

Product Name	iDEA ⁺ Docking Station
Model No	PTI-7018N, PTI-7018NC, TEW-713RE, TEW-714RE
FCC ID.	YHYPTI-7018N

Applicant	PARADIGM TECHNOLOGY INC.
Address	3F1, No.49, Ln. 35, Jihu Rd., Neihu Dist., Taipei City
	114, Taiwan (R.O.C.)

Date of Receipt	Nov. 15, 2012
Issue Date	Jan. 04, 2013
Report No.	12B261R-RFUSP42V01
Report Version	V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issue Date: Jan. 04, 2013 Report No.: 12B261R-RFUSP42V01

Accredited by NIST (NVLAP) NVLAP Lab Code: 200533-0

Product Name	iDEA ⁺ Docking Station					
Applicant	PARADIGM TECHNOLOGY INC.					
Address	3F1, No.49, Ln. 35, Jihu Rd., Neihu Dist., Taipei City 114, Taiwan					
	(R.O.C.)					
Manufacturer	PARADIGM TECHNOLOGY INC.					
Model No.	PTI-7018N, PTI-7018NC, TEW-713RE, TEW-714RE					
FCC ID.	YHYPTI-7018N					
EUT Rated Voltage	AC 100-240V / 50-60Hz					
EUT Test Voltage	AC 120V / 60Hz					
Trade Name	PTI					
Applicable Standard	FCC CFR Title 47 Part 15 Subpart C: 2010					
	ANSI C63.4: 2003, ANSI C63.10: 2009					
Test Result	Complied					

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By :

Jinn Chen

(Senior Adm. Specialist / Jinn Chen)

Tested By

plan chen

(Engineer / Alan Chen)

Approved By

(Manager / Vincent Lin)

TABLE OF CONTENTS

Description		Page
1.	GENERAL INFORMATION	5
1.1.	EUT Description	
12	Operational Description	8
13	Tested System Details	9
1.5.	Configuration of Tested System	Q
1.4.	EUT Exercise Software	10
1.5.	Test Excluse Software	
1.0.	Conducted Emission	
2.	Conducted Emission	12
2.1.	Test Equipment	
2.2.	Test Setup	
2.3.	Limits	
2.4.	Test Procedure	
2.5.	Uncertainty	
2.6.	Test Result of Conducted Emission	14
3.	Peak Power Output	
3.1.	Test Equipment	
3.2.	Test Setup	
3.3.	Limits	
3.4.	Test Procedure	
3 5	Uncertainty	18
3.6.	Test Result of Peak Power Output	
4.	Radiated Emission	
4.1.	Test Equipment	
4.2.	Test Setup	
4.3.	Limits	
4.4.	Test Procedure	
4.5.	Uncertainty	30
4.6.	Test Result of Radiated Emission	
5.	RF antenna conducted test	51
5.1.	Test Equipment	51
5.2.	Test Setup	
5.3.	Limits	
5.4.	Test Procedure	
5 5	Uncertainty	52
5.6.	Test Result of RF antenna conducted test	
6.	Band Edge	77
6.1.	Test Equipment	
6.2.	Test Setup	
6.3.	Limits	78
64	Test Procedure	70
6.5	Uncertainty	70
6.6	Test Result of Band Edge	۲۶. ۵۸
0.0.	Tost Result of Dalia Lage	

7.	Occupied Bandwidth	96
7.1.	Test Equipment	96
7.2.	Test Setup	96
7.3.	Limits	96
7.4.	Test Procedure	96
7.5.	Uncertainty	
7.6.	Test Result of Occupied Bandwidth	97
8.	Power Density	
8.1.	Test Equipment	
8.2.	Test Setup	
8.3.	Limits	
8.4.	Test Procedure	
8.5.	Uncertainty	
8.6.	Test Result of Power Density	110
9.	EMI Reduction Method During Compliance Testing	122

- Attachment 1: EUT Test Photographs
- Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	iDEA ⁺ Docking Station
Trade Name	PTI
Model No.	PTI-7018N, PTI-7018NC, TEW-713RE, TEW-714RE
FCC ID.	YHYPTI-7018N
Frequency Range	2412-2462MHz for 802.11b/g/n-20BW, 2422-2452MHz for 802.11n-40BW
Number of Channels	802.11b/g/n-20MHz: 11, n-40MHz: 7
Data Speed	802.11b: 1-11Mbps, 802.11g: 6-54Mbps, 802.11n: up to 150Mbps
Type of Modulation	802.11b:DSSS (DBPSK, DQPSK, CCK)
	802.11g/n:OFDM (BPSK, QPSK, 16QAM, 64QAM)
Antenna Type	Chip Antenna
Antenna Gain	Refer to the table "Antenna List"
Channel Control	Auto

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	WALSIN	RFANT3216120A5T	Chip	2.12 dBi for 2.4 GHz

Note:

1. The antenna of EUT is conform to FCC 15.203.

802.11b/g/n-20MHz Center Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 01:	2412 MHz	Channel 02:	2417 MHz	Channel 03:	2422 MHz	Channel 04:	2427 MHz
Channel 05:	2432 MHz	Channel 06:	2437 MHz	Channel 07:	2442 MHz	Channel 08:	2447 MHz
Channel 09:	2452 MHz	Channel 10:	2457 MHz	Channel 11:	2462 MHz		
802.11n-40M	Hz Center Fre	equency of Ea	ch Channel:				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 03:	2422 MHz	Channel 04:	2427 MHz	Channel 05:	2432 MHz	Channel 06:	2437 MHz
Channel 07:	2442 MHz	Channel 08:	2447 MHz	Channel 09:	2452 MHz		

Note:

- 1. The EUT is an iDEA⁺ Docking Station with a built-in 2.4GHz WLAN transceiver.
- 2. The EUT is including four models for different marketing requirement and two different Power board.

