

FCC PART 18

TEST REPORT

For

Zhongshan Donlim Weili Electrical Appliances Co., Ltd.

Fusha Industrial Park, Fusha Town, Zhongshan, China

FCC ID: YI4DW20UX40

Report Type: Original Report		Product Ty Microwave	-
Report Number:	RSZ180926552-00)	
Report Date:	2018-12-05		
	Xiangguang Kong		Kiangguang . Kong
Reviewed By:	Engineer		
Prepared By:		Third Phase of V an Free Trade Z v 20018 20008	es Corp. (Shenzhen) Wanli Industrial Building, Zone, Shenzhen,

Note: This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*"

Report No.: RSZ180926552-00

Bay Area Compliance Laboratories Corp. (Shenzhen)

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
Related Submittal(s)/Grant(s)	
TEST METHODOLOGY	
Measurement Uncertainty:	
TEST FACILITY	4
OPERATING CONDITION/TEST CONFIGURATION	5
JUSTIFICATION	5
EUT Exercise Software	
SPECIAL ACCESSORIES	
Equipment Modifications	
SUPPORT EQUIPMENT LIST AND DETAILS	5
EXTERNAL CABLE LIST AND DETAILS	5
CONFIGURATION OF TEST SETUP	5
BLOCK DIAGRAM OF TEST SETUP	6
TEST EQUIPMENT LIST	7
CONDUCTED EMISSIONS	9
Applicable Standard	
EUT SETUP	
EMI TEST RECEIVER SETUP	
Test Procedure	
TEST RESULTS SUMMARY	
TEST DATA	
RADIATION HAZARD MEASUREMENT	
Applicable Standard	
ENVIRONMENTAL CONDITIONS	
RADIATION HAZARD MEASUREMENT	
INPUT POWER	
LOAD FOR MICROWAVE OVENS	
RF OUTPUT POWER MEASUREMENT	
OPERATING FREQUENCY MEASUREMENT	
ENVIRONMENTAL CONDITIONS	
RADIATION HAZARD MEASUREMENT	
INPUT POWER	
LOAD FOR MICROWAVE OVENS	
RF OUTPUT POWER MEASUREMENT	
OPERATING FREQUENCY MEASUREMENT	
RADIATED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP AND SPECTRUM ANALYZER SETUP	
Test Procedure	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY TEST DATA AND PLOTS	
TEST DATA AND PLOTS	

Page 2 of 31

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The Zhongshan Donlim Weili Electrical Appliances Co., Ltd.'s product, model number: 20UX40-L (FCC ID: YI4DW20UX40) or the "EUT" in this report is a Microwave Oven, which was measured approximately: 45.5 cm (L) x 34.5 cm (W) x 25.5 cm (H), the input power is AC 120V/60Hz. The highest operating frequency is 2450 MHz.

*All measurement and test data in this report was gathered from production sample serial number: 1809030 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2018-09-26.

Objective

This report is prepared on behalf of *Zhongshan Donlim Weili Electrical Appliances Co., Ltd.* in accordance with Part 2-Subpart J, and Part 18-Subparts A, B and C of the Federal Communication Commissions rules and regulations.

The objective of the manufacturer is to determine compliance with FCC Part 18 limits.

Related Submittal(s)/Grant(s)

No related submittal(s).

Test Methodology

All measurements contained in this report were conducted with MP-5, FCC Methods of Measurements of Radio Noise Emissions from ISM Equipment, February 1986. All measurements were performed at Bay Area Compliance Laboratory Corporation. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty:

Item			Expanded Measurement uncertainty
AC Power Line Conducted Emissions		2.20 dB (k=2, 95% level of confidence)	
	30MHz~200MHz	Horizontal	4.58 dB (k=2, 95% level of confidence)
	301v1112~2001v1112	Vertical	4.59 dB (k=2, 95% level of confidence)
Radiated emission	200MHz~1 GHz	Horizontal	4.83 dB (k=2, 95% level of confidence)
Radiated emission		Vertical	5.85 dB (k=2, 95% level of confidence)
	1 GHz~6 GHz	Horizontal/Vertical	4.08 dB (k=2, 95% level of confidence)
Above 6 GHz		Horizontal/Vertical	4.59 dB (k=2, 95% level of confidence)
Occupied Bandwidth			±0.5kHz
	Temperature		±1.0°C

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

OPERATING CONDITION/TEST CONFIGURATION

Justification

The EUT was operated at maximum (continuous) RF output power. The loads consisted of water in a glass beaker in the amounts specified in the test procedure.

Note: Two types of magnetron (refer to the internal photo) may used in this microwave oven, so two samples equip with those two types of magnetron separately was selected to test.

EUT Exercise Software

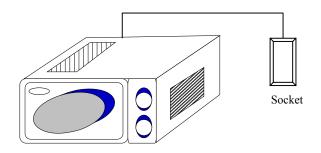
No exercise software was used.

Special Accessories

No special accessory was used.

Equipment Modifications

No modifications were made to the EUT tested.

