

TEST REPORT

Applicant Name: Zhongshan Donlim Weili Electrical Appliances Co.,Ltd.

Address: Fusha Industrial Park, Fusha Town, Zhongshan City, Guangdong

Province, China

Report Number: RA221031-50407E-EM-00A

FCC ID: YI4DWE25PGP06

Test Standard (s)

FCC Part 18

Sample Description

Product Type: Microwave Oven Model No.: E25PGP06-A90

Multiple Model: E25PGP04-A90, E25PGP02-A90

Trade Mark: N/A

Date Received: 2022-10-31

Date of Test: 2022-11-03 to 2022-11-17

Report Date: 2022-11-18

Test Result: Pass*

Prepared and Checked By:

Approved By:

Zeki Ma

Zeki Ma

Candy Li

EMC Engineer

EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "* ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

^{*} In the configuration tested, the EUT complied with the standards above.

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
OBJECTIVE	
TEST METHODOLOGY	3
MEASUREMENT UNCERTAINTY	
TEST FACILITY	4
OPERATING CONDITION/TEST CONFIGURATION	5
JUSTIFICATION	
EUT Exercise Software	
SPECIAL ACCESSORIES	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL CABLE LIST AND DETAILS	5
CONFIGURATION OF TEST SETUP	
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULT	
TEST EQUIPMENT LIST	
FCC §18.313, §1.1310, §2.1091- MAXIMUM PERMISSIBLE EXPOSURE	10
APPLICABLE STANDARD	
Measurement	
CONDUCTED EMISSIONS	11
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
FACTOR & MARGIN CALCULATION	
TEST DATA	
RADIATION HAZARD MEASUREMENT	15
APPLICABLE STANDARD	
ENVIRONMENTAL CONDITIONS	
INPUT POWER.	
LOAD FOR MICROWAVE OVENS	
RF OUTPUT POWER MEASUREMENT	
OPERATING FREQUENCY MEASUREMENT	17
RADIATED EMISSIONS	21
APPLICABLE STANDARD	21
EUT SETUP	
EMI TEST RECEIVER SETUP AND SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
Trong Darra AND Drong	22

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	Microwave Oven
Tested Model	E25PGP06-A90
Multiple Model	E25PGP04-A90, E25PGP02-A90
Model difference	Please refer to DOS letter.
Voltage Range	AC 120V/60Hz
Highest operating frequency	2450 MHz
Microwave Input power	1350W
Microwave Output power	900W
Sample serial number	RA221031-50407E-EM-S1 (Assigned by ATC)
Sample/EUT Status	Good condition

Objective

This report is in accordance with Part 2-Subpart J, and Part 18-Subparts A, B and C of the Federal Communication Commissions rules and regulations.

The objective of the manufacturer is to determine compliance with FCC Part 18 limits.

Test Methodology

All measurements contained in this report were conducted with MP-5, FCC Methods of Measurements of Radio Noise Emissions from ISM Equipment, February 1986. All measurements were performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters. Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter		Uncertainty
RF Frequency		$0.082*10^{-7}$
AC Power Lines C	onducted Emissions	2.72dB
F	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz - 18GHz	4.98dB
Radiated	18GHz - 26.5GHz	5.06dB
Temperature		1℃
Humidity		6%
Supply voltages		0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

OPERATING CONDITION/TEST CONFIGURATION

Justification

The EUT was operated at maximum (continuous) RF output power. The loads consisted of water in a glass beaker in the amounts specified in the test procedure.

EUT Exercise Software

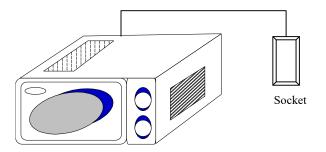
No exercise software was used.

Special Accessories

No special accessory was used.

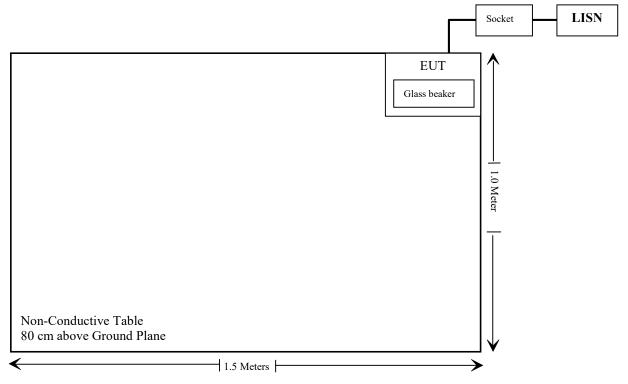
Equipment Modifications

No modifications were made to the EUT tested.