Model Name	Power board	USB Interface	LOGO	Note
PTI-7018N	DC 5V, 1A	1	PTI	On RF board
TEW-713RE	DC 5V, 1A	1	By customer	On RF board
PTI-7018NC	DC 5V, 2.1A	2	PTI	One port on Power board One port on RF board
TEW-714RE	DC 5V, 2.1A	2	By customer	One port on Power board One port on RF board

The different of the each model is shown as below:

- 3. The test item peak output power, conducted emission and 30MHz 1GHz radiated emissions are tested at two Model which describe in above note.
- 4. After tested peak output power, conducted emission and 30MHz 1GHz radiated emission, the worst case are Model: PTI-7018NC, the worst case are tested all test item.
- 5. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 6. Lowest and highest data rates are tested in each mode. Only worst case is shown in the report. (802.11b is 1Mbps \$\$802.11g is 6Mbps \$\$802.11n(20M-BW) is 7.2Mbps and \$\$802.11n(40M-BW) is 15Mbps)
- 7. These tests are conducted on a sample for the purpose of demonstrating compliance of 802.11b/g/n transmitter with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices.
- 8. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

Test Mode:	Mode 1: Transmit (802.11b 1Mbps)
	Mode 2: Transmit (802.11g 6Mbps)
	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)
	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)

1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

PTI-7018N:

	Product	Manufacturer	Model No.	Serial No.	Power Cord
1	IPod nano	Apple	A1199	YM7088TVVQ5	N/A
2	Notebook PC	DELL	PPT	N/A	Non-Shielded, 0.8m

Signal Cable Type		Signal cable Description
А	USB Cable	Non-shielded, 0.8m
В	LAN Cable	Shielded, 1m

PTI-7018NC :

	Product	Manufacturer	Model No.	Serial No.	Power Cord
1	IPod nano	Apple	A1199	YM7088TVVQ5	N/A
2	IPod nano	Apple	A1199	YM733325VQ5	N/A
3	Notebook PC	DELL	PPT	N/A	Non-Shielded, 0.8m

Signal Cable Type		Signal cable Description
А	USB Cable	Non-shielded, 0.8m
В	USB Cable	Non-shielded, 0.8m
С	LAN Cable	Shielded, 1m

1.4. Configuration of Tested System

PTI-7018N:

Page : 9 of 124

PTI-7018NC:

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.4
- (2) Execute software "QA_Test.exe (v1.0.0.8)" on the EUT.
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Press "OK" to start the continuous Transmit.
- (5) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from

QuieTek Corporation's Web Site: <u>http://www.quietek.com/tw/ctg/cts/accreditations.htm</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: <u>http://www.quietek.com/</u>

Site Description:	File on
	Federal Communications Commission
	FCC Engineering Laboratory
	7435 Oakland Mills Road
	Columbia, MD 21046
	Registration Number: 92195
	Accreditation on NVLAP
	NVLAP Lab Code: 200533-0
Site Name:	Quietek Corporation
Site Address:	No.5-22, Ruishukeng,
	Linkou Dist. New Taipei City 24451,
	Taiwan, R.O.C.
	TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789
	E-Mail : <u>service@quietek.com</u>

FCC Accreditation Number: TW1014

2. Conducted Emission

2.1. Test Equipment

	Equipment	Manufacturer	Model No. / Serial No.	Last Cal.	Remark
Х	Test Receiver	R & S	ESCS 30 / 825442/018	Sep., 2012	
Х	Artificial Mains Network	R & S	ENV4200 / 848411/10	Feb., 2012	Peripherals
Х	LISN	R & S	ESH3-Z5 / 825562/002	Feb., 2012	EUT
	DC LISN	Schwarzbeck	8226 / 176	Mar, 2012	EUT
Х	Pulse Limiter	R & S	ESH3-Z2 / 357.8810.52	Feb., 2012	
	No.1 Shielded Room				

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit						
Frequency	Limits					
MHz	QP	AVG				
0.15 - 0.50	66-56	56-46				
0.50-5.0	56	46				
5.0 - 30	60	50				

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product	:	iDEA ⁺ Docking Station
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2437MHz) – (PTI-7018N)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
Line 1					
Quasi-Peak					
0.162	9.830	28.930	38.760	-26.897	65.657
0.185	9.830	27.660	37.490	-27.510	65.000
0.341	9.830	26.300	36.130	-24.413	60.543
1.068	9.830	18.180	28.010	-27.990	56.000
1.701	9.840	17.230	27.070	-28.930	56.000
2.939	9.850	15.660	25.510	-30.490	56.000
Average					
0.162	9.830	16.670	26.500	-29.157	55.657
0.185	9.830	21.040	30.870	-24.130	55.000
0.341	9.830	17.890	27.720	-22.823	50.543
1.068	9.830	8.050	17.880	-28.120	46.000
1.701	9.840	6.440	16.280	-29.720	46.000
2.939	9.850	5.710	15.560	-30.440	46.000

Note:

1. All Reading Levels are Quasi-Peak and average value.

2. "means the worst emission level.

3. Measurement Level = Reading Level + Correct Factor

Product	: iDEA ⁺ Docki	iDEA ⁺ Docking Station					
Test Item	: Conducted En	Conducted Emission Test					
Power Line	: Line 2						
Test Mode	: Mode 4: Tran	smit (802.11n MC	CS0 15Mbps 40M-BV	W) (2437MHz) – (PTI-7018N)		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV	dB	dBuV		
Line 2							
Quasi-Peak							
0.162	9.839	28.190	38.029	-27.628	65.657		
0.193	9.830	26.030	35.860	-28.911	64.771		
0.365	9.840	23.610	33.450	-26.407	59.857		
0.591	9.840	17.890	27.730	-28.270	56.000		
1.177	9.850	13.390	23.240	-32.760	56.000		
2.724	9.860	12.630	22.490	-33.510	56.000		
Average							
0.162	9.839	17.100	26.939	-28.718	55.657		
0.193	9.830	8.720	18.550	-36.221	54.771		
0.365	9.840	15.630	25.470	-24.387	49.857		
0.591	9.840	9.450	19.290	-26.710	46.000		
1.177	9.850	8.540	18.390	-27.610	46.000		
2.724	9.860	7.500	17.360	-28.640	46.000		

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	:	iDEA ⁺ Dock	ing Station			
Test Item	:	Conducted E	mission Test			
Power Line	:	Line 1				
Test Mode	:	Mode 4: Tran	nsmit (802.11n MC	S0 15Mbps 40M-BV	W) (2437MHz) – (PTI-7018NC)
Frequency		Correct	Reading	Measurement	Margin	Limit
		Factor	Level	Level		
MHz		dB	dBuV	dBuV	dB	dBuV
Line 1						
Quasi-Peak						
0.267		9.830	17.060	26.890	-35.767	62.657
0.412		9.830	24.520	34.350	-24.164	58.514
0.634		9.830	20.250	30.080	-25.920	56.000
0.990		9.830	17.080	26.910	-29.090	56.000
1.435		9.830	16.400	26.230	-29.770	56.000
1.814		9.840	15.310	25.150	-30.850	56.000
Average						
0.267		9.830	6.560	16.390	-36.267	52.657
0.412		9.830	19.630	29.460	-19.054	48.514
0.634		9.830	8.730	18.560	-27.440	46.000
0.990		9.830	11.090	20.920	-25.080	46.000
1.435		9.830	9.770	19.600	-26.400	46.000
1.814		9.840	4.190	14.030	-31.970	46.000