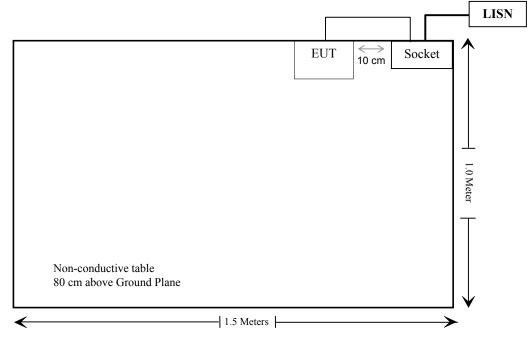

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
N/A	Socket	N/A	140217

External Cable List and Details

Cable Description	Length (m)	From/Port	То
Un-shielding Un-detachable AC Cable	1.0	LISN	Socket
Un-shielding Un-detachable AC Cable	0.8	EUT	Socket

Configuration of Test Setup



FCC Part 18

Bay Area Compliance Laboratories Corp. (Shenzhen)

Report No.: RSZ180926552-00

Block Diagram of Test Setup

FCC Part 18

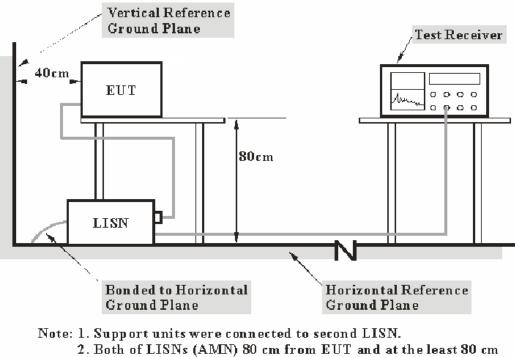
Page 6 of 31

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
CONDUCTED EMISSIONS							
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2018-07-11	2019-07-11		
Rohde & Schwarz	LISN	ENV216	3560.6650.12- 101613-Yb	2017-12-21	2018-12-21		
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2018-05-12	2018-11-12		
Rohde & Schwarz	CE Test software	EMC 32	V8.53.0	NCR	NCR		
Unknown	Conducted Emission Cable	78652	UF A210B-1- 0720-504504	2018-05-12	2018-11-12		
	RADIATIO	N HAZARD MEAS	SUREMENT	•			
Rohde & Schwarz	Signal Analyzer	FSEM	845987/005	2018-06-23	2019-06-23		
GW Instek	Power Meter	GPM 8212	CL110034	2018-04-09	2019-04-09		
МС	Thermometer	N/A	N/A	2017-11-01	2018-11-01		
MC	Thermometer	N/A	N/A	2018-11-01	2019-11-01		
A.H.System	Horn Antenna	3115	9903-5766	NCR	NCR		
ETS	Microwave Survery Meter	1501	N/A	NCR	NCR		
CAMRY	Electronic Weighed	EK3820	N/A	2017-11-03	2018-11-02		
CAMRY	Electronic Weighed	EK3820	N/A	2018-11-03	2019-11-02		
Ducommun technologies	RF Cable	UFA210A-1- 4724-30050U	MFR64369 223410-001	2018-05-21	2018-11-19		
Ducommun technologies	RF Cable	UFA210A-1- 4724-30050U	MFR64369 223410-001	2018-11-19	2019-05-19		
Ducommun technologies	RF Cable	104PEA	218124002	2018-05-21	2018-11-21		
Ducommun technologies	RF Cable	104PEA	218124002	2018-11-21	2019-05-21		

Report No.: RSZ180926552-00

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
	RADIATED EMISSIONS							
Sonoma instrument	Amplifier	310 N	186238	2018-05-12	2018-11-12			
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2018-01-11	2019-01-11			
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2017-12-22	2020-12-21			
A.H. System	Horn Antenna	SAS-200/571	135	2018-09-01	2021-08-31			
Rohde & Schwarz	Signal Analyzer	FSEM	845987/005	2018-06-23	2019-06-23			
COM-POWER	Pre-amplifier	PA-122	181919	2018-08-01	2019-02-01			
R&S	Auto test Software	EMC32	V9.10	NCR	NCR			
Agilent	Spectrum Analyzer	8564E	3943A01781	2018-01-04	2019-01-04			
the electro- Mechanics Co.	Horn Antenna	3116	9510-2270	2018-10-09	2021-10-09			
Heatsink Required	Amplifier	QLW-18405536- J0	15964001002	2018-08-01	2019-02-01			
IW MICROWAVE	RF Cable	2PS-1401-2760- 2ps	SN 03	2018-05-22	2018-11-22			
Ducommun technologies	RF Cable	UFA210A-1- 4724-30050U	MFR64369 223410-001	2018-05-21	2018-11-19			
Ducommun technologies	RF Cable	104PEA	218124002	2018-05-21	2018-11-21			


* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

CONDUCTED EMISSIONS

Applicable Standard

FCC §18.307

EUT Setup

from other units and other metal planes support units.

