

TEST REPORT

Applicant: Zhongshan Donlim Weili Electrical Appliances Co.,Ltd

Address: Fusha Industrial Park, Fusha Town, Zhongshan City, Guangdong Province, China

FCC ID: YI4DWC42PXP

Product Name: Microwave Oven

Model Number: C42PXP01-A00, C42PXP05-A00, C42PXP20-A00

Standard(s): FCC PART 18

FCC MP-5:1986

The above equipment has been tested and found compliant with the requirement of the relative standards by China Certification ICT Co., Ltd (Dongguan)

Report Number: CR230206372-00

Date Of Issue: 2023/4/26

Reviewed By: Sun Zhong

Sun 2hong

Title: Manager

Test Laboratory: China Certification ICT Co., Ltd (Dongguan)

No. 113, Pingkang Road, Dalang Town, Dongguan,

Guangdong, China Tel: +86-769-82016888

Test Facility

The Test site used by China Certification ICT Co., Ltd (Dongguan) to collect test data is located on the No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 442868, the FCC Designation No. : CN1314.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0123.

Declarations

China Certification ICT Co., Ltd (Dongguan) is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol "\(\Lambda \)". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk " \star ".

CONTENTS

TEST FACILITY	2
DECLARATIONS	2
DOCUMENT REVISION HISTORY	4
1. GENERAL INFORMATION	
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
1.2 DESCRIPTION OF TEST CONFIGURATION	
1.2.1 EUT Operation Condition:	
1.2.2 Support Equipment List and Details	
1.2.3 Support Cable List and Details	
1.2.4 Block Diagram of Test Setup	
1.3 MEASUREMENT UNCERTAINTY	
2. SUMMARY OF TEST RESULTS	9
3. REQUIREMENTS AND TEST PROCEDURES	10
3.1 AC LINE CONDUCTED EMISSIONS	
3.1.1 EUT Setup	
3.1.2 EMI Test Receiver Setup	
3.1.3 Test Procedure	11
3.1.4 Corrected Amplitude & Margin Calculation	
3.2 RADIATION SPURIOUS EMISSIONS	
3.2.1 EUT Setup.	
3.2.2 EMI Test Receiver Setup	
3.2.3 Test Procedure	13
3.2.4 Corrected Amplitude & Margin Calculation	13
3.3 RADIATION HAZARD MEASUREMENT	
3.3.1 Applicable Standard	
3.3.2 Test Procedure	
1) Input Power	
2) RF Output Power	
3) Operating Frequency	
4. TEST DATA AND RESULTS	
4.1 AC LINE CONDUCTED EMISSIONS	
4.2 RADIATION SPURIOUS EMISSIONS	
4.3 RADIATION HAZARD MEASUREMENT	23
5. RF EXPOSURE EVALUATION	
5.1 MAXIMUM PERMISSIBLE EXPOSURE (MPE)	
5.1.1 Applicable Standard	
5.1.2 Limits	
5.1.2 Maggurament	20

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0	CR230206372-00	Original Report	2023/4/26

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

	ipuon for Equipment under Test (ECT)	
EUT Name:	Microwave Oven	
EUT Model:	C42PXP01-A00	
Multiple Models:	C42PXP05-A00, C42PXP20-A00	
Highest Operation Frequency:	2450 MHz	
Microwave Output Power:	1000 W	
Input Power:	1500 W	
Serial Number:	21BD-1	
EUT Received Date:	2023/2/17	
EUT Received Status:	Good	

Note: The Multiple model is electrically identical with test model, please refer to the declaration letter for more detail, which was provided by manufacturer.