- 4. All Reading Levels are Quasi-Peak and average value.
- 5. "means the worst emission level.
- 6. Measurement Level = Reading Level + Correct Factor

Product	:	iDEA ⁺ Docking Station						
Test Item	:	Conducted Emission Test						
Power Line	:	Line 2						
Test Mode	:	Mode 4: Trai	nsmit (802.11n MC	S0 15Mbps 40M-BW	V) (2437MHz) – (PTI-7018NC)		
Frequency		Correct	Reading	Measurement	Margin	Limit		
		Factor	Level	Level				
MHz		dB	dBuV	dBuV	dB	dBuV		
Line 2								
Quasi-Peak								
0.197		9.830	15.890	25.720	-38.937	64.657		
0.236		9.830	15.380	25.210	-38.333	63.543		
0.420		9.840	22.470	32.310	-25.976	58.286		
0.666		9.840	22.480	32.320	-23.680	56.000		
1.048		9.850	11.620	21.470	-34.530	56.000		
2.302		9.860	9.050	18.910	-37.090	56.000		
Average								
0.197		9.830	9.250	19.080	-35.577	54.657		
0.236		9.830	8.420	18.250	-35.293	53.543		
0.420		9.840	15.400	25.240	-23.046	48.286		
0.666		9.840	10.170	20.010	-25.990	46.000		
1.048		9.850	8.610	18.460	-27.540	46.000		
2.302		9.860	2.830	12.690	-33.310	46.000		

- 4. All Reading Levels are Quasi-Peak and average value.
- 5. "means the worst emission level.
- 6. Measurement Level = Reading Level + Correct Factor

3. Peak Power Output

3.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.					
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2012					
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun, 2012					
Note:									
1.	All equipments are calibrated with traceable calibrations. Each calibration is traceable to the								
	national or internation	ional standards.							

2. The test instruments marked with "X" are used to measure the final test results.

3.2. Test Setup

3.3. Limits

The maximum peak power shall be less 1 Watt.

3.4. Test Procedure

The EUT was tested according to DTS test procedure of ANSI C63.10: 2009 for compliance to FCC 47CFR 15.247 requirements.

3.5. Uncertainty

± 1.27 dB

3.6. Test Result of Peak Power Output

Product	:	iDEA ⁺ Docking Station
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) – (PTI-7018NC)

Channel No	Frequency	For d	Average ifferent Da	e Power ata Rate (N	Abps)	Peak Power	Required	Result
	(MHz)	1	2	5.5	11	1	Limit	
			Measur					
01	2412	17.68				19.87	<30dBm	Pass
06	2437	17.65	17.61	17.58	17.55	19.88	<30dBm	Pass
11	2462	17.25				19.48	<30dBm	Pass

Product	:	iDEA ⁺ Docking Station
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) – (PTI-7018NC)

Channel No	Frequency (MHz)		F	Peak Power	Paquirad							
		6	9	12	18	24	36	48	54	6	Limit	Result
		Measurement Level (dBm)										
01	2412	14.01								23.80	<30dBm	Pass
06	2437	14.00	13.95	13.91	13.89	13.84	13.81	13.79	13.78	23.98	<30dBm	Pass
11	2462	13.55								23.74	<30dBm	Pass

Product	:	iDEA ⁺ Docking Station
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) – (PTI-7018NC)

	Frequency (MHz)		F									
Channel No		7.2	14.4	21.7	28.9	43.3	57.8	65	72.2	7.2	Required Limit	Result
			Measurement Level (dBm)									
01	2412	13.64								23.09	<30dBm	Pass
06	2437	13.55	13.54	13.51	13.49	13.48	13.47	13.45	13.42	23.12	<30dBm	Pass
11	2462	13.44								23.14	<30dBm	Pass

Product	:	iDEA ⁺ Docking Station
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) – (PTI-7018NC)

Channel No	Frequency (MHz)		F	Peak Power	Paquirad							
		15	30	45	60	90	120	135	150	15	Limit	Result
03	2422	13.64								23.41	<30dBm	Pass
06	2437	13.53	13.51	13.49	13.48	13.47	13.45	13.41	13.39	23.29	<30dBm	Pass
09	2452	13.34								23.05	<30dBm	Pass

Product	:	iDEA ⁺ Docking Station
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) – (PTI-7018N)

Channel No	Frequency	For d	Average ifferent Da	e Power ata Rate (N	Abps)	Peak Power	Required	Result
	(MHz)	1	2	5.5	11	1	Limit	
			Measur					
01	2412	17.52				19.71	<30dBm	Pass
06	2437	17.54	17.51	17.49	17.45	19.88	<30dBm	Pass
11	2462	17.17				19.42	<30dBm	Pass

Product	:	iDEA ⁺ Docking Station
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) – (PTI-7018N)

Channel No Frequ (M	Fraguanay	Average PowerPeakFor different Data Rate (Mbps)Power								Peak Power	Dequired	
	(MHz)	6	9	12	18	24	36	48	54	6	Limit	Result
			Measurement Level (dBm)									
01	2412	13.81								23.68	<30dBm	Pass
06	2437	13.82	13.80	13.74	13.74	13.71	13.68	13.68	13.64	23.91	<30dBm	Pass
11	2462	13.39								23.61	<30dBm	Pass

Product	:	iDEA ⁺ Docking Station
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) – (PTI-7018N)

	Frequency (MHz)	Average Power							Peak			
Channel No		7.2	г 14.4	21.7	28.9	43.3	57.8	65	72.2	7.2	Required Limit	Result
			Measurement Level (dBm)									
01	2412	13.48								22.92	<30dBm	Pass
06	2437	13.42	13.40	13.37	13.36	13.31	13.32	13.30	13.30	22.91	<30dBm	Pass
11	2462	13.32								22.85	<30dBm	Pass

Product	:	iDEA ⁺ Docking Station
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) – (PTI-7018N)

	Fraquanav		Average PowerPeakFor different Data Rate (Mbps)Power								Paguirad	
Channel No (N	(MHz)	15	30	45	60	90	120	135	150	15	Limit	Result
			Measurement Level (dBm)									
03	2422	13.47								23.31	<30dBm	Pass
06	2437	13.41	13.34	13.36	13.33	13.33	13.29	13.30	13.26	23.34	<30dBm	Pass
09	2452	13.23								22.93	<30dBm	Pass

4. Radiated Emission

4.1. Test Equipment

The following test equipment are used during the radiated emission test:

Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2012
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2012
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2012
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2012
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2012
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2012
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2012
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

4.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

4.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits							
Frequency MHz	uV/m @3m	dBuV/m@3m					
30-88	100	40					
88-216	150	43.5					
216-960	200	46					
Above 960	500	54					

Remarks: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

4.4. Test Procedure

The EUT was setup according to ANSI C63.4: 2003 and tested according to DTS test procedure of ANSI C63.10: 2009 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4: 2003 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The frequency range from 30MHz to 10th harminics is checked.