The setup of EUT is according with MP-5: 1986 measurement procedure. Specification used was with the FCC Part 18.

The socket was connected to a 120 VAC/ 60Hz power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC PART 18,

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

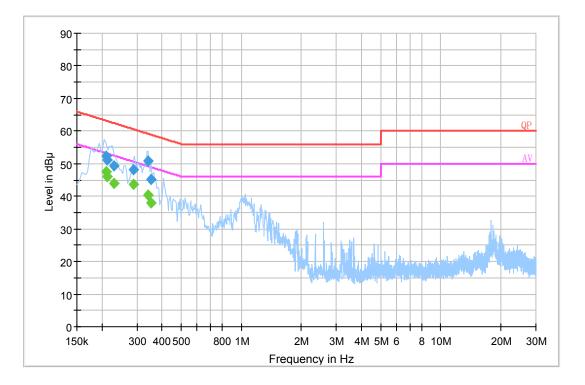
 $L_{\rm m} + U_{(Lm)} \leq L_{\rm lim} + U_{\rm cispr}$

In BACL., $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

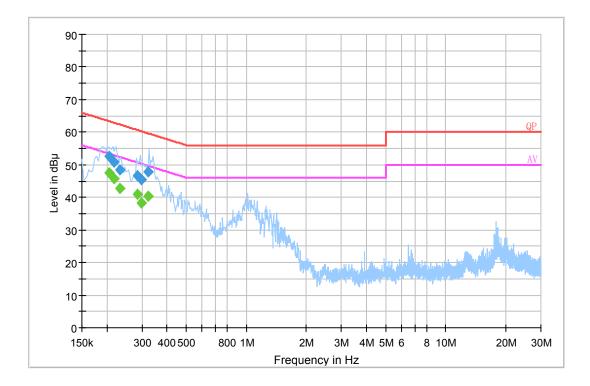
Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa


The testing was performed by Haiguo Li on 2018-10-08.

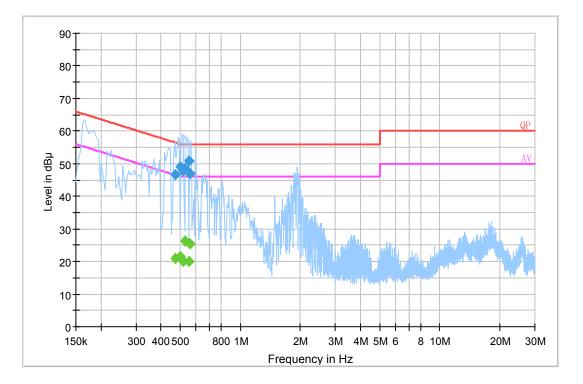
EUT operation mode: Boiling Water with MAX Power


Report No.: RSZ180926552-00

For Type 1 magnetron:

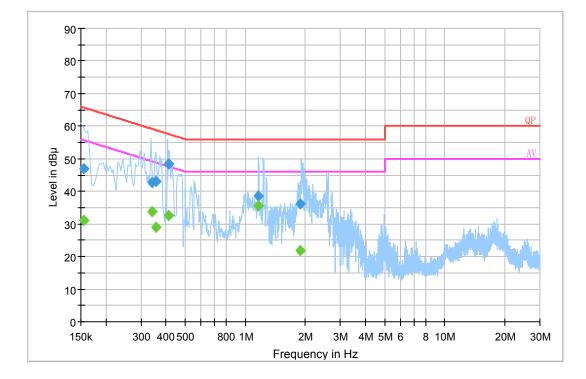
AC 120V/60Hz, Line

Frequency (MHz)	Corrected Amplitude (dBµV)	Corrected Factor (dB)	Limit (dBµV)	Margin (dB)	Remark (PK/QP/Ave.)
0.209500	52.5	19.7	63.2	10.7	QP
0.213500	51.2	19.7	63.1	11.9	QP
0.229500	49.5	19.7	62.5	13.0	QP
0.289500	48.3	19.8	60.5	12.2	QP
0.340870	50.8	19.7	59.2	8.4	QP
0.352690	45.2	19.7	58.9	13.7	QP
0.209500	47.7	19.7	53.2	5.5	Ave.
0.213500	46.0	19.7	53.1	7.1	Ave.
0.229500	43.9	19.7	52.5	8.6	Ave.
0.289500	43.7	19.8	50.5	6.8	Ave.
0.340870	40.4	19.7	49.2	8.8	Ave.
0.352690	37.9	19.7	48.9	11.0	Ave.