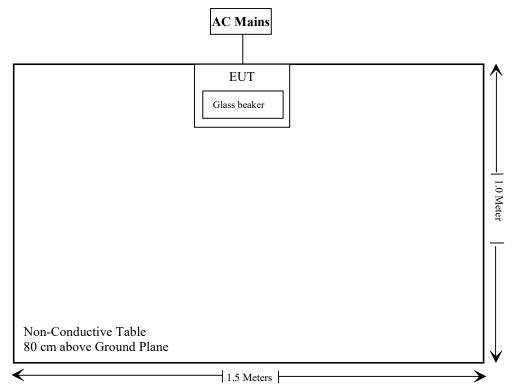

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
Unknown	Glass beaker	Unknown	Unknown

External Cable List and Details


Cable Description	Length (m)	From/Port	То
Unshielded un-detachable AC cable	1.6	EUT	Socket
Unshielded un-detachable AC cable	1.8	Socket	LISN

Configuration of Test Setup



Block Diagram of Test Setup

For Conducted Emission:

For Radiated Emission:

SUMMARY OF TEST RESULT

FCC Rules	Description of Test	Results
FCC §18.313, §1.1310, §2.1091	Maximum Permissible Exposure	Compliant
FCC §18.307	AC Line Conducted Emissions	Compliant
FCC/OST MP-5 FCC §18.301	Radiation Hazard Measurement	Compliant
FCC §18.305	Field Strength	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		Conducted Emiss	sions Test		
Rohde & Schwarz	EMI Test Receiver	ESCI	100784	2021/12/13	2022/12/12
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2021/12/13	2022/12/12
Anritsu Corp	50Ω Coaxial Switch	MP59B	6100237248	2021/12/13	2022/12/12
Unknown	RF Coaxial Cable	No.17	N0350	2021/12/14	2022/12/13
	Conducted 1	Emission Test Soft	ware: e3 19821b (V9)	
		Radiated Emissi	ons Test		
Rohde & Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101949	2021/12/13	2022/12/12
SONOMA INSTRUMENT	Amplifier	310 N	186131	2022/11/08	2023/11/07
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2022/11/08	2023/11/07
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2022/11/08	2023/11/07
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.16	N650	2021/12/14	2022/12/13
Radiated Emission Test Software: e3 19821b (V9)					

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
	Ra	diation Hazard M	leasurement		
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101949	2021/12/13	2022/12/12
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13
Qingzhi	Digital Power Meter	8716C	870307126	2021/12/25	2022/12/24
OHAUS	Electronic Scale	R2000-6	8339220237	2021/12/25	2022/12/24
MC	Thermometer	Unknown	ATCE-197	2022/10/31	2023/10/30
	Maximum Permissible Exposure				
ETS	Microwave Survery Meter	1501	123654	2022/3/11	2023/3/10

^{*} Statement of Traceability: Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §18.313, §1.1310, §2.1091- MAXIMUM PERMISSIBLE EXPOSURE

Applicable Standard

According to subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

	(B) Limits for General Population/Uncontrolled Exposure				
Frequency Range (MHz)				Averaging Time (minutes)	
0.3–1.34	614	1.63	*(100)	30	
1.34–30	824/f	2.19/f	*(180/f²)	30	
30–300	27.5	0.073	0.2	30	
300-1500	/	/	f/1500	30	
1500-100,000	/	/	1.0	30	

f = frequency in MHz; * = Plane-wave equivalent power density;

Measurement

Environmental Conditions

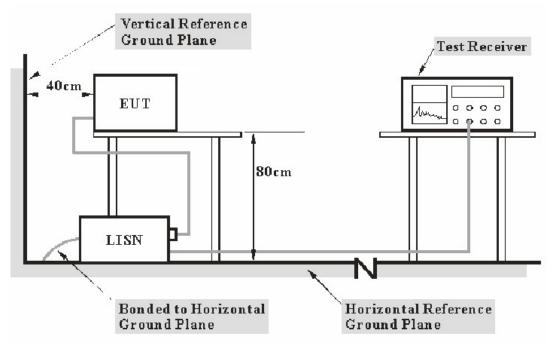
Temperature:	24 °C
Relative Humidity:	45 %
ATM Pressure:	101 kPa

The testing was performed by Zeki Ma o on 2022-11-17

Radiation leakage was measured in the as-received condition with the oven door closed using a microwave leakage meter.