4.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

4.6. Test Result of Radiated Emission

Product	:	iDEA ⁺ Docking Station
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4824.000	2.428	42.490	44.919	-29.081	74.000
7236.000	9.177	38.680	47.857	-26.143	74.000
9648.000	10.019	39.280	49.300	-24.700	74.000
Average Detector:					
Vertical					
Peak Detector:					
4824.000	2.836	47.500	50.337	-23.663	74.000
7236.000	9.676	39.150	48.826	-25.174	74.000
9648.000	10.556	38.990	49.547	-24.453	74.000

Average Detector:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product :	iDEA ⁺ Dockin	iDEA ⁺ Docking Station					
Test Item :	Harmonic Rad	Harmonic Radiated Emission Data					
Test Site :	No.3 OATS						
Test Mode :	Mode 1: Trans	smit (802.11b 1M	Ibps) (2437 MHz)				
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level	-			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4874.000	2.076	42.450	44.527	-29.473	74.000		
7311.000	9.512	39.020	48.532	-25.468	74.000		
9748.000	9.630	38.910	48.540	-25.460	74.000		
Average Detector:							
Vertical							
Peak Detector:							
4874.000	2.532	45.730	48.262	-25.738	74.000		
7311.000	10.089	38.200	48.289	-25.711	74.000		
9748.000	10.266	39.930	50.197	-23.803	74.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product :	iDEA ⁺ Dockin	iDEA ⁺ Docking Station					
Test Item :	Harmonic Rad	Harmonic Radiated Emission Data					
Test Site :	No.3 OATS	No.3 OATS					
Test Mode :	Mode 1: Trans	smit (802.11b 1M	bps) (2462 MHz)				
	C (ין מ		N4 ·	T • •/		
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4924.000	2.191	43.060	45.251	-28.749	74.000		
7386.000	10.373	38.090	48.464	-25.536	74.000		
9848.000	9.964	38.740	48.704	-25.296	74.000		
Average Detector:							
Vertical							
Peak Detector:							
4924.000	2.805	46.850	49.655	-24.345	74.000		
7386.000	11.180	38.630	49.810	-24.190	74.000		
9848.000	10.801	39.220	50.021	-23.979	74.000		

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: iDEA ⁺ Dockin	iDEA ⁺ Docking Station						
Test Item	: Harmonic Rad	Harmonic Radiated Emission Data						
Test Site	: No.3 OATS	No.3 OATS						
Test Mode	: Mode 2: Trans	mit (802.11g 6M	bps) (2412MHz)					
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
4824.000	2.428	41.170	43.599	-30.401	74.000			
7236.000	9.177	38.250	47.427	-26.573	74.000			
9648.000	10.019	39.210	49.230	-24.770	74.000			
Average Detector	r:							
Vertical								
Peak Detector:								
4824.000	2.836	42.380	45.217	-28.783	74.000			
7236.000	9.676	38.820	48.496	-25.504	74.000			
9648.000	10.556	39.520	50.077	-23.923	74.000			

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	iDEA ⁺ Dockin	iDEA ⁺ Docking Station							
Test Item	Harmonic Rad	Harmonic Radiated Emission Data							
Test Site	No.3 OATS								
Test Mode									
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
4874.000	2.076	42.560	44.637	-29.363	74.000				
7311.000	9.512	38.600	48.112	-25.888	74.000				
9748.000	9.630	38.500	48.130	-25.870	74.000				
Average Detector	:								
Peak Detector:									
4874.000	2.532	43.370	45.902	-28.098	74.000				
7311.000	10.089	39.450	49.539	-24.461	74.000				
9748.000	10.266	39.160	49.427	-24.573	74.000				

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product :	duct : iDEA ⁺ Docking Station							
Test Item :	Harmonic Radiated Emission Data							
Test Site : No.3 OATS								
Test Mode :	Mode 2: Transmit (802.11g 6Mbps) (2462 MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
4924.000	2.191	41.900	44.091	-29.909	74.000			
7386.000	10.373	38.410	48.784	-25.216	74.000			
9848.000	9.964	39.260	49.224	-24.776	74.000			
Average Detector:								
Vertical								
Peak Detector:								
4924.000	2.805	42.100	44.905	-29.095	74.000			
7386.000	11.180	39.140	50.320	-23.680	74.000			
9848.000	10.801	39.320	50.121	-23.879	74.000			

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product :	iDEA ⁺ Docking Station							
Test Item :	Harmonic Radiated Emission Data							
Test Site :	No.3 OATS							
Test Mode :	Mode 3: Trar	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)(2412MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
4824.000	2.428	40.640	43.069	-30.931	74.000			
7236.000	9.177	38.650	47.827	-26.173	74.000			
9648.000	10.019	38.600	48.620	-25.380	74.000			
Average Detector:								
Vertical								
Peak Detector:								
4824.000	2.836	42.050	44.887	-29.113	74.000			
7236.000	9.676	38.530	48.206	-25.794	74.000			
9648.000	10.556	39.800	50.357	-23.643	74.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
| Product : | iDEA ⁺ Docki | ng Station | | | |
|-----------------------|-------------------------|-------------------|-------------------|---------------|--------|
| Test Item : | Harmonic Ra | diated Emission I | Data | | |
| Test Site : | No.3 OATS | | | | |
| Test Mode : | Mode 3: Tran | smit (802.11n M0 | CS0 7.2Mbps 20M-B | W) (2437 MHz) | |
| Frequency | Correct | Reading | Measurement | Margin | Limit |
| | Factor | Level | Level | | |
| MHz | dB | dBuV | dBuV/m | dB | dBuV/m |
| Horizontal | | | | | |
| Peak Detector: | | | | | |
| 4874.000 | 2.076 | 40.280 | 42.357 | -31.643 | 74.000 |
| 7311.000 | 9.512 | 38.180 | 47.692 | -26.308 | 74.000 |
| 9748.000 | 9.630 | 38.060 | 47.690 | -26.310 | 74.000 |
| Average Detector: | | | | | |
| | | | | | |
| Vertical | | | | | |
| Peak Detector: | | | | | |
| 4874.000 | 2.532 | 41.730 | 44.262 | -29.738 | 74.000 |
| 7311.000 | 10.089 | 38.510 | 48.599 | -25.401 | 74.000 |
| 9748.000 | 10.266 | 38.630 | 48.897 | -25.103 | 74.000 |