Accessory Information:

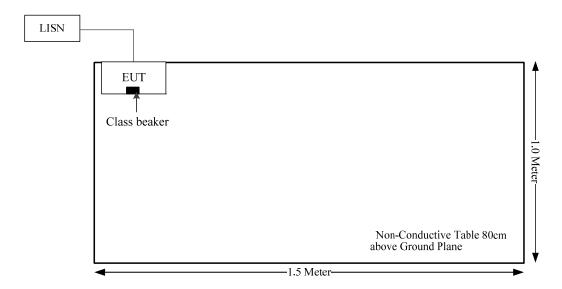
Accessory Description	Manufacturer	Model	Parameters
/	/	/	/

1.2 Description of Test Configuration

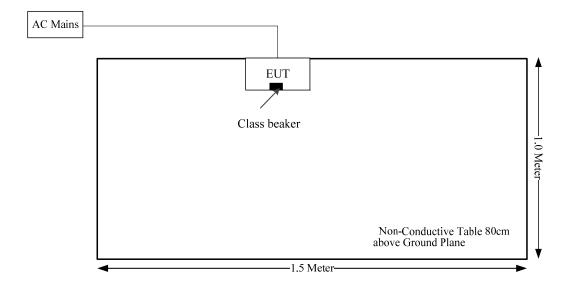
1.2.1 EUT Operation Condition:

EUT Operation Mode:	The system was configured for testing in maximum (continuous) RF output power, which was provided by the manufacturer. The loads consisted of water in a glass beaker in the amounts specified in the test procedure Test Model: Operation
Equipment Modifications:	
EUT Exercise Software:	No

1.2.2 Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
Unknown	Glass beaker	Unknown	Unknown

1.2.3 Support Cable List and Details


Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
Power Cable	No	No	1	LISN	EUT

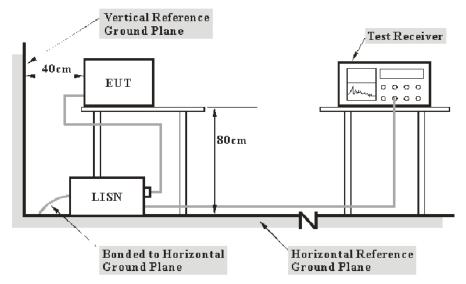
1.2.4 Block Diagram of Test Setup

Conducted emissions:

Radiated emissions:

1.3 Measurement Uncertainty

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.


Parameter	Measurement Uncertainty		
Linuxented Emissions, mediated	30M~200MHz: 4.15 dB,200M~1GHz: 5.61 dB,1G~6GHz: 5.14 dB,		
Unwanted Emissions, radiated	6G~18GHz: 5.93 dB,18G~26.5G:5.47 dB,26.5G~40G:5.63 dB		
Temperature	±1℃		
Humidity	±5%		
AC Power Lines Conducted Emission	2.8 dB (150 kHz to 30 MHz)		

Standard Clause	Description of Test	Test Result
FCC §18.307	Conducted emissions	Compliant
FCC §18.305, §18.309	Radiated emissions	Compliant
FCC/OST MP-5 FCC §18.301	Radiation Hazard Measurement	Compliant
FCC §18.305	Field Strength	Compliant
FCC §18.313, §1.1310, §2.1091	Maximum Permissible Exposure	Compliant

3. REQUIREMENTS AND TEST PROCEDURES

3.1 AC Line Conducted Emissions

3.1.1 EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per MP-5:1986 measurement procedure. The specification used was with the FCC Part 18.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The EUT was connected to the main LISN with a 120 V/60 Hz AC power source.

3.1.2 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

3.1.3 Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the first LISN and the other support equipments were connected to the outlet of the second LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT, the report shall list the six emissions with the smallest margin relative to the limit, unless the margin is greater than 20 dB.

All data was recorded in the Quasi-peak and average detection mode.

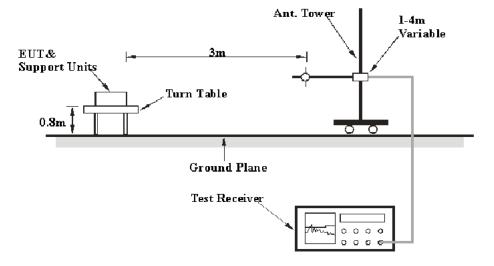
The report shall list the six emissions with the smallest margin relative to the limit, unless the margin is greater than 20 dB.