A 275 mL water load was placed in the center of the oven and the oven was operated at maximum output power.

There was no microwave leakage exceeding a power level of <u>0.1mW/cm²</u> observed at any point 5 cm or more from the external surface of the oven.


A maximum of 1.0 mW/cm² is allowed in accordance with the applicable Federal Standards. Hence, microwave leakage in the as-received condition with the oven door closed was below the maximum allowed.

CONDUCTED EMISSIONS

Applicable Standard

FCC §18.307

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with MP-5: 1986 measurement procedure. Specification used was with the FCC Part 18.

The socket was connected to a 120 VAC/ 60Hz power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Margin Calculation

The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

```
Factor = LISN VDF + Cable Loss
```

The "Over limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

```
Over Limit = Level – Limit
Level = Read Level + Factor
```

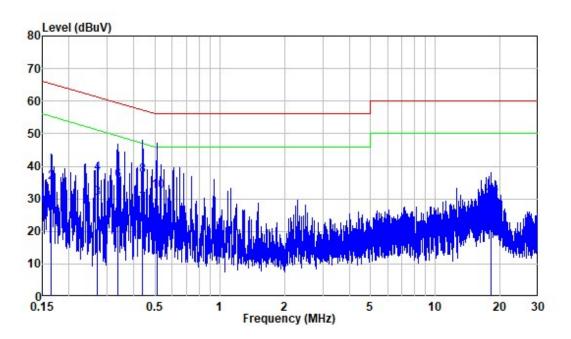
Test Data

Environmental Conditions

Temperature:	24 ℃
Relative Humidity:	43 %
ATM Pressure:	101kPa

The testing was performed by Jason Liu on 2022-11-03.

Test mode: Microwave (max power)


Site : Shielding Room

Condition: Line

Job No. : RA221031-50407E-00

Mode : Microwave

			Read		Limit	Over	
	Freq	Factor	Level	Level	Line	Limit	Remark
10-	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.199	9.80	10.15	19.95	53.65	-33.70	Average
2	0.199	9.80	25.40	35.20	63.65	-28.45	QP
3	0.233	9.80	18.81	28.61	52.33	-23.72	Average
4	0.233	9.80	29.45	39.25	62.33	-23.08	QP
5	0.287	9.80	14.48	24.28	50.62	-26.34	Average
6	0.287	9.80	29.53	39.33	60.62	-21.29	QP
7	0.310	9.80	9.63	19.43	49.97	-30.54	Average
8	0.310	9.80	22.77	32.57	59.97	-27.40	QP
9	1.180	9.81	7.27	17.08	46.00	-28.92	Average
10	1.180	9.81	14.12	23.93	56.00	-32.07	QP
11	17.131	9.97	14.91	24.88	50.00	-25.12	Average
12	17.131	9.97	25.24	35.21	60.00	-24.79	QP
13	20.663	10.01	12.85	22.86	50.00	-27.14	Average
14	20.663	10.01	22.13	32.14	60.00	-27.86	QP

Site : Shielding Room

Condition: Neutral

Job No. : RA221031-50407E-00

Mode : Microwave

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
10-	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.166	9.80	17.76	27.56	55.17	-27.61	Average
2	0.166	9.80	25.10	34.90	65.17	-30.27	QP
3	0.271	9.80	20.49	30.29	51.08	-20.79	Average
4	0.271	9.80	27.92	37.72	61.08	-23.36	QP
5	0.336	9.80	11.87	21.67	49.31	-27.64	Average
6	0.336	9.80	25.75	35.55	59.31	-23.76	QP
7	0.439	9.80	18.59	28.39	47.08	-18.69	Average
8	0.439	9.80	27.26	37.06	57.08	-20.02	QP
9	0.510	9.81	7.55	17.36	46.00	-28.64	Average
10	0.510	9.81	22.53	32.34	56.00	-23.66	QP
11	18.063	10.08	10.97	21.05	50.00	-28.95	Average
12	18.063	10.08	19.90	29.98	60.00	-30.02	QP

RADIATION HAZARD MEASUREMENT

Applicable Standard

FCC §18.301 & FCC/OST MP-5

Environmental Conditions

Temperature:	26 ℃
Relative Humidity:	58%
ATM Pressure:	101kPa

The testing was performed by Zeki Ma on 2022-11-09 and 2022-11-17.

