguan, China

Test Location: No.101, Bld N1,Yuyuan 2Rd, Yuyuan Industrial Park, HuangJiang Town, Dongguan, China

FCC Designation Number: CN1255

Standards: FCC Part 15, Subpart C, Section 15.231a (2019-12)

The above equipment has been tested by **Hwa-Hsing (Dongguan) Testing Co., Ltd.**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :

Date:

April. 23, 2020

Tank Tan//Engineer

Approved by :

Date:

April. 23, 2020

Harry Li/ Supervisor

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the federal government. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Release Control Record	3
1 Summary of Test Results.....	4
1.1 Measurement Uncertainty	4
1.2 Modification Record	4
2 General Information	5
2.1 General Description of EUT	5
2.2 Operating Modes of EUT and description of EUT.....	6
2.3 Test mode applicability and tested channel detail.....	7
2.4 General description of applied standards	8
3 Configuration and Connections with EUT	9
3.1 Connection Diagram of EUT and Peripheral Devices.....	9
3.2 Configuration of Peripheral Devices and Cable Connections	9
4 Test types and results.....	10
4.1 Radiated emission measurement.....	10
4.1.1 Limits of radiated emission measurement	10
4.1.2 Test instruments	11
4.1.3 Test procedures	12
4.1.4 Deviation from test standard	12
4.2 Test setup	13
4.2.1 EUT operating conditions.....	14
4.2.2 Test Results.....	15
4.3 Duty cycle	18
4.3.1 Limits of duty cycle.....	18
4.3.2 Test instruments	18
4.3.3 Test procedures	18
4.3.4 Test setup.....	18
4.3.5 Test results	19
4.4 20dB Bandwidth measurement.....	20
4.4.1 Limit of 20dB bandwidth measurement	20
4.4.2 Test instruments	20
4.4.3 Test procedure	20
4.4.4 Deviation from test standard	20
4.4.5 Test Setup	21
4.4.6 EUT operating conditions.....	21
4.4.7 Test Results.....	22
4.5 Deactivation test.....	23
4.5.1 Limits of deactivation test.....	23
4.5.2 Test instruments	23
4.5.3 Test Procedure	23
4.5.4 Deviation from test standard	23
4.5.5 Test Setup	24
4.5.6 EUT operating conditions.....	24
4.5.7 Test Results.....	25
5 Pictures of Test Arrangements	26
6 Appendix – Information on the Testing Laboratories	27

Release Control Record

Issue No.	Description	Date Issued
HP190906DC012-F1	Original release.	April. 23, 2020

1 Summary of Test Results

The EUT has been tested according to the following specifications:

FCC part 15, Subpart C (section 15.231)			
Clause	Test Item	Result/Remarks	Verdict
§15.203	Antenna Requirement	Meets the requirements of Standard	Pass
§15.207 (a)	AC Power Conducted Emission	Battery only of TX	N/A
§15.209 §15.231(b)	Radiated Emission	Meets the requirements of Standard	Pass
§15.231 (a)	Deactivation Testing	Meets the requirements of Standard	Pass
§15.231(c)	Emission Bandwidth Measurement	Meets the requirements of Standard	Pass

Note:

1. There is no deviation to the applied test methods and requirements covered by the scope of this report.
2. EUT (TX) only power supply by battery, and the EMC test data please see the FCC Part 15B report (The report No.: HQ200330KH002-FS).
3. UUT use of a permanently attached antenna

1.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUTs specified in CISPR 16-4-2:

The listed uncertainties are the worst case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results.

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.66 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	3.47 dB
Radiated Emissions above 1 GHz	Above 1GHz	4.84 dB
Temperature		±1°C
Humidity		±5.0 %
Voltages (DC)		±1.0 %
Voltages (AC, <10kHz)		±2.0 %

1.2 Modification Record

There were no modifications required for compliance.

2 General Information

2.1 General Description of EUT

Product name:	Wireless Remote Control Doorbell
Brand name:	RL; TeckNet; VOXON
Test Model:	RL-3881
Series Models:	RL-2R3881; RL-2R3881B; RL-3881B; RL-3880; RL-2R3880; RL-2R3880B; RL-3880B ;RL-3882; RL-2R3882; RL-3882B; RL-2R3882B; HWD01880; HWD01890; HWD01900; HWD01910; HWD01881; HWD01891; HWD01901; HWD01911; HWD02882; HWD02892; HWD02902; HWD02912
Models difference:	All the models only difference of the receiver, the detail see the below description.
Operating Software:	N/A
Power Supply	RX Sensor: AC 100V~240V 50Hz/60Hz
Rating:	TX Controller: DC3V battery
Modulation type:	FSK
Operating frequency:	433.92MHz
Antenna type:	Spring Antenna, with 2dBi gain
Cable Supplied:	N/A

1. For a more detailed features description, please refer to the manufacturer's specification or the User's Manual.
2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
3. Please refer to the EUT photo document (No.: HQ200330KH002-T-I) for detailed product photo.
4. Wireless Remote Control Doorbell System model name definition (With TX and RX):
5. The additional models:

Model of Brand "RL"	Model of Brand "TeckNet"	Note the product sales and matching	The Hardware differences note
RL-3880	HWD01880	with one receiver & one transmitter for trade	Difference for model name and the size of the receiver's enclosure of RL-3881
RL-2R3880	HWD01890	with one receiver & two transmitter for trade	
RL-3880B	HWD01900	with two receiver & one transmitter for trad	
RL-2R3880B	HWD01910	with two receiver & two transmitter for trade	
RL-3881	HWD01881	with one receiver & one transmitter for trade	Only difference for model name.
RL-2R3881	HWD01891	with one receiver & two transmitter for trade	
RL-3881B	HWD01901	with two receiver & one transmitter for trad	
RL-2R3881B	HWD01911	with two receiver & two transmitter for trade	
Model of Brand "RL"	Model of Brand "VOXON"	Note the product sales and matching	The Hardware differences note
RL-3882	HWD02882	with one receiver & one transmitter for trade	Difference for model name, and the size of the receiver's enclosure of RL-3881.
RL-2R3882	HWD02892	with one receiver & two transmitter for trade	
RL-3882B	HWD02902	with two receiver & one transmitter for trade	
RL-2R3882B	HWD02912	with two receiver & two transmitter for trade	

6. The model name of the transmitter was: RL-11TX

2.2 Operating Modes of EUT and description of EUT

Sample	Mode	Frequency
TX: Remote Controller	Transmitting	433.92MHz
RX: Doorbell	Receiving	433.92MHz

EUT Description:

TX: Remote Controller	Operation mode	TX Frequency
	Transmitting only	433.92MHz
DC3V battery		
RX: Doorbell	Operation mode	RX Frequency
	Receiving only	433.92MHz
AC120V 60Hz		

EUT (TX) only power supply by battery, and the EMC test data(for RX) please see the FCC Part 15B report(The report No.: HQ200330KH002-FS).

2.3 Test mode applicability and tested channel detail

EUT configure mode	Applicable to					Description
	RE ≥ 1G	RE < 1G	PLC	EB	DT	
1	√	√	-	√	√	TX: DC 3V from Battery

Where:

RE ≥ 1G: Radiated Emission above 1GHz

PLC: Power Line Conducted Emission

DT: Deactivation Time measurement

RE < 1G: Radiated Emission below 1GHz

EB: 20dB Bandwidth measurement

Radiated Emission: EUT has been pre-test the positioned of each 3 axis.

Pretest mode: 433.92MHz TX

The worst case was found when positioned on **Z-plane**

X-plane	-
Y-plane	-
Z-plane	Worst mode

Radiated emission test (above 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT configure mode	Available channel	Operating frequency (MHz)	Modulation type
-	1	433.92	FSK

Radiated emission test (below 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT configure mode	Available channel	Operating frequency (MHz)	Modulation type
-	1	433.92	FSK

Emission bandwidth measurement:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, packet type, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT configure mode	Available channel	Operating frequency (MHz)	Modulation type
-	1	433.92	FSK

Deactivation time measurement:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT configure mode	Available channel	Operating frequency (MHz)	Modulation type
-	1	433.92	FSK

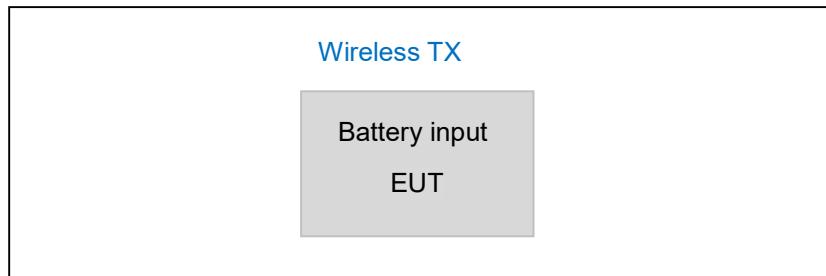
Test condition:

Applicable to	Environmental conditions	Test voltage	Tested by
RE≥1G	25deg. C, 62%RH	TX: DC 3V from Battery	Tank Tan
RE<1G	25deg. C, 62%RH	TX: DC 3V from Battery	Tank Tan
EB	24deg. C, 60%RH	TX: DC 3V from Battery	Tank Tan
DT	24deg. C, 60%RH	TX: DC 3V from Battery	Tank Tan

2.4 General description of applied standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C Section 15.231a(2019-12)


ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

3 Configuration and Connections with EUT

3.1 Connection Diagram of EUT and Peripheral Devices

Configuration 1: TX

3.2 Configuration of Peripheral Devices and Cable Connections

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	N/A	N/A	N/A	N/A	N/A	N/A

Note:

1. N/A
2. Items E~Gacted as communication partners to transfer data.

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	DC Line	1	0.6	No	0	

4 Test types and results

4.1 Radiated emission measurement

4.1.1 Limits of radiated emission measurement

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

According to §15.231(b), the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emission (microvolts/meter)
40.66–40.70	2,250	225
70–130	1,250	125
130–174	¹ 1,250 to 3,750	1125 to 375
174–260	3,750	375
260–470	¹ 3,750 to 12,500	1375 to 1,250
Above 470	12,500	1,250

Note:

1. ¹ Linear interpolation.
2. The lower limit shall apply at the transition frequencies.
3. Emission level (dB_{uV}/m) = 20 log Emission level (uV/m).
4. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test instruments

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Loop antenna (9kHz~30MHz)	Daze	ZN30900A	0708	2019-10-18	2020-10-17
EMI Test Receiver Rohde&Schwarz	ESCI 7	100962	2019-5-20	2019-10-18	2020-10-17
Broadband antenna Schwarzbeck	VULB 9168	00937	2018-11-18	2019-10-18	2020-10-17
3m Semi-anechoic Chamber MAORUI	9m*6m*6m	NSEMC003	2018-10-20	2018-10-19	2020-10-18
Signal Amplifier Com-power	PAM-103	18020051	2018-11-29	2019-10-18	2020-10-17
Attenuator Rohde&Schwarz	TS2GA-6dB	18101101	N/A	N/A	N/A
Test software FARAD	EZ_EMCV1.1.4.2	N/A	N/A	N/A	N/A
Digital Multimeter FLUKE	15B+	43512617WS	2018-11-10	2019-10-18	2020-10-17
Horn Antenna Schwarzbeck	BBHA 9170	01959	2018-11-18	2019-10-18	2020-10-17
Spectrum Analyzer Rohde&Schwarz	FSV-40N	101783	2018-12-11	2019-10-18	2020-10-17
Broadband Coaxial Preamplifier Schwarzbeck	BBV 9718	00025	2018-10-29	2019-10-18	2020-10-17
Horn Antenna Schwarzbeck	BBHA 9170	BBHA9170242	2018-05-5	2019-10-18	2020-10-17
Pre-Amplifier EMCI	EMC 184045	980102	2018-11-20	2019-10-18	2020-10-17
Spectrum Keysight	N9020A	MY51240612	2018-10-29	2019-10-18	2020-10-17