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product :	iDEA ⁺ Docking	Station			
Test Item :	Harmonic Radia	ated Emission Dat	ta		
Test Site :	No.3 OATS				
Test Mode :	Mode 3: Transn	nit (802.11n MCS	0 7.2Mbps 20M-BW)) (2462 MHz)	
5	C .				.
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4924.000	2.191	40.680	42.871	-31.129	74.000
7386.000	10.373	38.910	49.284	-24.716	74.000
9848.000	9.964	38.990	48.954	-25.046	74.000
• • • •					
Average Detector:					
Vertical					
Peak Detector:					
4924.000	2.805	41.080	43.885	-30.115	74.000
7386.000	11.180	38.630	49.810	-24.190	74.000
9848.000	10.801	39.920	50.721	-23.279	74.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product :	iDEA ⁺ Docking	Station			
Test Item :	Harmonic Radia	ted Emission Dat	a		
Test Site :	No.3 OATS				
Test Mode :	Mode 4: Transm	it (802.11n MCS)	0 15Mbps 40M-BW)((2422MHz)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4844.000	2.280	40.540	42.821	-31.179	74.000
7266.000	9.106	38.340	47.446	-26.554	74.000
9688.000	9.663	38.300	47.963	-26.037	74.000
Average Detector	:				
Vertical					
Peak Detector:					
4844.000	2.707	42.090	44.798	-29.202	74.000
7266.000	9.626	39.820	49.446	-24.554	74.000
9688.000	10.284	39.830	50.114	-23.886	74.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product :	iDEA ⁺ Docki	ng Station			
Test Item :	Harmonic Ra	diated Emission I	Data		
Test Site :	No.3 OATS				
Test Mode :	Mode 4: Tran	smit (802.11n M	CS0 15Mbps 40M-BV	W) (2437 MHz)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4874.000	2.076	40.750	42.827	-31.173	74.000
7311.000	9.512	38.060	47.572	-26.428	74.000
9748.000	9.630	38.610	48.240	-25.760	74.000
Average Detector:					
Vertical					
Peak Detector:					
4874.000	2.532	41.640	44.172	-29.828	74.000
7311.000	10.089	38.740	48.829	-25.171	74.000
9748.000	10.266	39.160	49.427	-24.573	74.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product :	iDEA ⁺ Dock	ing Station			
Test Item :	Harmonic Ra	diated Emission	Data		
Test Site :	No.3 OATS				
Test Mode :	Mode 4: Tran	nsmit (802.11n M	CS0 15Mbps 40M-B	W)(2452 MHz)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4904.000	2.000	40.340	42.341	-31.659	74.000
7356.000	10.308	38.340	48.648	-25.352	74.000
9808.000	9.850	38.450	48.300	-25.700	74.000
Average Detector:					
Vertical					
Peak Detector:					
4904.000	2.513	41.830	44.344	-29.656	74.000
7356.000	11.022	38.620	49.642	-24.358	74.000
9808.000	10.512	39.840	50.352	-23.648	74.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	iDEA ⁺ Docking Station						
Test Item	:	General Ra	General Radiated Emission Data					
Test Site	:	No.3 OATS						
Test Mode	:	Mode 1: Tr	ansmit (802.11b 1Mt	ops)(2437 MHz) – ((PTI-7018N)			
Frequency		Correct	Reading	Measurement	Margin	Limit		
		Factor	Level	Level				
 MHz		dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal								
119.240		-7.291	43.296	36.006	-7.494	43.500		
 239.520		-6.878	42.851	35.973	-10.027	46.000		
480.080		1.870	40.578	42.448	-3.552	46.000		
600.360		3.472	34.786	38.258	-7.742	46.000		
720.640		3.826	36.814	40.640	-5.360	46.000		
961.200		6.810	28.779	35.589	-18.411	54.000		
Vertical								
159.980		-5.120	39.891	34.770	-8.730	43.500		
328.760		-2.407	38.768	36.361	-9.639	46.000		
480.080		-3.390	40.578	37.188	-8.812	46.000		
674.080		0.003	32.659	32.662	-13.338	46.000		
840.920		2.284	33.556	35.840	-10.160	46.000		
961.200		3.310	28.779	32.089	-21.911	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