Input Power

Input power and current was measured using a power analyzer. A 1000 mL water load was placed in the center of the oven and the oven was operated at maximum output power. A 1000mL water load was chosen for its compatibility with the procedure commonly used by manufacturers to determine their input ratings.

Input Voltage (V _{AC} /Hz)	Input Current (Amps)	Measured Input Power (Watts)	Rated Input Power (Watts)
119.9	10.86	1302.11	1350

Based on the measured input power, the EUT was found to be operating within the intended specifications.

Load for Microwave Ovens

For all measurements, the energy developed by the oven was absorbed by a dummy load consisting of a quantity of tap water in a beaker. If the oven was provided with a shelf or other utensil support, this support was in its initial normal position. For ovens rated at 1000 watts or less power output, the beaker contained quantities of water as listed in the following subparagraphs. For ovens rated at more than 1000 watts output, each quantity was increased by 50% for each 500watts or fraction thereof in excess of 1000 watts. Additional beakers were used if necessary.

- Load for power output measurement: 1000 milliliters of water in the beaker located in the center of the oven.
- Load for frequency measurement: 1000 milliliters of water in the beaker located in the center of the oven.
- Load for measurement of radiation on second and third harmonic: Two loads, one of 700 and the other of 300 milliliters, of water are used. Each load is tested both with the beaker located in the center of the oven and with it in the right front corner.

RF Output Power Measurement

A cylindrical container of borosilicate glass is used for the test. It has a maximum thickness of 3 mm, an external diameter of approximately 190 mm and a height of approximately 90 mm. The mass of the container is determined.

At the start of the test, the oven and the empty container are at ambient temperature. Water having an initial temperature is used for the test. The water temperature is measured immediately before it is poured into the container.

A quantity of $1000~g\pm 5~g$ of water is added to the container and its actual mass obtained. The container is then immediately placed in the centre of the oven shelf, which is in its lowest normal position. The oven is operated and the time for the water temperature to attain is measured. The oven is then switched off and the final water temperature is measured within 60~s.

m _w (g)	m _c (g)	T ₀ (°C)	T ₁ (°C)	T ₂ (°C)	t (s)
1000	377.0	23	10.1	18.6	40

RF Output Power = $(4.187 \text{ x} \ \underline{1000} \ \text{x} \ (\underline{18.6-10.1}) + 0.55 \text{ x} \ \underline{377.0} \ \text{x} \ (\underline{18.6-23})) / \underline{40} = \underline{866.929} \text{Watts}$

P is the microwave power output, in watts;

m_w is the mass of the water, in grams;

m_c is the mass of the container, in grams;

 T_0 is the ambient temperature, in degrees Celsius;

 T_1 is the initial temperature of the water, in degrees Celsius;

T₂ is the final temperature of the water, in degrees Celsius;

t is the heating time, in seconds, excluding the magnetron filament heating-up time.

The measurement output power was found to be less than 500 watts. Therefore, in accordance with Section 18.305 of Subpart-C, the measured out-of-band emissions were compared to the limit of $25\mu V/meter$ at a 300-meter measurement distance.

☑ The measured output power was found to exceed 500 watts. Therefore, in accordance with Section 18.305 of Subpart-C, the measured out-of-band emissions were compared with the limit calculated as following:

LFS = 25*SQRT (Power Output/500)

LFS = 25*SQRT (866.929/500)

LFS = 32.91

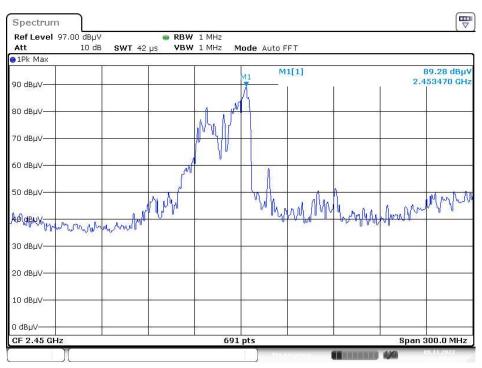
Where: LFS is the maximum allowable field strength for out-of-band emissions in $\mu V/meter$ at a 300-meter measurement distance. Power Output is the measured output power in watts.