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to CEPREI/CHINA.

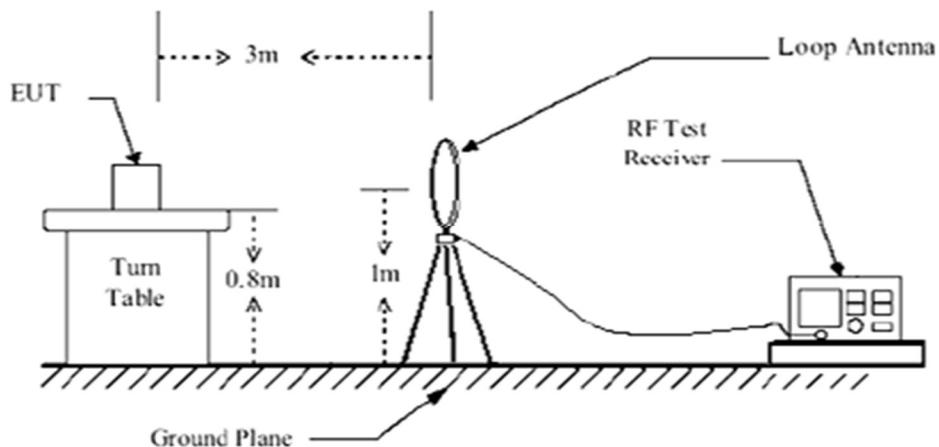
2. The test was performed in Chamber

4.1.3 Test procedures

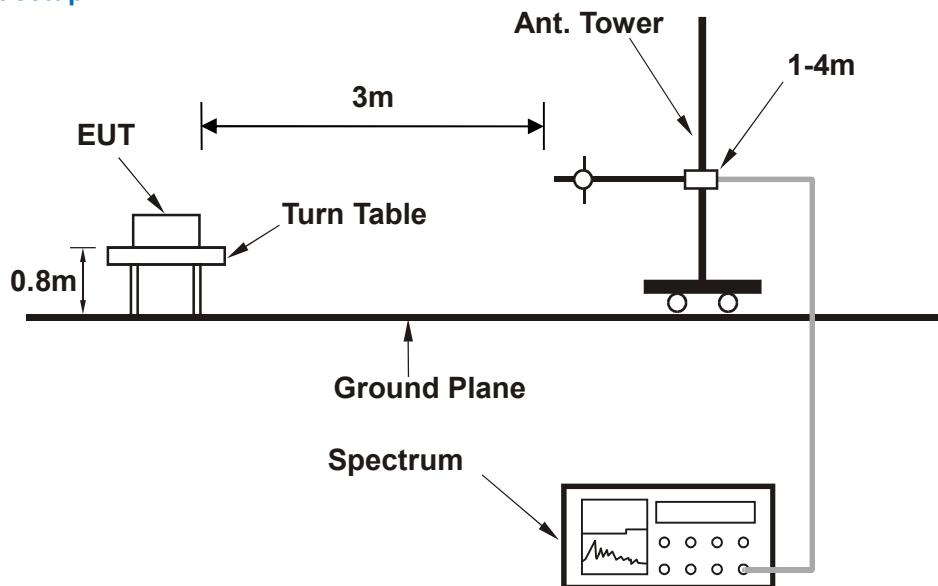
The basic test procedure was in accordance with ANSI C63.10 (section 12).

- a. The EUT was placed on the top of a rotating table 1.5 meters (above 1GHz) and 0.8 meters (below 1GHz) above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. For below 30MHz, a loop antenna with its vertical plane is place 3m from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. And the centre of the loop shall be 1m above the ground.
- g. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

NOTES:

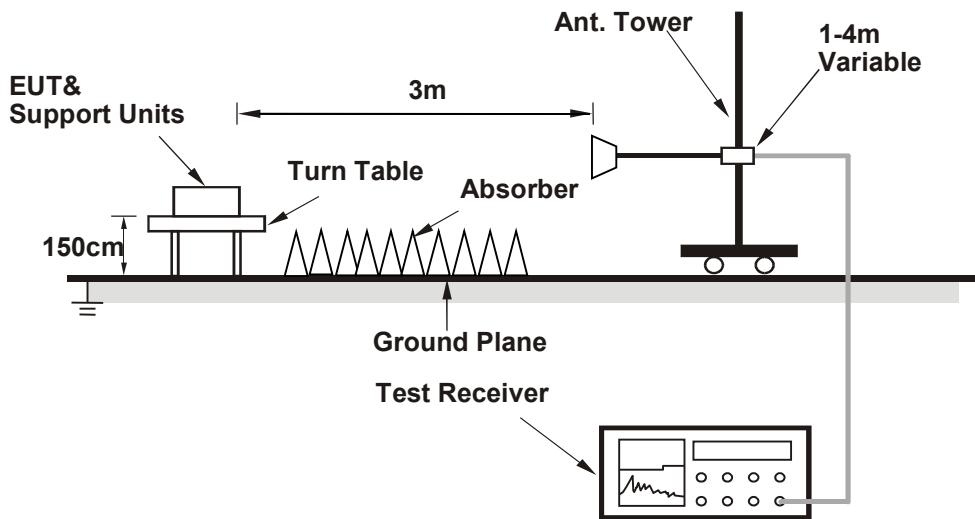

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is $\geq 1/T$ (Duty cycle < 98%) or 10Hz(Duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.
4. All modes of operation were investigated and the worst-case emissions are reported.
5. The testing of the EUT was performed on all 3 orthogonal axes; the worst-case test configuration was reported on the file test setup photo.