AC 120V/60Hz, Neutral

Frequency (MHz)	Corrected Amplitude (dBµV)	Corrected Factor (dB)	Limit (dBµV)	Margin (dB)	Remark (PK/QP/Ave.)
0.205500	52.8	19.7	63.4	10.6	QP
0.217500	50.9	19.7	62.9	12.0	QP
0.233500	48.5	19.7	62.3	13.8	QP
0.285500	46.7	19.8	60.7	14.0	QP
0.297500	45.5	19.8	60.3	14.8	QP
0.321110	48.0	19.7	59.7	11.7	QP
0.205500	47.7	19.7	53.4	5.7	Ave.
0.217500	45.7	19.7	52.9	7.2	Ave.
0.233500	42.9	19.7	52.3	9.4	Ave.
0.285500	40.9	19.8	50.7	9.8	Ave.
0.297500	38.4	19.8	50.3	11.9	Ave.
0.321110	40.5	19.7	49.7	9.2	Ave.

Report No.: RSZ180926552-00


For Type 2 magnetron:

AC 120V/60Hz, Line

Frequency (MHz)	Corrected Amplitude (dBµV)	Corrected Factor (dB)	Limit (dBµV)	Margin (dB)	Remark (PK/QP/Ave.)
0.474950	46.7	19.8	56.4	9.7	QP
0.501410	48.9	19.8	56.0	7.1	QP
0.518290	47.7	19.8	56.0	8.3	QP
0.526050	48.4	19.8	56.0	7.6	QP
0.553810	50.9	19.7	56.0	5.1	QP
0.561510	46.9	19.7	56.0	9.1	QP
0.474950	20.8	19.8	46.4	25.6	Ave.
0.501410	21.5	19.8	46.0	24.5	Ave.
0.518290	20.1	19.8	46.0	25.9	Ave.
0.526050	26.2	19.8	46.0	19.8	Ave.
0.553810	20.1	19.7	46.0	25.9	Ave.
0.561510	25.5	19.7	46.0	20.5	Ave.

Report No.: RSZ180926552-00

AC 120V/60Hz, Neutral

Frequency (MHz)	Corrected Amplitude (dBµV)	Corrected Factor (dB)	Limit (dBµV)	Margin (dB)	Remark (PK/QP/Ave.)
0.154500	46.8	19.8	65.8	19.0	QP
0.340930	42.8	19.7	59.2	16.4	QP
0.356630	42.9	19.7	58.8	15.9	QP
0.411910	48.4	19.7	57.6	9.2	QP
1.164510	38.7	19.7	56.0	17.3	QP
1.889290	36.3	19.9	56.0	19.7	QP
0.154500	31.1	19.8	55.8	24.7	Ave.
0.340930	33.9	19.7	49.2	15.3	Ave.
0.356630	29.0	19.7	48.8	19.8	Ave.
0.411910	32.6	19.7	47.6	15.0	Ave.
1.164510	35.6	19.7	46.0	10.4	Ave.
1.889290	21.7	19.9	46.0	24.3	Ave.

Note:

1) Corrected Amplitude = Reading + Correction Factor

2) Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

3) Margin = Limit – Corrected Amplitude

RADIATION HAZARD MEASUREMENT

Applicable Standard

FCC §18.301

For Type 1 magnetron:

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Andy Yu on 2018-10-09.

Radiation Hazard Measurement

Radiation leakage was measured in the as-received condition with the oven door closed using a microwave leakage meter.

A 275 mL water load was placed in the center of the oven and the oven was operated at maximum output power.

There was no microwave leakage exceeding a power level of 0.1mW/cm^2 observed at any point 5 cm or more from the external surface of the oven.

A maximum of 1.0 mW/cm² is allowed in accordance with the applicable Federal Standards. Hence, microwave leakage in the as-received condition with the oven door closed was below the maximum allowed.

Input Power

Input power and current was measured using a power analyzer. A 1000 mL water load was placed in the center of the oven and the oven was operated at maximum output power. A 1000mL water load was chosen for its compatibility with the procedure commonly used by manufacturers to determine their input ratings.

Input Voltage	Input Current	Measured Input Power	Rated Input Power
(V _{AC} /Hz)	(Amps)	(Watts)	(Watts)
119.6	9.23	1104	1130

Based on the measured input power, the EUT was found to be operating within the intended specifications.

Bay Area Compliance Laboratories Corp. (Shenzhen)

Load for Microwave Ovens

For all measurements, the energy developed by the oven was absorbed by a dummy load consisting of a quantity of tap water in a beaker. If the oven was provided with a shelf or other utensil support, this support was in its initial normal position. For ovens rated at 1000 watts or less power output, the beaker contained quantities of water as listed in the following subparagraphs. For ovens rated at more than 1000

watts output, each quantity was increased by 50% for each 500watts or fraction thereof in excess of 1000 watts. Additional beakers were used if necessary.

• Load for power output measurement: 1000 milliliters of water in the beaker located in the center of the oven.

• Load for frequency measurement: 1000 milliliters of water in the beaker located in the center of the oven.

• Load for measurement of radiation on second and third harmonic: Two loads, one of 700 and the other of 300 milliliters, of water are used. Each load is tested both with the beaker located in the center of the oven and with it in the right front corner.

RF Output Power Measurement

A cylindrical container of borosilicate glass is used for the test. It has a maximum thickness of 3 mm, an external diameter of approximately 190 mm and a height of approximately 90 mm. The mass of the container is determined.