LFS μV/m@300m	dBμV/m@300m	dBμV/m@3m
32.91	30.34	70.34

Note: Limit $(dB\mu V/m@3m) = Limit (dB\mu V/m@300m) + 40(dB)$

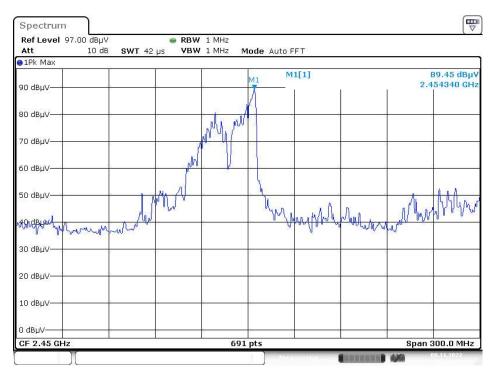
Operating Frequency Measurement

Variation in Operating Frequency with Time


The operating frequency was measured using a spectrum analyzer. Starting with the EUT at room temperature, a 1000mL water load was placed in the center of the oven and the oven was operated at maximum output power. The fundamental operating frequency was monitored until the water load was reduced to 20 percent of the original load.

The results of this test are as follows:

Frequency at Start time (MHz)	Frequency at End time (MHz)
2453.47	2454.34


Refer to data pages for details of the variation in operating frequency with time measurement.

Start time:

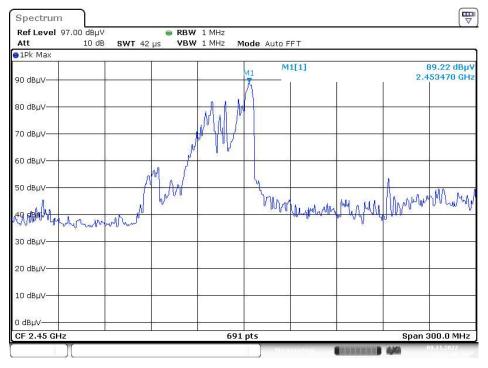
Date: 9.NOV.2022 22:07:03

End time:

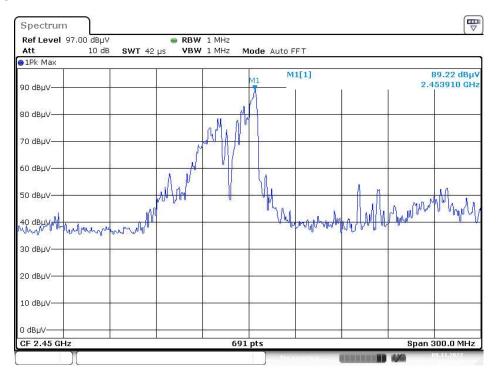
Date: 9.NOV.2022 22:39:10

Variation in Operating Frequency with Line Voltage

The EUT was operated / warmed by at least 10 minutes of use with a 1000 mL water load at room temperature at the beginning of the test. Then the operating frequency was monitored as the input voltage was varied between 80 and 125 percent of the nominal rating.


The results of this test are as follows:

Line voltage varied from 96 V_{AC} to 150 V_{AC} .


(Low voltage) Frequency	(High voltage) Frequency
(MHz)	(MHz)
2453.47	2453.91

Please refer to following pages for details of the variation in operating frequency with line voltage measurement.

Low Voltage:

High Voltage:

Date: 9.NOV.2022 23:20:30

RADIATED EMISSIONS

Applicable Standard

FCC §18.305 and FCC §18.309

EUT Setup

Below 1GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the FCC MP-5. The specification used was the FCC part 18 limits.

The socket was connected to 120 VAC/60 Hz power source.

EMI Test Receiver Setup and Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver and Spectrum Analyzer were set with the following configurations:

Frequency Range	ency Range RBW		IF B/W	Measurement
30MHz – 1000 MHz	100 kHz	100 kHz 300 kHz		QP
Above 1 CHz	1MHz	3 MHz	/	PK.
Above 1 GHz	1MHz	10 Hz	/	Ave.

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions to ensure that the EUT complied with all installation combinations.

The EUT was in the normal (naïve) operating mode during the final qualification test to represent the worst results.