4.1.4 Deviation from test standard


No deviation

4.2 Test setup

For **Below 30MHz test setup**

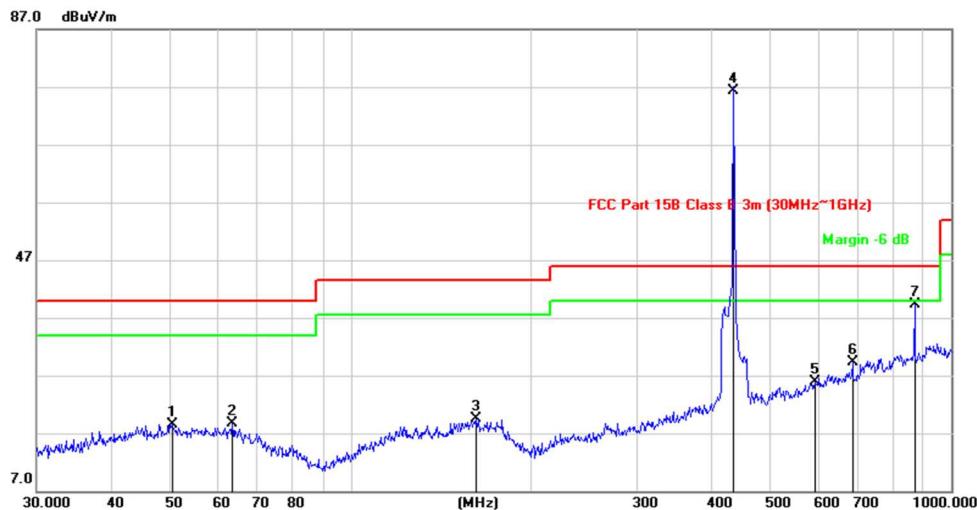

Below 1GHz test setup

Note: For the actual test configuration, please refer to the attached file (Test Setup Photo).

the actual test configuration, please refer to the attached file (Test Setup Photo).

Above 1GHz test setup

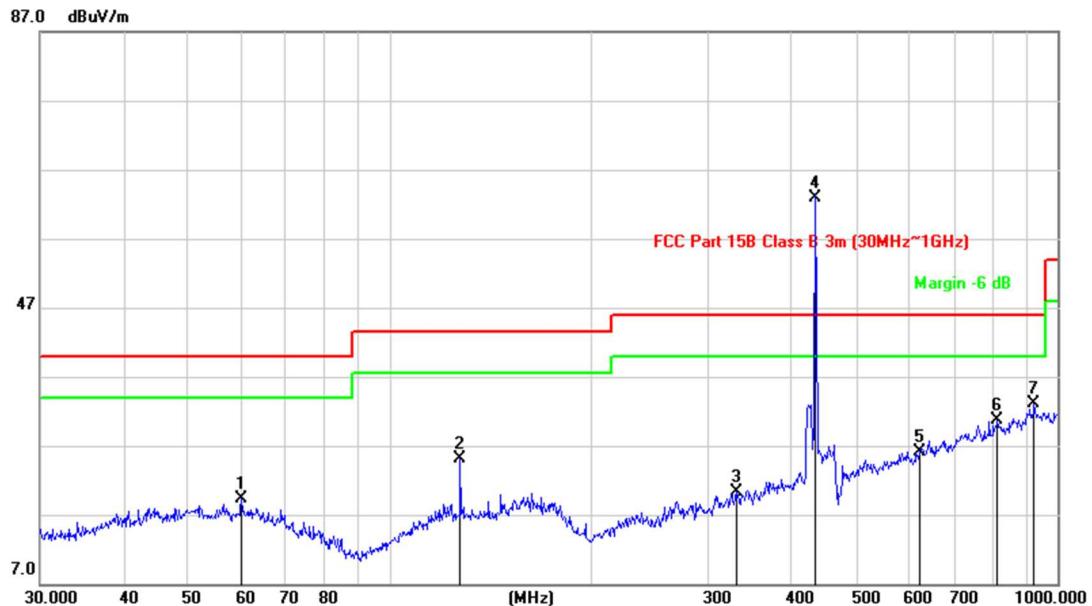
Note: For the actual test configuration, please refer to the attached file (Test Setup Photo).


4.2.1 EUT operating conditions

- Placed the EUT on the testing table.
- Enable EUT under transmission condition continuously at specific channel frequency.