At the start of the test, the oven and the empty container are at ambient temperature. Water having an initial temperature of 10 °C \pm 1 °C is used for the test. The water temperature is measured immediately before it is poured into the container.

A quantity of 1000 g \pm 5 g of water is added to the container and its actual mass obtained. The container is then immediately placed in the centre of the oven shelf, which is in its lowest normal position. The oven is operated and the time for the water temperature to attain 20 °C \pm 2 °C is measured. The oven is then switched off and the final water temperature is measured within 60 s.

m _w	m _c	Т ₀	Т ₁	T ₂	t
(g)	(g)	(°С)	(°С)	(°C)	(s)
1000	380	25.4	9.3	17.4	50

RF Output Power = $(4.187 \text{ x} \underline{1000} \text{ x} (\underline{17.4} \underline{-9.3}) + 0.55 \text{ x} \underline{380} \text{ x} (\underline{17.4} \underline{-25.4})) / \underline{50} = \underline{644.84}$ Watts

- P is the microwave power output, in watts;
- m_w is the mass of the water, in grams;
- m_c is the mass of the container, in grams;
- T₀ is the ambient temperature, in degrees Celsius;
- T_1 is the initial temperature of the water, in degrees Celsius;
- T_2 is the final temperature of the water, in degrees Celsius;
- t is the heating time, in seconds, excluding the magnetron filament heating-up time.

Bay Area Compliance Laboratories Corp. (Shenzhen)

The measurement output power was found to be less than 500 watts. Therefore, in accordance with Section 18.305 of Subpart-C, the measured out-of-band emissions were compared to the limit of 25μ V/meter at a 300-meter measurement distance.

The measured output power was found to exceed 500 watts. Therefore, in accordance with Section 18.305 of Subpart-C, the measured out-of-band emissions were compared with the limit calculated as following:

LFS = 25*SQRT (Power Output/500)

LFS = 25*SQRT (644.84 / 500)

LFS = 28.39

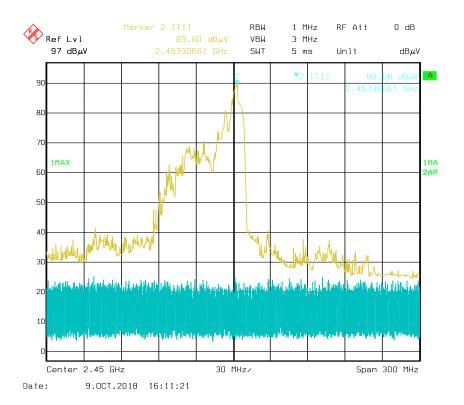
Where: LFS is the maximum allowable field strength for out-of-band emissions in μ V/meter at a 300-meter measurement distance. Power Output is the measured output power in watts.

LFS μV/m@300m dBμV/m@300m		dBµV/m@3m
28.39	29.06	69.06

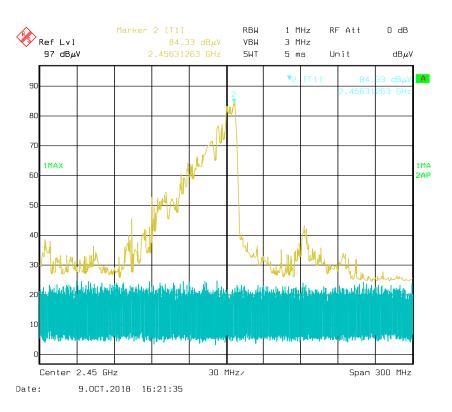
Note: Limit $(dB\mu V/m@3m) = Limit (dB\mu V/m@300m) + 40(dB)$

Operating Frequency Measurement

Variation in Operating Frequency with Time


The operating frequency was measured using a spectrum analyzer. Starting with the EUT at room temperature, a 1000mL water load was placed in the center of the oven and the oven was operated at maximum output power. The fundamental operating frequency was monitored until the water load was reduced to 20 percent of the original load.

The results of this test are as follows:


Frequency at Start time	Frequency at End time
(MHz)	(MHz)
2453.30	2456.31

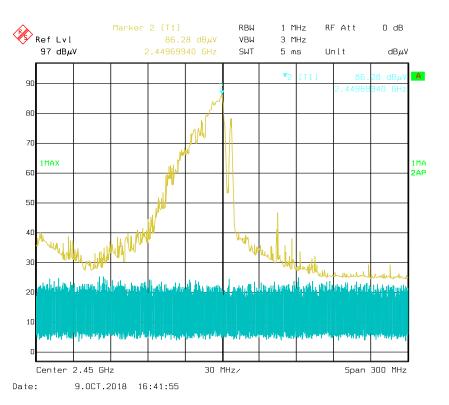
Refer to data pages for details of the variation in operating frequency with time measurement.