3.1.4 Corrected Amplitude & Margin Calculation

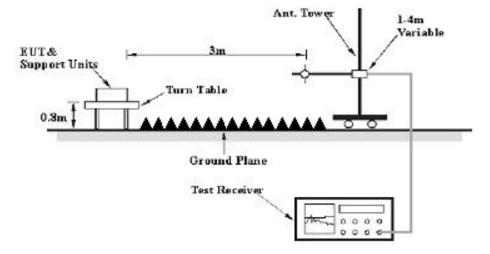
The basic equation is as follows:

Result = Reading + Factor

Factor = attenuation caused by cable loss + voltage division factor of AMN


The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit - Result


3.2 Radiation Spurious Emissions

3.2.1 EUT Setup

Below 1GHz:

Above 1GHz:

The radiated emission were performed in the 3 meters chamber test site, using the setup accordance with the FCC MP-5. The specification used was the FCC part 18 limits.

3.2.2 EMI Test Receiver Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	Peak
Above I GHZ	1 MHz	10Hz	/	AVG

If the maximized peak measured value complies with under the limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

3.2.3 Test Procedure

During the radiated emissions, the adapter was connected to the first AC floor outlet and the other support equipments were connected to the second AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The data was recorded in the Quasi-peak detection mode for below 1 GHz, peak and average detection mode above 1 GHz.

All emissions under the average limit and under the noise floor have not recorded in the report.

3.2.4 Corrected Amplitude & Margin Calculation

The basic equation is as follows:

Result = Reading + Factor

Factor = Antenna Factor + Cable Loss- Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit - Result

3.3 Radiation Hazard Measurement

3.3.1 Applicable Standard

FCC §18.301

3.3.2 Test Procedure

1) Input Power

Input power and current was measured using a power analyzer. A 1000 mL water load was placed in the center of the oven and the oven was operated at maximum output power. A 1000mL water load was chosen for its compatibility with the procedure commonly used by manufacturers to determine their input ratings.

Load for Microwave Ovens

For all measurements, the energy developed by the oven was absorbed by a dummy load consisting of a quantity of tap water in a beaker. If the oven was provided with a shelf or other utensil support, this support was in its initial normal position. For ovens rated at 1000 watts or less power output, the beaker contained quantities of water as listed in the following subparagraphs. For ovens rated at more than 1000 watts output, each quantity was increased by 50% for each 500watts or fraction thereof in excess of 1000 watts. Additional beakers were used if necessary.

- Load for power output measurement: 1000 milliliters of water in the beaker located in the center of the oven
- Load for frequency measurement: 1000 milliliters of water in the beaker located in the center of the oven.
- Load for measurement of radiation on second and third harmonic: Two loads, one of 700 and the other of 300 milliliters, of water are used. Each load is tested both with the beaker located in the center of the oven and with it in the right front corner.

2) RF Output Power

A cylindrical container of borosilicate glass is used for the test. It has a maximum thickness of 3 mm, an external diameter of approximately 190 mm and a height of approximately 90 mm. The mass of the container is determined.

At the start of the test, the oven and the empty container are at ambient temperature. Water having an initial temperature is used for the test. The water temperature is measured immediately before it is poured into the container.

A quantity of $1000 \text{ g} \pm 5 \text{ g}$ of water is added to the container and its actual mass obtained. The container is then immediately placed in the centre of the oven shelf, which is in its lowest normal position. The oven is operated and the time for the water temperature to attain is measured. The oven is then switched off and the final water temperature is measured within 60 s.