ral Radiated Emissi	on Doto					
: General Radiated Emission Data						
OATS						
e 2: Transmit (802.1	1g 6Mbps)(2437 M	1Hz) – (PTI-7018N)	1			
Reading	Measureme	nt Margin	Limit			
Level	Level					
dBuV	dBuV/m	dB	dBuV/m			
43.296	36.006	-7.494	43.500			
42.851	35.973	-10.027	46.000			
38.768	34.291	-11.709	46.000			
28.659	31.591	-14.409	46.000			
32.659	35.372	-10.628	46.000			
24.714	31.337	-14.663	46.000			
42.851	36.713	-9.287	46.000			
40.578	37.188	-8.812	46.000			
34.786	36.088	-9.912	46.000			
36.814	36.060	-9.940	46.000			
33.556	35.840	-10.160	46.000			
28.779	32.089	-21.911	54.000			
	OATS e 2: Transmit (802.1 Reading Level dBuV 43.296 42.851 38.768 28.659 32.659 24.714 42.851 40.578 34.786 36.814 33.556 28.779	OATS e 2: Transmit (802.11g 6Mbps)(2437 M Reading Measureme Level Level dBuV dBuV/m 43.296 36.006 42.851 35.973 38.768 34.291 28.659 31.591 32.659 35.372 24.714 31.337 40.578 37.188 34.786 36.088 36.814 36.060 33.556 35.840 28.779 32.089	OATS e 2: Transmit (802.11g 6Mbps)(2437 MHz) – (PTI-7018N) Reading Measurement Margin Level Level dBuV dBuV/m dB 43.296 36.006 -7.494 42.851 35.973 -10.027 38.768 34.291 -11.709 28.659 31.591 -14.409 32.659 35.372 -10.628 24.714 31.337 -14.663 42.851 36.713 -9.287 40.578 37.188 -8.812 34.786 36.088 -9.912 36.814 36.060 -9.940 33.556 35.840 -10.160 28.779 32.089 -21.911			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	iDEA ⁺ Docking Station						
Test Item	:	General Rad	General Radiated Emission Data					
Test Site	:	No.3 OATS						
Test Mode	:	Mode 3: Tra	nsmit (802.11n MC	S0 7.2Mbps 20M-BV	W)(2437 MHz) –	(PTI-7018N)		
Frequency		Correct	Reading	Measurement	Margin	Limit		
		Factor	Level	Level				
MHz		dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal								
39.700		-3.625	33.253	29.628	-10.372	40.000		
119.240		-7.291	43.296	36.006	-7.494	43.500		
328.760		-4.477	38.768	34.291	-11.709	46.000		
480.080		1.870	40.578	42.448	-3.552	46.000		
674.080		2.713	32.659	35.372	-10.628	46.000		
887.480		6.623	24.714	31.337	-14.663	46.000		
Vertical								
119.240		-3.571	43.296	39.726	-3.774	43.500		
328.760		-2.407	38.768	36.361	-9.639	46.000		
480.080		-3.390	40.578	37.188	-8.812	46.000		
600.360		1.302	34.786	36.088	-9.912	46.000		
720.640		-0.754	36.814	36.060	-9.940	46.000		
932.100		3.430	23.187	26.617	-19.383	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	iDEA ⁺ Dock	iDEA ⁺ Docking Station						
Test Item	:	General Rad	General Radiated Emission Data						
Test Site	:	No.3 OATS							
Test Mode	:	Mode 4: Tra	nsmit (802.11n MC	S0 15Mbps 40M-BV	V)(2437 MHz) – ((PTI-7018N)			
Frequency		Correct	Reading	Measurement	Margin	Limit			
		Factor	Level	Level					
MHz		dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal									
167.740		-9.816	43.251	33.435	-10.065	43.500			
328.760		-4.477	38.768	34.291	-11.709	46.000			
499.480		1.991	27.275	29.265	-16.735	46.000			
600.360		3.472	34.786	38.258	-7.742	46.000			
802.120		6.356	23.395	29.751	-16.249	46.000			
961.200		6.810	28.779	35.589	-18.411	54.000			
Vertical									
119.240		-3.571	43.298	39.728	-3.772	43.500			
328.760		-2.407	38.768	36.361	-9.639	46.000			
540.220		2.169	28.915	31.084	-14.916	46.000			
720.640		-0.754	36.814	36.060	-9.940	46.000			
840.920		2.284	33.556	35.840	-10.160	46.000			
961.200		3.310	28.779	32.089	-21.911	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: $iDEA^+ Do$	cking Station			
Test Item	: General R	adiated Emission I	Data		
Test Site	: No.3 OAT	ſS			
Test Mode	: Mode 1: T	Fransmit (802.11b 1	1Mbps)(2437 MHz) -	- (PTI-7018NC)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
179.380	-11.904	48.505	36.601	-6.899	43.500
299.660	-4.751	46.026	41.275	-4.725	46.000
472.320	2.932	34.372	37.304	-8.696	46.000
600.360	3.472	37.794	41.266	-4.734	46.000
720.640	3.826	34.679	38.505	-7.495	46.000
961.200	6.810	29.927	36.737	-17.263	54.000
Vertical					
173.560	-2.713	40.879	38.166	-5.334	43.500
299.660	-4.061	46.026	41.965	-4.035	46.000
419.940	-6.694	45.734	39.040	-6.960	46.000
600.360	1.302	37.794	39.096	-6.904	46.000
749.740	2.023	33.502	35.525	-10.475	46.000
961.200	3.310	29.927	33.237	-20.763	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: iDEA ⁺ Docking Station						
Test Item	: General Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 2: T	ransmit (802.11g	6Mbps)(2437 MHz) -	- (PTI-7018NC)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
 MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
179.380	-11.904	48.505	36.601	-6.899	43.500		
344.280	-1.814	36.831	35.017	-10.983	46.000		
 472.320	2.932	34.372	37.304	-8.696	46.000		
600.360	3.472	37.794	41.266	-4.734	46.000		
749.740	3.963	33.502	37.465	-8.535	46.000		
961.200	6.810	29.927	36.737	-17.263	54.000		
Vertical							
121.180	-3.559	43.751	40.192	-3.308	43.500		
299.660	-4.061	46.026	41.965	-4.035	46.000		
480.080	-3.390	40.986	37.596	-8.404	46.000		
600.360	1.302	37.794	39.096	-6.904	46.000		
720.640	-0.754	34.679	33.925	-12.075	46.000		
961.200	3.310	29.927	33.237	-20.763	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	iDEA ⁺ Docking Station						
Test Item	:	General Radiated Emission Data						
Test Site	:	No.3 OATS						
Test Mode	:	Mode 3: Trai	nsmit (802.11n MC	S0 7.2Mbps 20M-BV	W)(2437 MHz) –	(PTI-7018NC)		
Frequency		Correct	Reading	Measurement	Margin	Limit		
		Factor	Level	Level				
MHz		dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal								
64.920		-12.587	44.646	32.059	-7.941	40.000		
179.380		-11.904	48.505	36.601	-6.899	43.500		
429.640		0.630	36.492	37.121	-8.879	46.000		
674.080		2.713	29.375	32.088	-13.912	46.000		
840.920		6.064	32.763	38.827	-7.173	46.000		
961.200		6.810	29.927	36.737	-17.263	54.000		
Vertical								
74.620		-7.726	43.490	35.764	-4.236	40.000		
326.820		-2.759	37.356	34.597	-11.403	46.000		
472.320		-3.508	34.372	30.864	-15.136	46.000		
600.360		1.302	37.937	39.239	-6.761	46.000		
840.920		2.284	32.763	35.047	-10.953	46.000		
961.200		3.310	29.927	33.237	-20.763	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	iDEA ⁺ Docking Station
Test Item	:	General Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)(2437 MHz) – (PTI-7018NC)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
121.180	-7.289	43.751	36.462	-7.038	43.500
305.480	-3.836	40.178	36.342	-9.658	46.000
472.320	2.932	34.372	37.304	-8.696	46.000
575.140	3.025	28.097	31.122	-14.878	46.000
720.640	3.826	34.679	38.505	-7.495	46.000
961.200	6.810	29.927	36.737	-17.263	54.000
Vertical					
105.660	-4.576	42.230	37.653	-5.847	43.500
305.480	-4.016	40.178	36.162	-9.838	46.000
499.480	-0.199	40.516	40.316	-5.684	46.000
600.360	1.302	37.937	39.239	-6.761	46.000
720.640	-0.754	34.679	33.925	-12.075	46.000
961.200	3.310	29.927	33.237	-20.763	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