Start time:

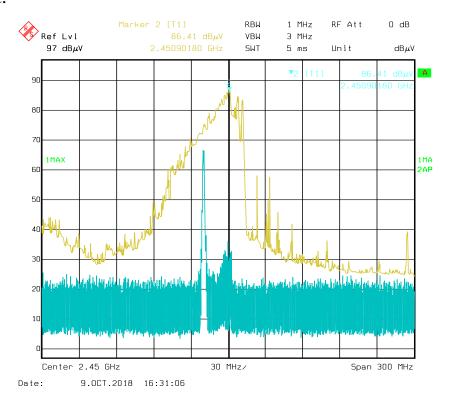
End time:

Variation in Operating Frequency with Line Voltage

The EUT was operated / warmed by at least 10 minutes of use with a 1000 mL water load at room temperature at the beginning of the test. Then the operating frequency was monitored as the input voltage was varied between 80 and 125 percent of the nominal rating.


The results of this test are as follows:

Line voltage varied from 96 V_{AC} to 150 V_{AC} .


(Low voltage) Frequency	(High voltage) Frequency
(MHz)	(MHz)
2449.69	2450.90

Please refer to following pages for details of the variation in operating frequency with line voltage measurement.

Low Voltage:

High Voltage:

FCC Part 18

For Type 2 magnetron:

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa

The testing was performed by Andy Yu on 2018-11-26.

Radiation Hazard Measurement

Radiation leakage was measured in the as-received condition with the oven door closed using a microwave leakage meter.

A 275 mL water load was placed in the center of the oven and the oven was operated at maximum output power.

There was no microwave leakage exceeding a power level of 0.1mW/cm^2 observed at any point 5 cm or more from the external surface of the oven.

A maximum of 1.0 mW/cm^2 is allowed in accordance with the applicable Federal Standards. Hence, microwave leakage in the as-received condition with the oven door closed was below the maximum allowed.

Input Power

Input power and current was measured using a power analyzer. A 1000 mL water load was placed in the center of the oven and the oven was operated at maximum output power. A 1000mL water load was chosen for its compatibility with the procedure commonly used by manufacturers to determine their input ratings.

Input Voltage	Input Current	Measured Input Power	Rated Input Power
(V _{AC} /Hz)	(Amps)	(Watts)	(Watts)
119.7	9.15	1095	1130

Based on the measured input power, the EUT was found to be operating within the intended specifications.

Bay Area Compliance Laboratories Corp. (Shenzhen)

Load for Microwave Ovens

For all measurements, the energy developed by the oven was absorbed by a dummy load consisting of a quantity of tap water in a beaker. If the oven was provided with a shelf or other utensil support, this support was in its initial normal position. For ovens rated at 1000 watts or less power output, the beaker contained quantities of water as listed in the following subparagraphs. For ovens rated at more than 1000

watts output, each quantity was increased by 50% for each 500watts or fraction thereof in excess of 1000 watts. Additional beakers were used if necessary.

• Load for power output measurement: 1000 milliliters of water in the beaker located in the center of the oven.

• Load for frequency measurement: 1000 milliliters of water in the beaker located in the center of the oven.

• Load for measurement of radiation on second and third harmonic: Two loads, one of 700 and the other of 300 milliliters, of water are used. Each load is tested both with the beaker located in the center of the oven and with it in the right front corner.

RF Output Power Measurement

A cylindrical container of borosilicate glass is used for the test. It has a maximum thickness of 3 mm, an external diameter of approximately 190 mm and a height of approximately 90 mm. The mass of the container is determined.

At the start of the test, the oven and the empty container are at ambient temperature. Water having an initial temperature of 10 °C \pm 1 °C is used for the test. The water temperature is measured immediately before it is poured into the container.

A quantity of 1000 g \pm 5 g of water is added to the container and its actual mass obtained. The container is then immediately placed in the centre of the oven shelf, which is in its lowest normal position. The oven is operated and the time for the water temperature to attain 20 °C \pm 2 °C is measured. The oven is then switched off and the final water temperature is measured within 60 s.

m _w	m _c	Т ₀	Т ₁	T ₂	t
(g)	(g)	(°С)	(°С)	(°C)	(s)
1000	380	25.7	9.5	19.0	60

RF Output Power = $(4.187 \text{ x} \underline{1000} \text{ x} (\underline{19.0} \underline{-9.5}) + 0.55 \text{ x} \underline{380} \text{ x} (\underline{19.0} \underline{-25.7})) / \underline{60} = \underline{639.6}$ Watts

- P is the microwave power output, in watts;
- m_w is the mass of the water, in grams;
- m_c is the mass of the container, in grams;
- T₀ is the ambient temperature, in degrees Celsius;
- T_1 is the initial temperature of the water, in degrees Celsius;
- T_2 is the final temperature of the water, in degrees Celsius;
- t is the heating time, in seconds, excluding the magnetron filament heating-up time.

Bay Area Compliance Laboratories Corp. (Shenzhen)

The measurement output power was found to be less than 500 watts. Therefore, in accordance with Section 18.305 of Subpart-C, the measured out-of-band emissions were compared to the limit of 25μ V/meter at a 300-meter measurement distance.