4.2.2 Test Results

Frequency Range	25MHz ~ 1GHz (below 1GHz)				
Operation Channel	433.92MHz TX				
Input Power	Power supply by battery		Environmental Conditions	27°C, 60%RH	
Tested by	Tank Tan		Test Date	2019/09/13	


Antenna Polarity & Test distance: Horizontal at 3 m									
No	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission Level (dBuV)	Limit (dBuV)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Detector
1	50.4089	32.72	-14.14	18.58	40.00	-21.42	200	157	QP
2	63.5356	33.47	-14.86	18.61	40.00	-21.39	200	355	QP
3	161.4740	32.02	-12.52	19.50	43.50	-24.00	100	61	QP
4*	434.2072	84.86	-8.59	76.27	100.82	-24.55	150	304	Peak
5*	434.2072	76.27	-	56.1	80.82	-24.72			AVG
6	593.0497	31.46	-5.49	25.97	46.00	-20.03	100	102	QP
7	684.7454	32.73	-3.37	29.36	46.00	-16.64	100	148	QP
8	869.1301	38.83	0.47	39.30	46.00	-6.70	100	239	QP

Remarks:

1. The resolution bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) at frequency below 1GHz.
2. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
3. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
4. Margin value = Emission level – Limit value.
5. For the test results, the EUT had been tested from 9KHz ~5GHz. But only the worst case was shown in test report.
6. Fundamental AV value =PK Emission +20*log (duty cycle), Where the duty factor is calculated from following formula: 20 log (Duty cycle) = 20 log (Ton/Tp) = -20.17dB, Please see page 22~23 for plotted duty.

Antenna Polarity & Test distance: Vertical at 3m									
No	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission Level (dBuV)	Limit (dBuV)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Detector
1	60.0691	33.63	-14.37	19.26	40.00	-20.74	100	333	QP
2	127.6645	39.82	-14.68	25.14	43.50	-18.36	100	73	QP
3	330.1949	32.39	-12.01	20.38	46.00	-25.62	200	333	QP
5*	434.2070	71.51	-8.59	62.92	100.82	-37.90	130	227	peak
6*	434.2070	62.92		42.75	80.82	-38.07			AVG
7	622.8900	30.56	-4.53	26.03	46.00	-19.97	100	348	QP
8	813.1115	30.70	-0.08	30.62	46.00	-15.38	100	177	QP
9	922.5157	31.22	1.87	33.09	46.00	-12.91	200	233	QP

Remarks:

1. The resolution bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) at frequency below 1GHz.
2. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
3. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
4. Margin value = Emission level – Limit value.
5. For the test results, the EUT had been tested from 9KHz ~5GHz. But only the worst case was shown in test report.
6. Fundamental AV value =PK Emission +20*log (duty cycle), Where the duty factor is calculated from following formula: 20 log (Duty cycle) = 20 log (Ton/Tp) = -20.17dB, Please see page 22~23 for plotted duty.

Frequency Range	1GHz ~ 25GHz (Above 1GHz)						
Operation Channel	2440MHz TX						
Input Power	Power supply by battery			Environmental Conditions	27°C, 60%RH		
Tested by	Tank Tan			Test Date	2019/07/3		

Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission Level (dBuV)	Limit (dBuV)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Detector
1	2168.51	58.72	-1.79	56.93	80.82	-23.89	186	213	peak
2*	2168.51	56.93		36.76	60.82	-24.06			AVG
3	2603.351	58.56	-0.52	58.04	80.82	-22.78	262	178	peak
4*	2603.351	58.04		37.87	60.82	-22.95			AVG
5	3037.063	58.02	0.86	58.88	80.82	-21.94	200	151	peak
6*	3037.063	58.88		38.71	60.82	-22.11			AVG
Antenna Polarity & Test distance: Vertical at 3m									
No	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Emission Level (dBuV)	Limit (dBuV)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Detector
1	1708.706	58.79	-3.18	55.61	80.82	-25.21	100	143	peak
2*	1708.706	55.61		35.44	60.82	-25.38			AVG
3	2168.510	54.02	-1.79	52.23	80.82	-28.59	100	225	peak
4*	2168.510	52.23		32.06	60.82	-28.76			AVG
5	2467.108	58.23	-0.99	57.24	80.82	-23.58	168	278	peak
6*	2467.108	57.24		37.07	60.82	-23.75			AVG

Remarks:

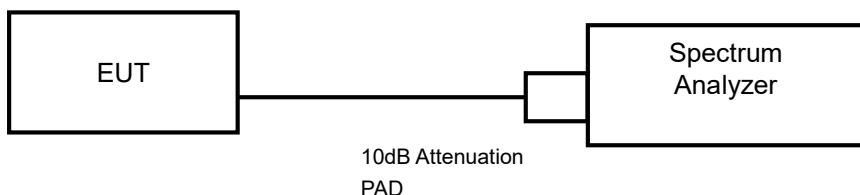
- 1 The resolution bandwidth of test receiver/spectrum analyzer is 1MHz for Peak detection (PK) at frequency above 1GHz.
- 2 Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 3 Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 4 Margin value = Emission level – Limit value.
- 5 * Fundamental AV value =PK Emission +20*log (duty cycle), Where the duty factor is calculated from following formula: 20 log (Duty cycle) = 20 log (Ton/Tp) = -20.17dB, Please see page 22~23 for plotted duty.

4.3 Duty cycle

4.3.1 Limits of duty cycle

Without limit of duty cycle, only use to calculate the factor.