5. **RF** antenna conducted test

5.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

5.2. Test Setup

RF antenna Conducted Measurement:

5.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.4. Test Procedure

The EUT was tested according to DTS test procedure of ANSI C63.10: 2009 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

5.5. Uncertainty

The measurement uncertainty Conducted is defined as ± 1.27 dB

5.6. Test Result of RF antenna conducted test

Product	:	iDEA ⁺ Docking Station
Test Item	:	RF antenna conducted test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channel 01 (2412MHz)

Agilent Spect	rum Analyzer - S	Swept SA		or the	circum incl			00-00-04 0	MN	-
Center F	req 515.0	00000 MH	z	Trig: Free	Run	Avg Type	E: Log-Pwr	U3:3U:34 P TRAC TYI	28,2012 1 2 3 4 5 6 E M 444444	Frequency
10 dB/div	Ref 20.00) dBm	Gain:Low	#Atten: 30	dB		Mki	™ 1 479.9 -49.	83 MHz 28 dBm	Auto Tune
10.0					-					Center Frec 515.000000 MHz
-10.0										Start Free 30.000000 MH;
-20.0									-18.51 dBm	Stop Fred 1.000000000 GH:
-40.0				♦ ¹						CF Step 97.000000 MH: <u>Auto</u> Mar
-60.0	horay lag									Freq Offse 0 H:
-70.0 Start 30.0) MHz		#1/514/	4.0.6411-				Stop 1.0	0000 GHz	
MSG JFile	Image.png>	saved	#VBW	1.0 IVINZ	_		SWEED 9	0.0 ms (1	oour pts)	1

Agilent Spectr	um Analyzer - Swept	SA.								
IXI RL	RF 50 Ω	AC	SEN	ISE:INT		ALIGN AUTO	03:29:58 P	MNov 28, 2012	Frequency	
Center F	req 6.500000	000 GHz	THEFT	Bun	Avg Type	: Log-Pwr	TRAC	E 123456	Frequency	
10 dB/div	Ref 20.00 dB	PNO: Fast 🖵 IFGain:Low	#Atten: 30	dB		Mk	r1 2.410 1	0 2 GHz 49 dBm	Auto Tune	
Log			1	1						
	and a large state of		4.00.1			1			Center Freq	
10.0									6.50000000 GHz	
	•									
0.00									Otort Error	
			1						StartFreq	
-10.0									1.00000000 GHz	
								-18.51 dBm	-	
-20.0									Stop Fred	
									12 00000000 GHz	
-30.0						-			12.000000000000	
			1.101		1	1				
-40.0									CF Step	
									Auto Man	
-50.0								-	<u>Auto</u> man	
	1000		and of a second second	in this search	Alle of		and the second		The Grand	
-60.0	IT MALE STRATES	the state of the s	The second second second	and the second states			and the second second		Freq Offset	
	Alterna and a second	State I have							0 Hz	
-70.0	_			_	-					
			-							
#Res BM	10 GHZ 100 kHz	#\/R1A	1 0 MHz			Sween	Stop 12	0000 GHZ		
uno i Dein			1.9 11112			Succh	1.02 3 (1	eeer hra)		
Poin	is changed; all tra	Les cleared				STATUS				

Agilent Spectrum Anal	zer - Swept SA								
Center Freq 1	50 Q AC 3.500000000	GHz	SEN	ISE:INT	Avg Type	ALIGNAUTO	03:31:10 PI TRAC	MNov 28, 2012 E 1 2 3 4 5 6	Frequency
10 dB/div Ref :	20.00 dBm	PNO: Fast C	#Atten: 30	dB		Mkr	1 23.702 -47.61	2 6 GHz 80 dBm	Auto Tune
10.0				-			-		Center Freq 18.500000000 GHz
-10.0									Start Freq 12.000000000 GHz
-20.0								-18.51 dBm	Stop Freq 25.00000000 GHz
-40.0								1	CF Step 1.300000000 GHz <u>Auto</u> Man
-60.0	۵۱۹۹۹ میکالوی الا		in the second						Freq Offset 0 Hz
-70.0									
Start 12.000 GH #Res BW 100 k	z Hz	#VBW	1.0 MHz			Sweep	Stop 25 1.20 s (1	.000 GHz 0001 pts)	
мsg 🧼 File < Image	.png> saved					STATUS	1		