The measured output power was found to exceed 500 watts. Therefore, in accordance with Section 18.305 of Subpart-C, the measured out-of-band emissions were compared with the limit calculated as following:

LFS = 25*SQRT (Power Output/500)

LFS = 25*SQRT (639.6 / 500)

LFS = 28.28

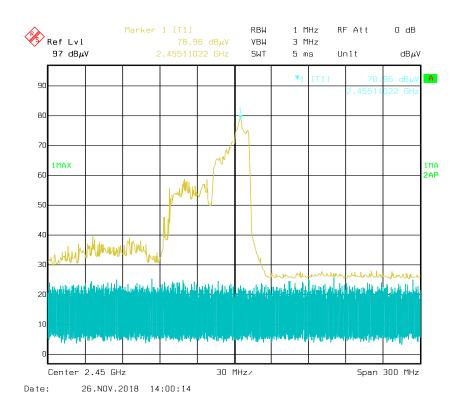
Where: LFS is the maximum allowable field strength for out-of-band emissions in μ V/meter at a 300-meter measurement distance. Power Output is the measured output power in watts.

LFS μV/m@300m dBμV/m@300m		dBµV/m@3m
28.28	29.03	69.03

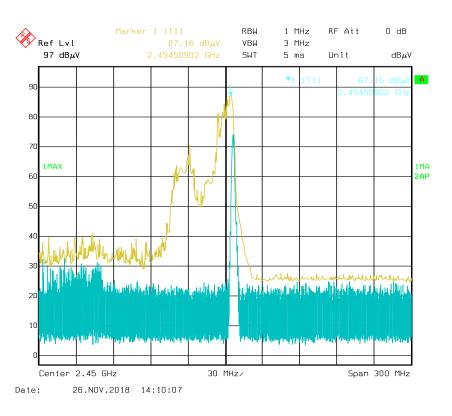
Note: Limit $(dB\mu V/m@3m) = Limit (dB\mu V/m@300m) + 40(dB)$

Operating Frequency Measurement

Variation in Operating Frequency with Time


The operating frequency was measured using a spectrum analyzer. Starting with the EUT at room temperature, a 1000mL water load was placed in the center of the oven and the oven was operated at maximum output power. The fundamental operating frequency was monitored until the water load was reduced to 20 percent of the original load.

The results of this test are as follows:

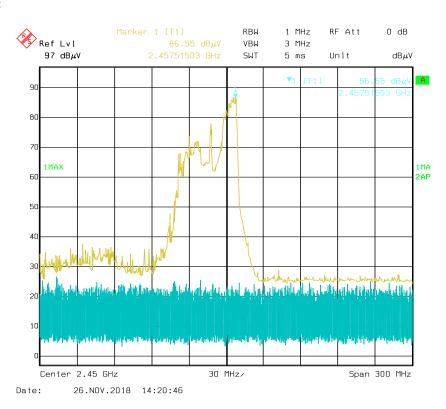

Frequency at Start time	Frequency at End time
(MHz)	(MHz)
2454.50	2455.11

Refer to data pages for details of the variation in operating frequency with time measurement.

Start time:

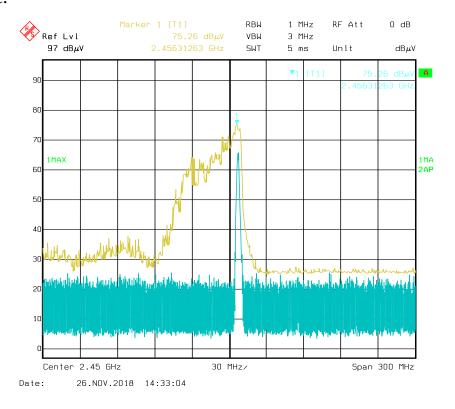
End time:

Variation in Operating Frequency with Line Voltage


The EUT was operated / warmed by at least 10 minutes of use with a 1000 mL water load at room temperature at the beginning of the test. Then the operating frequency was monitored as the input voltage was varied between 80 and 125 percent of the nominal rating.

The results of this test are as follows:

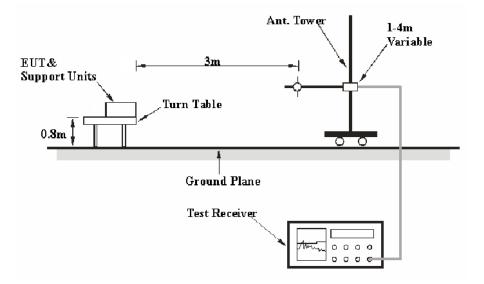
Line voltage varied from 96 V_{AC} to 150 V_{AC} .


(Low voltage) Frequency	(High voltage) Frequency				
(MHz)	(MHz)				
2456.31	2457.52				

Please refer to following pages for details of the variation in operating frequency with line voltage measurement.