3) Operating Frequency

Variation in Operating Frequency with Time

The operating frequency was measured using a spectrum analyzer. Starting with the EUT at room temperature, a 1000mL water load was placed in the center of the oven and the oven was operated at maximum output power. The fundamental operating frequency was monitored until the water load was reduced to 20 percent of the original load.

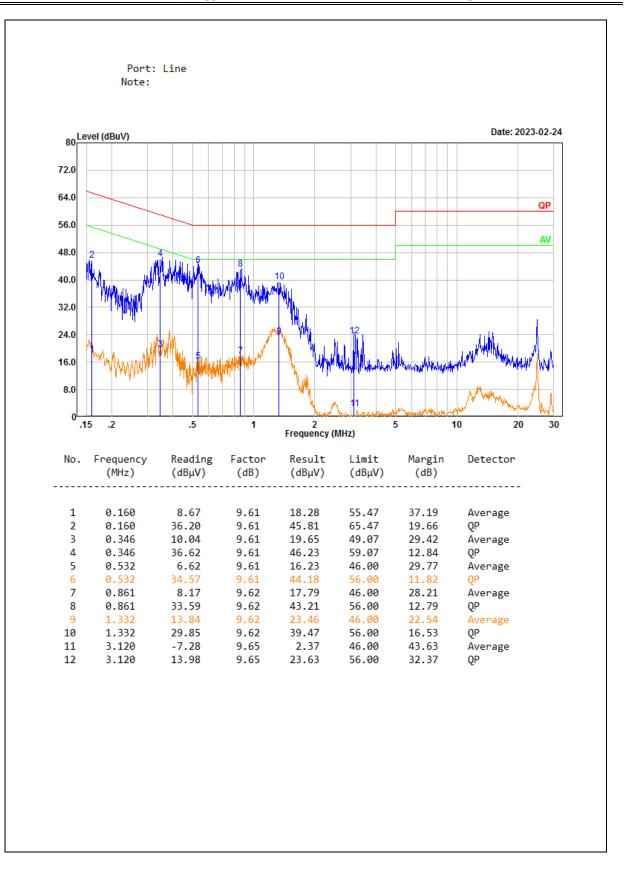
Variation in Operating Frequency with Line Voltage

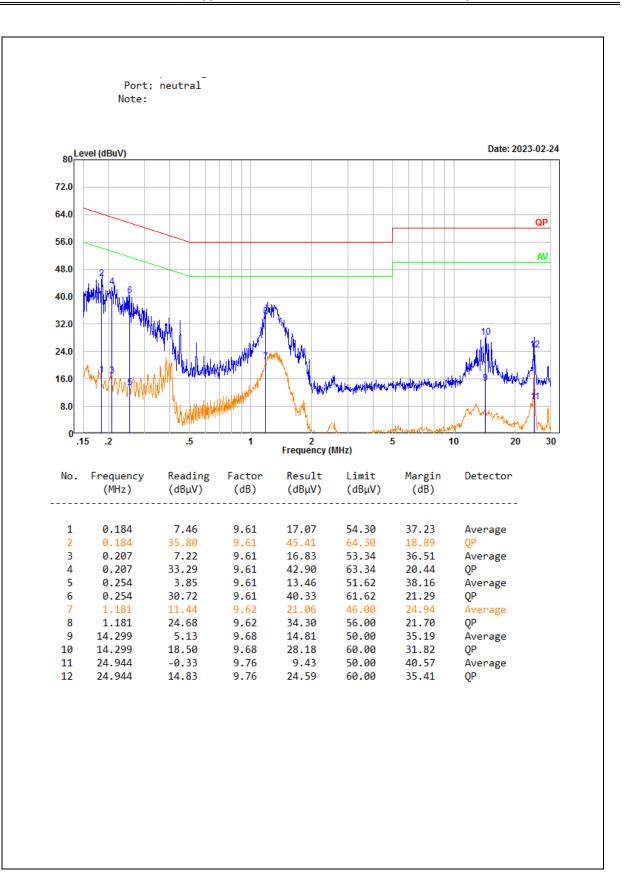
The EUT was operated / warmed by at least 10 minutes of use with a 1000 mL water load at room temperature at the beginning of the test. Then the operating frequency was monitored as the input voltage was varied between 80 and 125 percent of the nominal rating.