4.3.2 Test instruments


Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Broadband antenna Schwarzbeck	VULB 9168	00937	2018-11-18	2019-10-18	2020-10-17
3m Semi-anechoic Chamber MAORUI	9m*6m*6m	NSEMC003	2018-10-20	2018-10-19	2020-10-18
Signal Amplifier Com-power	PAM-103	18020051	2018-11-29	2019-10-18	2020-10-17
Attenuator Rohde&Schwarz	TS2GA-6dB	18101101	N/A	2019-10-18	2020-10-17
Test software FARAD	EZ_EMCV1.1.4.2	N/A	N/A	2019-10-18	2020-10-17
Spectrum Keysight	N9020A	MY51240612	2018-10-29	2019-10-18	2020-10-17

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to CEPREI/CHINA.
2. The test site was performed in Chambe

4.3.3 Test procedures

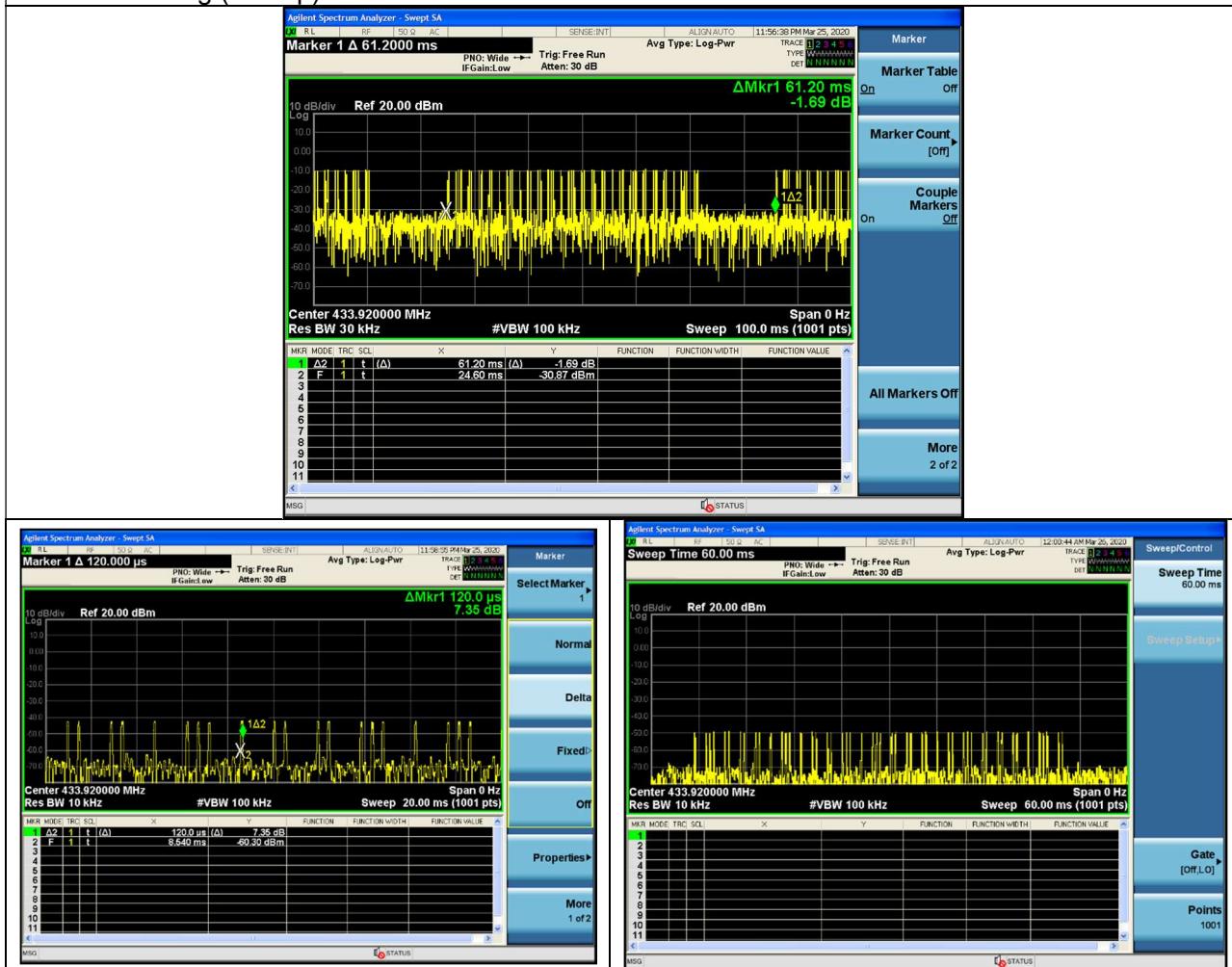
The basic test procedure was in accordance with ANSI C63.10

4.3.4 Test setup

4.3.5 Test results

The pulse desensitization correction factor:

RBW (30kHz)>(2/PW) therefore PDCF is not needed. $2/PW=2/0.12=16.66\text{kHz}$


Tp=61.20ms

Ton=0.120*50=6.0ms

Toff=Tp-Ton=61.20-6.0=55.20ms

Duty cycle=Ton/Tp=0.098=9.80%

Factor = $20 \times \log (\text{Ton}/\text{Tp}) = -20.17\text{dB}$

4.4 20dB Bandwidth measurement

4.4.1 Limit of 20dB bandwidth measurement

According to FCC 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

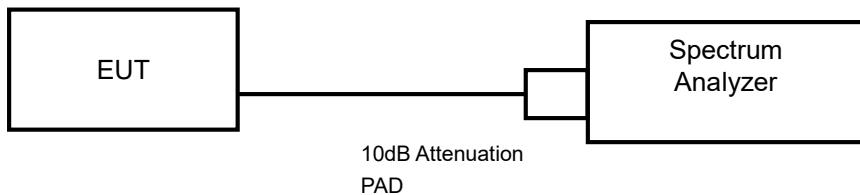
$$\text{Limit} = \text{Fundamental Frequency} \times 0.25\% = 433.92\text{MHz} \times 0.25\% = 1084.8\text{ kHz}$$

4.4.2 Test instruments

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Broadband antenna Schwarzbeck	VULB 9168	00937	2018-11-18	2019-10-18	2020-10-17
3m Semi-anechoic Chamber MAORUI	9m*6m*6m	NSEMC003	2018-10-20	2018-10-19	2020-10-18
Signal Amplifier Com-power	PAM-103	18020051	2018-11-29	2019-10-18	2020-10-17
Attenuator Rohde&Schwarz	TS2GA-6dB	18101101	N/A	2019-10-18	2020-10-17
Test software FARAD	EZ_EMCV1.1.4.2	N/A	N/A	2019-10-18	2020-10-17
Spectrum Keysight	N9020A	MY51240612	2018-10-29	2019-10-18	2020-10-17

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to CEPREI/CHINA.