Low Voltage:

High Voltage:


RADIATED EMISSIONS

Applicable Standard

FCC §18.305 and FCC §18.309

EUT Setup

Below 1GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the FCC MP - 5. The specification used was the FCC part 18 limits.

EMI Test Receiver Setup and Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver and Spectrum Analyzer were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement	
30MHz – 1000 MHz	100 kHz	300 kHz	120kHz	QP	
Above 1 GHz	1MHz	3 MHz	/	PK.	
Above I GHZ	1MHz	10 Hz	/	Ave.	

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions to ensure that the EUT complied with all installation combinations.

The EUT was in the normal (naïve) operating mode during the final qualification test to represent the worst results.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Bay Area Compliance Laboratories Corp. (Shenzhen)

Test Results Summary

According to the data in the following table, the EUT complied with the FCC Part 18,

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

$$L_{\rm m} + U_{(Lm)} \le L_{\rm lim} + U_{\rm cispr}$$

In BACL., $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data and Plots

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Andy Yu on 2018-10-12.

EUT Operation Mode: Boiling Water with MAX Power

For Type 1 magnetron:

30 MHz – 1 GHz:

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Detector (PK/QP)	Antenna height (cm)	Antenna Polarity	Turntable position (degree)	Correction Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
71.013050	15.16	QP	232.0	V	303.0	-20.5	69.06	53.90
93.659350	14.96	QP	150.0	V	358.0	-18.4	69.06	54.10
124.173350	21.69	QP	251.0	Н	254.0	-14.0	69.06	47.37
587.474550	30.96	QP	352.0	V	252.0	-2.6	69.06	38.10
826.713150	31.94	QP	176.0	Н	54.0	4.6	69.06	37.12
883.937825	32.15	QP	189.0	Н	359.0	5.1	69.06	36.91

Above 1 GHz:

Frequency (MHz)	Measurement		T (11	Rx Antenna		Corrected	Corrected	FCC Part 18	
	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height	Polar (H / V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2396.87	14.10	Ave.	353	2.4	Н	33.00	47.10	69.06	21.96
2396.87	13.51	Ave.	222	1.5	V	33.00	46.51	69.06	22.55
2504.43	14.20	Ave.	142	1.0	Н	33.20	47.40	69.06	21.66
2504.43	13.86	Ave.	346	2.0	V	33.20	47.06	69.06	22.00
4883.64	42.61	Ave.	23	2.2	Н	9.21	51.82	69.06	17.24
4883.64	41.35	Ave.	142	2.0	V	9.21	50.56	69.06	18.50
7346.24	32.98	Ave.	187	1.0	Н	14.71	47.69	69.06	21.37
7346.24	30.13	Ave.	201	1.1	V	14.71	44.84	69.06	24.22
9813.04	32.87	Ave.	109	2.1	Н	18.50	51.37	69.06	17.69
9813.04	32.93	Ave.	328	1.1	V	18.50	51.43	69.06	17.63

For Type 2 magnetron:

30 MHz – 1 GHz:

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Detector (PK/QP)	Antenna height (cm)	Antenna Polarity	Turntable position (degree)	Correction Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
83.996850	15.30	QP	334.0	V	0.0	-19.6	69.03	53.73
273.449050	32.44	QP	130.0	Н	210.0	-12.4	69.03	36.59
351.240825	11.46	QP	127.0	Н	259.0	-10.8	69.03	57.57
695.829575	20.19	QP	272.0	Н	354.0	-1.4	69.03	48.84
735.446650	34.29	QP	183.0	Н	266.0	-0.6	69.03	34.74
921.701925	29.94	QP	244.0	Н	258.0	6.7	69.03	39.09

Above 1 GHz:

Frequency (MHz)	Measurement		T (11	Rx Antenna		Corrected	Corrected	FCC Part 18	
	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)	Polar (H / V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2378.00	14.31	Ave.	107	2.0	Н	33.00	47.31	69.03	21.72
2378.00	14.26	Ave.	159	2.3	V	33.00	47.26	69.03	21.77
2526.45	13.65	Ave.	151	1.2	Н	33.30	46.95	69.03	22.08
2526.45	13.64	Ave.	348	1.6	V	33.30	46.94	69.03	22.09
4917.84	34.75	Ave.	339	2.4	Н	9.21	43.96	69.03	25.07
4917.84	32.88	Ave.	122	2.3	V	9.21	42.09	69.03	26.94
7382.82	30.36	Ave.	134	1.9	Н	14.69	45.05	69.03	23.98
7382.82	31.23	Ave.	262	1.6	V	14.69	45.92	69.03	23.11
9815.98	26.43	Ave.	291	2.2	Н	18.50	44.93	69.03	24.10
9815.98	27.26	Ave.	344	1.3	V	18.50	45.76	69.03	23.27

Note:

Corrected Amplitude = Meter Reading + Correction Factor
Correction Factor = Antenna Factor + Cable Loss - Amplifier Gain

3) Margin = Limit – Corrected Amplitude

4) The data below 20dB to the limit was not recorded.

***** END OF REPORT *****