Page 15 of 29

4. TEST DATA AND RESULTS

4.1 AC Line Conducted Emissions


Serial Number:	21BD-1	Test Date:	2023/02/24
Test Site:	CE	Test Mode:	Operation
Tester:	Bob Yang	Test Result:	Pass


Environmental Conditions:						
Temperature: $(^{\circ}\mathbb{C})$	22.5	Relative Humidity: (%)	52	ATM Pressure: (kPa)	101.9	

Test Equipment List and Details:

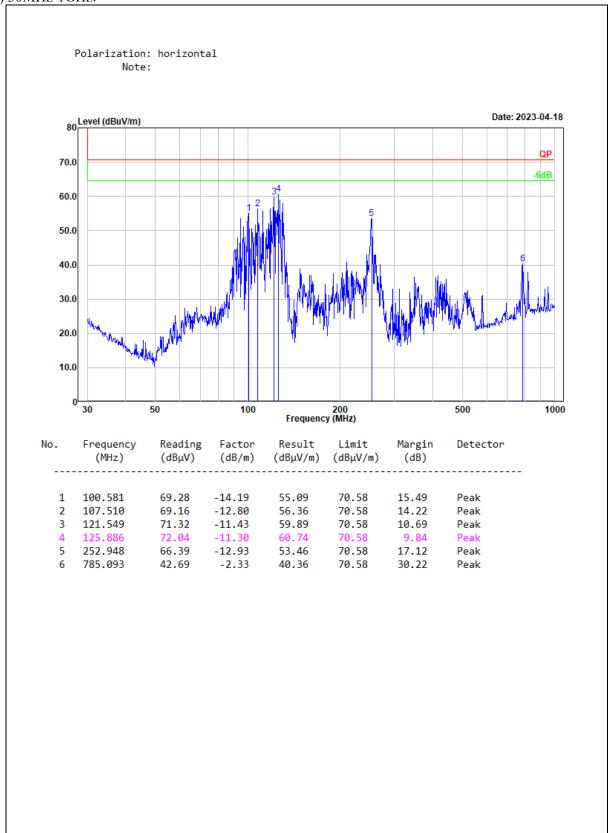
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	LISN	ENV216	101134	2022/04/01	2023/03/31
R&S	EMI Test Receiver	ESR3	102726	2022/07/15	2023/07/14
MICRO-COAX	Coaxial Cable	UTIFLEX	C-0200-01	2022/08/07	2023/08/06
Audix	Test Software	E3	190306 (V9)	N/A	N/A

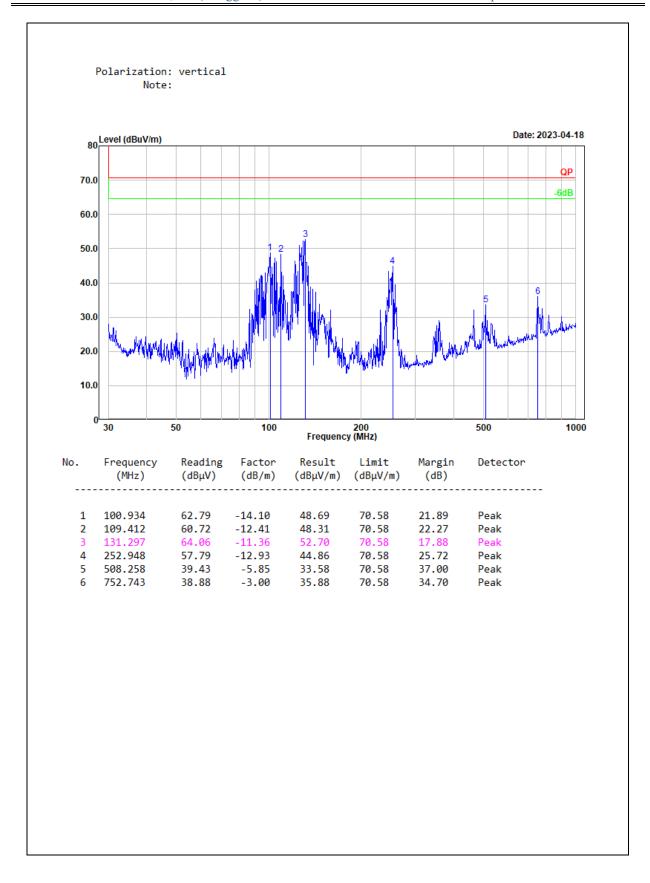
^{*} Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