2. The test site was performed in Chambe

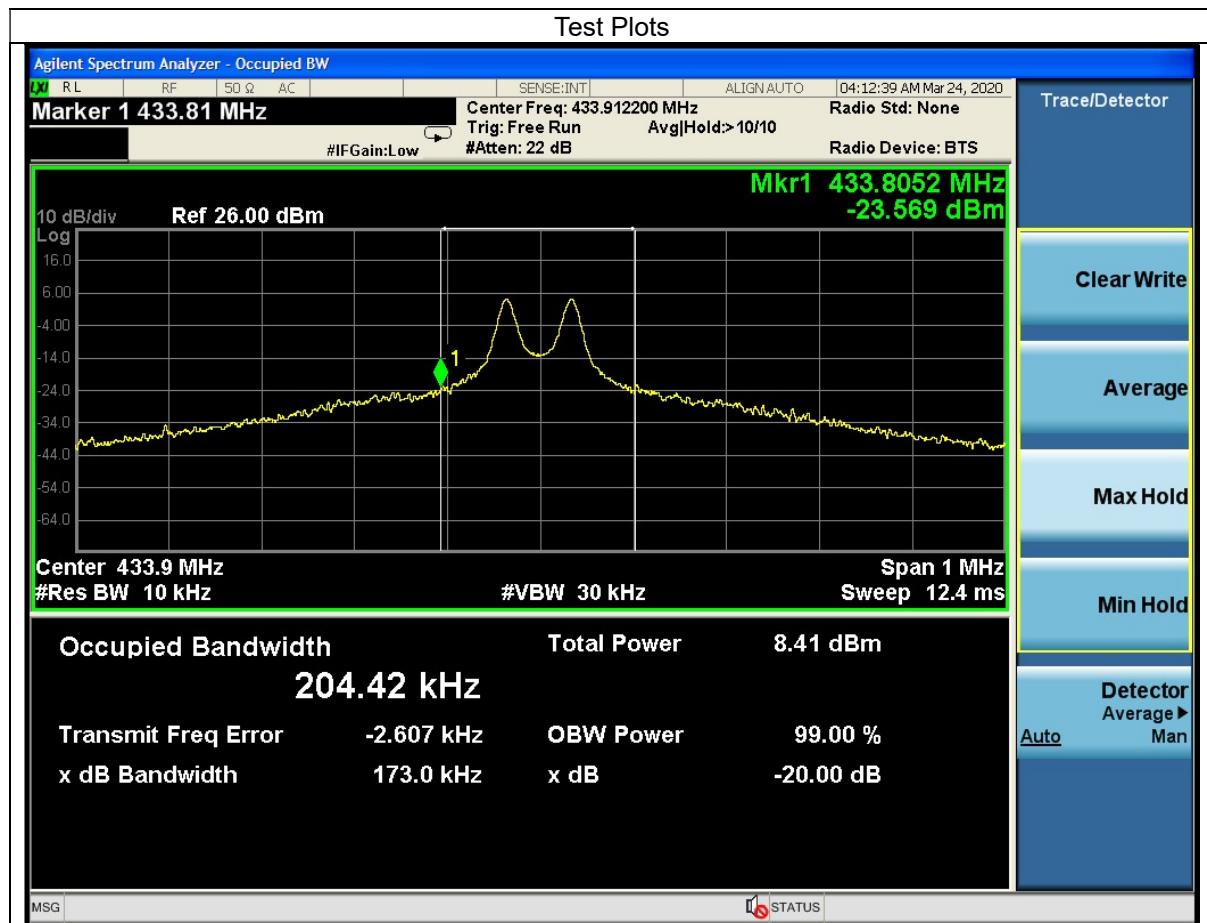

4.4.3 Test procedure

The spectrum analyzer was receiving the maximum emission level. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

4.4.4 Deviation from test standard

No deviation.

4.4.5 Test Setup



4.4.6 EUT operating conditions

- a. Placed the EUT on the testing table.
- b. Enable EUT under transmission condition continuously at specific channel frequency.

4.4.7 Test Results

Frequency (MHz)	20dB bandwidth (kHz)	Maximum limit (kHz)	Pass/Fail
433.92	204.42	1084.8	PASS

4.5 Deactivation test

4.5.1 Limits of deactivation test

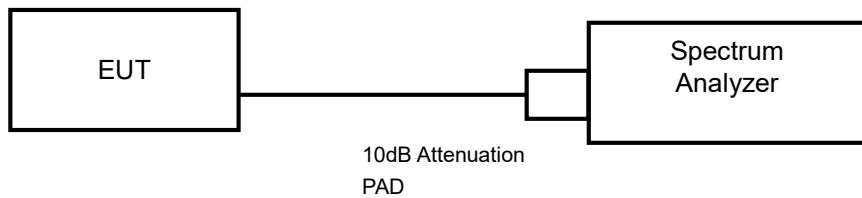
15.231 (a)(1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