Corrected Amplitude & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

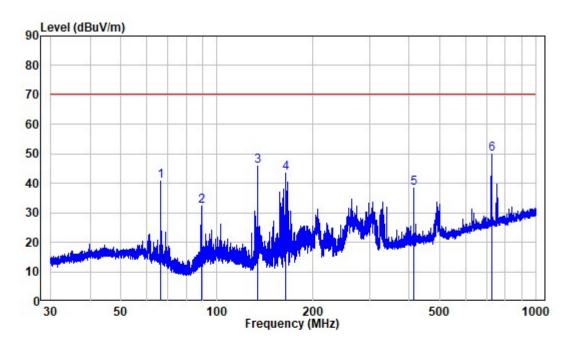
Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "Over Limit/Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data and Plots

Environmental Conditions


Temperature:	25~30℃
Relative Humidity:	57~60%
ATM Pressure:	101kPa

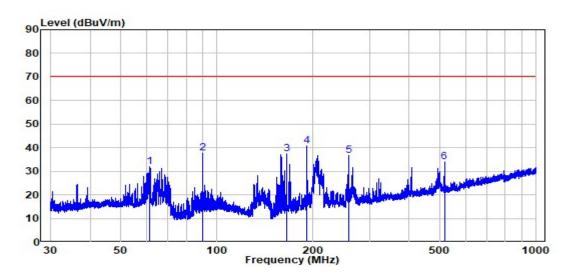
The testing was performed by Level Li on 2022-11-09

Test mode: Microwave (max power)

30 MHz – 1 GHz

Horizontal

Site : chamber


Condition: 3m HORIZONTAL

Job No. : RA221031-50407E-EM

Test Mode: Microwave

	Freq	Factor		Level		Over Limit	Remark
£.	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	66.645	-13.19	54.01	40.82	70.34	-29.52	Peak
2	89.159	-14.25	46.60	32.35	70.34	-37.99	Peak
3	133.677	-14.98	60.88	45.90	70.34	-24.44	Peak
4	163.612	-14.28	57.92	43.64	70.34	-26.70	Peak
5	413.633	-6.26	44.54	38.28	70.34	-32.06	Peak
6	723.944	-1.30	51.20	49.90	70.34	-20.44	Peak

Vertical

Site : chamber Condition: 3m VERTICAL

Job No. : RA221031-50407E-EM

Test Mode: Microwave

	Freq	Factor		Level		Limit	Remark	
100	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	61.346	-11.17	43.22	32.05	70.34	-38.29	Peak	
2	89.984	-14.02	51.78	37.76	70.34	-32.58	Peak	
3	165.125	-14.12	51.31	37.19	70.34	-33.15	Peak	
4	191.158	-11.39	52.06	40.67	70.34	-29.67	Peak	
5	257.761	-10.59	47.12	36.53	70.34	-33.81	Peak	
6	515.437	-4.28	38.13	33.85	70.34	-36.49	Peak	

1 - 25 GHz:

Frequency (MHz)	Receiver		Turntable	Rx Antenna		Corrected	Corrected	Limit	Margin
	Reading (dBµV)	PK/QP/AV	Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	(dBµV/m)	(dB)
Band edge and spurious emission									
2295.188	48.10	AV	190	2.0	Н	-7.25	40.85	70.34	-29.49
2295.188	47.10	AV	334	2.1	V	-7.25	39.85	70.34	-30.49
2571.188	48.20	AV	199	1.6	Н	-6.90	41.30	70.34	-29.04
2571.188	46.90	AV	350	1.9	V	-6.90	40.00	70.34	-30.34
4373.813	44.30	AV	5	1.0	Н	-4.80	39.50	70.34	-30.84
4373.813	44.43	AV	347	1.4	V	-4.80	39.63	70.34	-30.71
Second and third harmonic									
700ml water in center									
4910.000	44.17	AV	284	2.2	Н	-3.24	40.93	70.34	-29.41
4910.000	45.66	AV	215	1.8	V	-3.24	42.42	70.34	-27.92
7125.188	46.70	AV	348	1.5	Н	1.90	48.60	70.34	-21.74
7125.188	48.10	AV	213	1.6	V	1.90	50.00	70.34	-20.34
300ml water in center									
4910.000	45.75	AV	283	1.9	Н	-3.24	42.51	70.34	-27.83
4910.000	46.61	AV	334	2.1	V	-3.24	43.37	70.34	-26.97
7125.188	48.66	AV	135	1.5	Н	1.90	50.56	70.34	-19.78
7125.188	49.06	AV	306	2.2	V	1.90	50.96	70.34	-19.38

Note:

Factor = Antenna factor (RX) + Cable Loss - Amplifier Factor Corrected Amplitude = Factor + Reading Margin = Corrected Amplitude - Limit

***** END OF REPORT *****