4.2 Radiation Spurious Emissions

Serial Number:	21BD-1	Test Date:	2023/04/18~2023/04/23
Test Site:	966-1,966-2	Test Mode:	Operation
Tester:	Mack Huang, Vic Du	Test Result:	Pass

Report No.: CR230206372-00


Environmental Conditions:						
	Temperature: $(^{\circ}C)$	24~26.9	Relative Humidity: (%)	62~63	ATM Pressure: (kPa)	99.9~100.9


Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Sunol Sciences	Antenna	JB6	A082520-5	2020/10/19	2023/10/18
R&S	EMI Test Receiver	ESR3	102724	2022/07/15	2023/07/14
TIMES MICROWAVE	Coaxial Cable	LMR-600- UltraFlex	C-0470-02	2022/07/17	2023/07/16
TIMES MICROWAVE	Coaxial Cable	LMR-600- UltraFlex	C-0780-01	2022/07/17	2023/07/16
Sonoma	Amplifier	310N	186165	2022/07/17	2023/07/16
ETS-Lindgren	Horn Antenna	3115	9912-5985	2020/10/13	2023/10/12
R&S	Spectrum Analyzer	FSV40	101591	2022/07/15	2023/07/14
MICRO-COAX	Coaxial Cable	UFA210A-1- 1200-70U300	217423-008	2022/08/07	2023/08/06
MICRO-COAX	Coaxial Cable	UFA210A-1- 2362-300300	235780-001	2022/08/07	2023/08/06
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2022/11/09	2023/11/08
Audix	Test Software	E3	201021 (V9)	N/A	N/A
PASTERNACK	Horn Antenna	PE9852/2F-20	112002	2021/02/05	2024/02/04
AH	Preamplifier	PAM-1840VH	190	2022/11/09	2023/11/08
MICRO-COAX	Coaxial Cable	UFB142A-1- 2362-200200	235772-001	2022/08/07	2023/08/06
E-Microwave	Band Rejection Filter	2400-2483.5MHz	OE01902424	2022/08/07	2023/08/06
Mini Circuits	High Pass Filter	VHF-6010+	31119	2022/08/07	2023/08/06

^{*} Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

1) 30MHz-1GHz:

Report No.: CR230206372-00

2) 1-25GHz:

Б	Rece	eiver	D 1	Г	D 1	T 1 1	3.6
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			1000m	l water			
4403.500	29.55	AV	Н	9.84	39.39	70.58	31.19
4403.500	31.89	AV	Н	9.84	41.73	70.58	28.85
7120.900	26.48	AV	Н	13.83	40.31	70.58	30.27
7120.900	27.58	AV	Н	13.83	41.41	70.58	29.17
			700ml	water			
4900.000	32.51	AV	Н	11.13	43.64	70.58	26.94
4900.000	32.84	AV	V	11.13	43.97	70.58	26.61
7350.000	29.73	AV	Н	14.78	44.51	70.58	26.07
7350.000	27.46	AV	V	14.78	42.24	70.58	28.34
			300ml	water			
4900.000	40.96	AV	Н	11.13	52.09	70.58	18.49
4900.000	38.67	AV	V	11.13	49.80	70.58	20.78
7350.000	29.63	AV	Н	14.78	44.41	70.58	26.17
7350.000	31.11	AV	V	14.78	45.89	70.58	24.69