15.231 (a)(2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

4.5.2 Test instruments

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Broadband antenna Schwarzbeck	VULB 9168	00937	2018-11-18	2019-10-18	2020-10-17
3m Semi-anechoic Chamber MAORUI	9m*6m*6m	NSEMC003	2018-10-20	2018-10-19	2020-10-18
Signal Amplifier Com-power	PAM-103	18020051	2018-11-29	2019-10-18	2020-10-17
Attenuator Rohde&Schwarz	TS2GA-6dB	18101101	N/A	2019-10-18	2020-10-17
Test software FARAD	EZ_EMCV1.1.4.2	N/A	N/A	2019-10-18	2020-10-17
Spectrum Keysight	N9020A	MY51240612	2018-10-29	2019-10-18	2020-10-17

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to CEPREI/CHINA.
 2. The test site was performed in Chambe

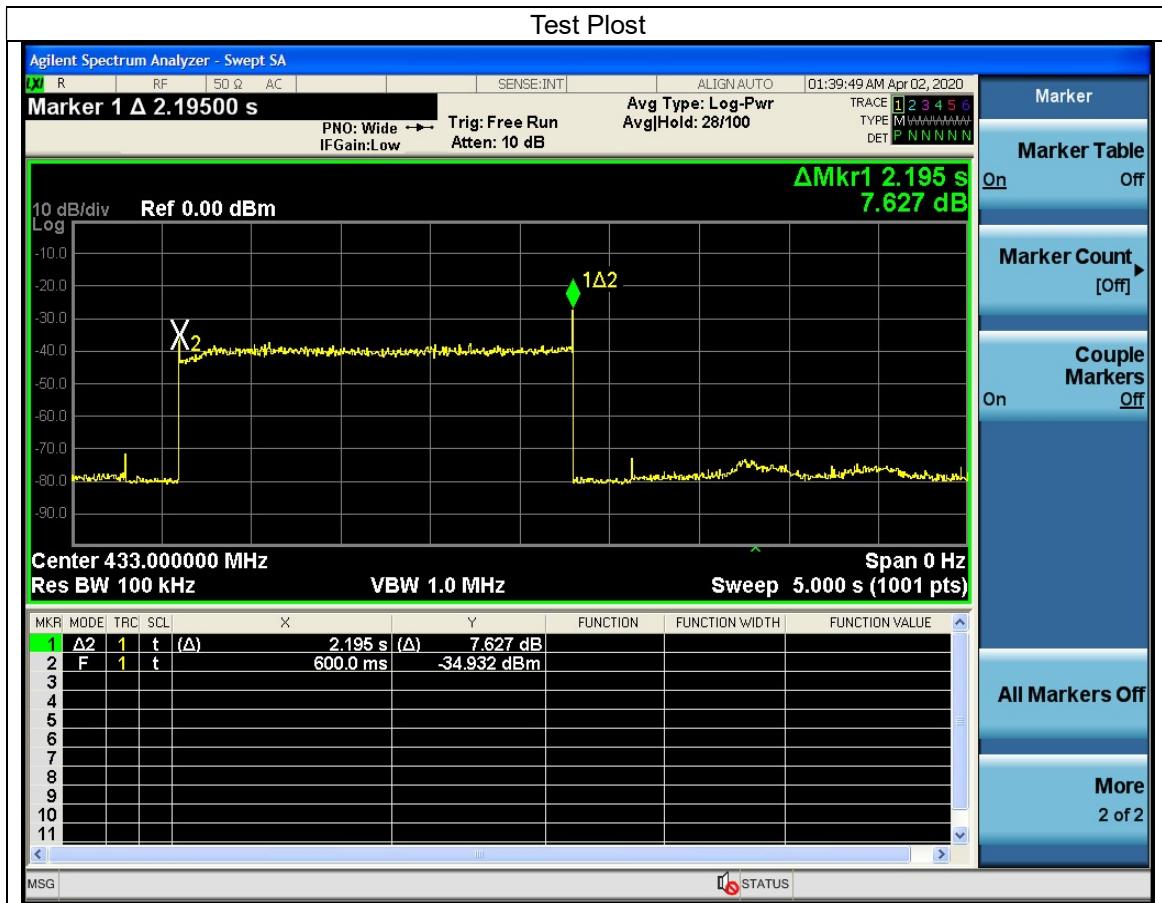

4.5.3 Test Procedure

With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer. Set the center frequency to 433.92MHz, then set the spectrum analyzer to Zero Span for the release time reading. During the testing, the transmission duration was measured and recorded.

4.5.4 Deviation from test standard

No deviation.

4.5.5 Test Setup



4.5.6 EUT operating conditions

- a. Placed the EUT on the testing table.
- b. Enable EUT under transmission condition continuously at specific channel frequency.

4.5.7 Test Results

Frequency (MHz)	Maximum limit (Sec.)	Deactivation Time(Sec.)	Pass/Fail
433.92	5	2.195	PASS

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

6 Appendix – Information on the Testing Laboratories

We, [Hwa-Hsing \(Dongguan\) Co., Ltd.](#), A global provider of TESTING and CERTIFICATION services for consumer products, electronic products and wireless information technology products. Adhering to the core values “HONEST and TRUSTWORTHY, OBJECTIVE and IMPARTIALITY, RIGOROUS and AFFICIENT”, commitment to provide professional, perfect and efficient comprehensive ONE-STOP solution of TESTING and CERTIFICATION services for Manufacturers, Buyers, Traders, Brands, Retailers. Assist client to better manage risk, protect their brands, reduce costs and cut time to over 150 markets in global. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lab Address: [No.101, Bld N1,Yuyuan 2Rd, Yuyuan Industrial Park, HuangJiang Town, Dongguan, China](#)

Contact Tel: [0769-83078199](#)

Email:customerservice.dq@hwa-hsing.com

Web Site:www.hwa-hsing.com

The address and road map of all our labs can be found in our web site also.

--- END ---