4.3 Radiation Hazard Measurement

Serial Number:	21BD-1	Test Date:	2023/02/21
Test Site:	966-1	Test Mode:	Transmitting
Tester:	Mack Huang	Test Result:	Pass

Environmental	Conditions:				
Temperature: $(^{\circ}\mathbb{C})$	24.3	Relative Humidity: (%)	45	ATM Pressure: (kPa)	101.5

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
ETS-Lindgren	Horn Antenna	3115	9912-5985	2020/10/13	2023/10/12
R&S	Spectrum Analyzer	FSV40	101591	2022/07/15	2023/07/14
R&S	EMI Test Receiver	ESR3	102724	2022/07/15	2023/07/14
MICRO-COAX	Coaxial Cable	UFA210A-1-1200- 70U300	217423-008	2022/08/07	2023/08/06
MICRO-COAX	Coaxial Cable	UFA210A-1-2362- 300300	235780-001	2022/08/07	2023/08/06
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2022/11/09	2023/11/08
YOKOGAWA	Digital Power Meter	WT210	CR23142113	2022/08/07	2023/08/06
FLLIKE	Temperature measuring instrument	725	BC-TL-504	2022/04/15	2023/04/24
Dingxing	Electronic Balance	DSII-861	215219	2022/09/09	2023/09/08
Audix	Test Software	E3	201021 (V9)	N/A	N/A

^{*} Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

1) Input Power

Input Voltage (V _{AC} /Hz)	Input Current (Amps)	Measured Input Power (Watts)	Rated Input Power (Watts)
117	13.54	1584.18	1500

Based on the measured input power, the EUT was found to be operating within the intended specifications.

2) RF Output Power

m _w (g)	m _c (g)	T ₀ (°C)	T ₁ (°C)	T ₂ (°C)	t (s)
1000	377	24.7	10.7	19.9	41

RF Output Power = $(4.187 \times 1000 \times (19.9-10.7) + 0.55 \times 377.0 \times (19.9-24.7)) / 41 = 915.247$ Watts

P is the microwave power output, in watts;

m_w is the mass of the water, in grams;

m_c is the mass of the container, in grams;

 T_0 is the ambient temperature, in degrees Celsius;

 T_1 is the initial temperature of the water, in degrees Celsius;

T₂ is the final temperature of the water, in degrees Celsius;

is the heating time, in seconds, excluding the magnetron filament heating-up time.

 \square The measurement output power was found to be less than 500 watts. Therefore, in accordance with Section 18.305 of Subpart-C, the measured out-of-band emissions were compared to the limit of $25\mu V/meter$ at a 300-meter measurement distance.

The measured output power was found to exceed 500 watts. Therefore, in accordance with Section 18.305 of Subpart-C, the measured out-of-band emissions were compared with the limit calculated as following:

LFS = 25*SQRT (Power Output/500)

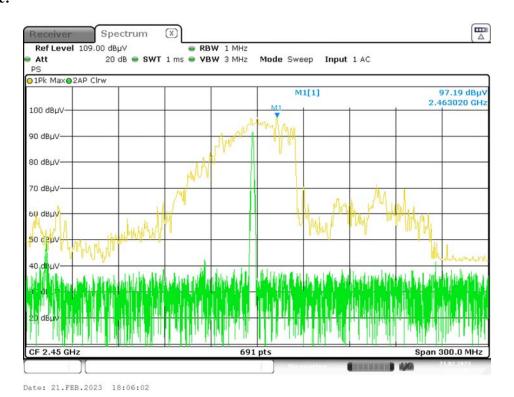
LFS = 25*SQRT (915.247/500)

LFS = 33.82

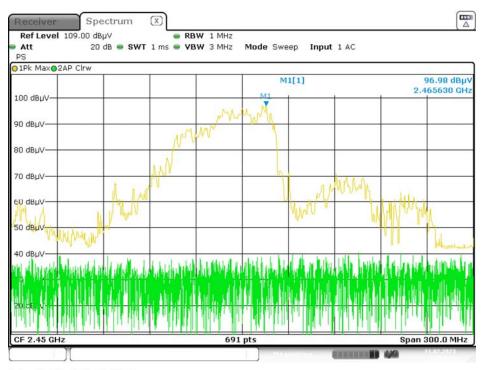
Where: LFS is the maximum allowable field strength for out-of-band emissions in $\mu V/meter$ at a 300-meter measurement distance. Power Output is the measured output power in watts.

LFS μV/m@300m	dBμV/m@300m	dBμV/m@3m
33.82	30.58	70.58

Note: Limit $(dB\mu V/m@3m) = Limit (dB\mu V/m@300m) + 40(dB)$


3) Operating Frequency

Variation in Operating Frequency with Time

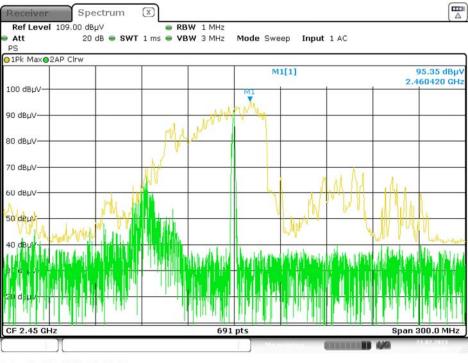

Frequency at Start time (MHz)	Frequency at End time (MHz)	
2463.02	2465.63	

Refer to data pages for details of the variation in operating frequency with time measurement.

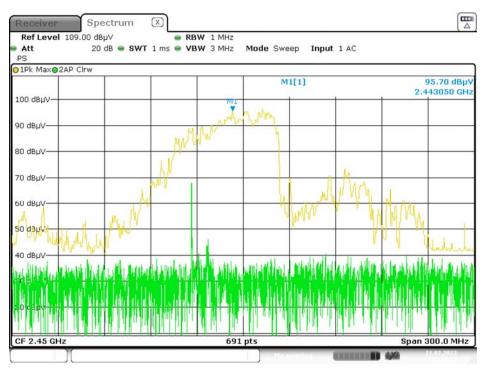
Start time:

End time:

Date: 21.FEB.2023 18:18:15


Variation in Operating Frequency with Line Voltage

Line voltage varied from 96 V_{AC} to 150 $V_{\text{AC}}.$


(Low voltage) Frequency	(High voltage) Frequency
(MHz)	(MHz)
2460.42	2443.05

Please refer to following pages for details of the variation in operating frequency with line voltage measurement.

Low Voltage:

High Voltage:

Date: 21.FEB.2023 18:31:26

5. RF EXPOSURE EVALUATION

5.1 Maximum Permissible Exposure (MPE)

5.1.1 Applicable Standard

According to subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

5.1.2 Limits

Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure				
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)
0.3-1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f ²)	30
30–300	27.5	0.073	0.2	30
300–1500	/	/	f/1500	30
1500-100,000	/	/	1.0	30

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

5.1.3 Measurement

Radiation leakage was measured in the as-received condition with the oven door closed using a microwave leakage meter.

A 275 mL water load was placed in the center of the oven and the oven was operated at maximum output power.

There was no microwave leakage exceeding a power level of <u>0.1m</u>W/cm² observed at any point 5 cm or more from the external surface of the oven.

A maximum of 1.0 mW/cm² is allowed in accordance with the applicable Federal Standards. Hence, microwave leakage in the as-received condition with the oven door closed was below the maximum allowed.

*****END OF REPORT****