Frequency	RACE 1 2 3 4 5 6	03:49:32 F TRA	E Log-Pwr	Avg Typ	SENSE:INT]	z	0000 MH	eq 515.00	er Fr
	DET PNNNNN	D			: 30 dB	#At	PNO: Fast G Gain:Low	10		
Auto Tu	.994 MHz 9.67 dBm	1 359.9 -49.	Mkr					dBm	Ref 20.00	/div
Center Fr							1			
515.000000 N	-			*						
Otort Er									-	
30.000000 N				-					-	_
	-18.71 dBm		1	-						
1.000000000 G							121			
97.000000 N							▲ 1			
								10		-
Freq Off	A DESCRIPTION OF THE OWNER OF THE			der al	A-Max-adat.	N II'Y Low	- Industry	al de la constance.	مرسانية والمراسمة	algonia Mil. 10
-										(
									1	
	1						1 m	1	_	
	1.0000 GHz (10001 pts)	Stop 1.0 0.0 ms (1	Sweep 9		łz	V 1.0	#VBV		MHz 00 kHz	30.0 BW
	1.0000 GHz (10001 pts)	Stop 1.0 0.0 ms (1	Sweep 9		łz	V 1.0	#VBV	saved	VIHz 00 kHz mage.png>	30.0 BW File <
	1.0000 GHz (10001 pts)	Stop 1.(0.0 ms (1	Sweep 9		lz	V 1.0	#VBV	saved wept SA	MHz 00 kHz Image.png>	30.0 BW File <
Frequency	1.0000 GHz (10001 pts)	Stop 1.1 0.0 ms (1)))))))))))))))))))	Sweep 90 status ALIGNAUTO e: Log-Pwr	Avg Typ	Hz SENSEJINT ree Run	V 1.0	#VBV	saved wept SA Ω AC 000000 G	MHz 00 kHz mage.png> m Analyzer - S RF 50 eq 6.5000	30.0 BW File < Spectru
Frequency Auto Tu	1.0000 GHz (10001 pts)	Stop 1.0 0.0 ms (1 03:48:56 F TRAI TY D r1 2.43 1.	Sweep 9 status s	Avg Typ	Hz SENSE:INT ree Run : 30 dB	V 1.0	#VBV Hz NO: Fast Gain:Low	saved wept SA Q AC 000000 G IF IF	MHz 100 kHz mage.png> m Analyzer - S RF 50 eq 6.5000 Ref 20.00	30.0 BW File < Spectru
Frequency Auto Tu Center Fr	1.0000 GHz (10001 pts) 56 PM Nov 28,2012 RACE 12 34 5 6 TYPE MWANNA BEI P NNNN 135 5 GHz 1.29 dBm	Stop 1.1 0.0 ms (1 03:48:56F TRA TRA TY D r1 2.43 1.	Sweep 9 status alugnauto :: Log-Pwr Mk	Avg Ty	IZ SENSE:INT ree Run : 30 dB	V 1.0	#VBV Hz NO: Fast Gain:Low	saved wept SA 2 AC 000000 G I I dBm	MHz 100 kHz Image.png> m Analyzer - S ℝF 50 eq 6.5000 Ref 20.00	30.0 BW File < Spectru rer Fr
Frequency Auto Tu Center Fr 6.50000000 G	1.0000 GHz (10001 pts)	Stop 1.1 0.0 ms (1)))))))))))))))))))	Sweep 9 status alignauto : Log-Pwr Mk	Avg Ty	Hz SENBEJINT ree Run : 30 dB	V 1.0	#VBV	saved wept SA a AC 000000 G II dBm	MHz 00 kHz image.png> m Analyzer - S RF 50 eq 6.5000 Ref 20.00	30.0 BW File < Spectro ier Fr
Frequency Auto Tu Center Fr 6.50000000 G	1.0000 GHz (10001 pts)	Stop 1.0 0.0 ms (1 03:48:56 F TRAI TRAI TRAI TRAI TRAI TRAI TRAI TRAI	Sweep 9 status allishauto :: Log-Pwr Mk	Avg Ty	1z sense:int] ree Run :30 dB	→ Tri #At	#VBV	saved a ac 100000 G 1 1 1 1 1 1 1 1 1 1 1 1 1	MHz 100 kHz image.png> m AnalyzerS RF 50 eq 6.5000 Ref 20.00 1	30.0 BW File < Spectru rer Fr
Frequency Auto Tu 6.50000000 C Start Fr 1.00000000 C	1.0000 GHz (10001 pts)	Stop 1. 0.0 ms (1 0.3:48:56 F TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	Sweep 9 status alignauto : Log-Pwr Mk	Avg Typ	12 SENSEJINT ree Run : 30 dB	Tri #At	#VBV	saved wept SA a AC B dBm	MHz 100 kHz Image.png> m Analyzer - S RF 50 eq 6.5000 Ref 20.000 1 1	30.0 BW File < Spectru er Fr
Frequency Auto Tu Center Fr 6.50000000 C Start Fr 1.00000000 C	1.0000 GHz (10001 pts)	Stop 1.0.0 ms (1	Sweep 9 status alienauto :: Log-Pwr Mk	Avg Tyr	sense:INT ree Run : 30 dB	> Tri #At	#VBV	saved wept SA a AC 0 000000 G If dBm	MHz 100 kHz mage.png> m Analyzer - S RF 50 eq 6.5000 Ref 20.000 1 1	30.0 BW // File < Spectru er Fr
Frequency Auto Tu Center Fr 6.500000000 G Start Fr 1.000000000 G Stop Fr 12.000000000 G	1.0000 GHz (10001 pts)	Stop 1.0 0.0 ms (1 03:48:56 F TRAI TY r1 2.43 1.	Sweep 9 status aLIGNAUTO :: Log-Pwr Mk	Avg Typ	1z SENSEJINT ree Run 30 dB	Tri #Av	#VBV	kaved wept SA a A⊂ 0 000000 G b dBm b b b b b b c b c c c c c c c c c c c c c	MHz 100 kHz Image.png> m Analyzer - S RF 50 Eq 6.5000 Ref 20.000 1 1	30.0 BW ¹ File < Spectru ldiv
Frequency Auto Tu Center Fr 6.50000000 G Start Fr 1.00000000 G Stop Fr 12.00000000 G	1.0000 GHz (10001 pts)	Stop 1. 0.0 ms (1 03:48:56 P TRA TRA TRA 1 0 2 7 1 2.43 1.	Sweep 9 status alianauto : Log-Pwr Mk	Avg Ty	1z SENBEJINT ree Run : 30 dB	→ Tri #At	#VBV	saved	MHz 100 kHz 100 kHz	30.0 BW File < Spectru er Fr
Frequency Auto Tu Center Fr 6.500000000 G Start Fr 1.00000000 G Stop Fr 12.00000000 G	1.0000 GHz (10001 pts)	Stop 1.1 0.0 ms (1 03:48:56 F TRAI TRAI TRAI 1.	Sweep 9 status aLIGNAUTO :: Log-Pwr Mk	Avg Ty;	sensesinit ree Run 30 dB	Tri #A1	#VBV	saved wept SA a AC dBm dBm	MHz 100 kHz mage.png> m Analyzer - S RF 50 eq 6.5000 Ref 20.000 1 1 1 1 1 1 1 1 1 1 1 1 1	30.0 BW File < Spectru er Fr /div
Frequency Auto Tu 6.50000000 C Start Fr 1.00000000 C Stop Fr 12.00000000 C CF St 1.100000000 C Auto N	1.0000 GHz (10001 pts)	Stop 1.1 0.0 ms (1 03:48:56 F TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	Sweep 9/ status alignauto : Log-Pwr Mk	Avg Typ	sensedint ree Run : 30 dB		#VBV	saved	MHz 100 kHz mage.png> m Analyzer - S RF 50 eq 6.5000 Ref 20.00 1 1 1 1 1 1 1 1 1 1 1 1 1	30.0 BW File < Spectru fdiv
Frequency Auto Tu Center Fr 6.500000000 G Start Fr 1.000000000 G Stop Fr 12.00000000 G CF St 1.100000000 G Auto N Freq Off: 0	1.0000 GHz (10001 pts)	Stop 1.1 0.0 ms (1 0.3:48:56 F TRAI TRAI TRAI TRAI TRAI	Sweep 9 status atticinauto :: Log-Pwr Mk	Avg Typ	tz sensesint ree Run 30 dB		#VBV	xeet SA 2 A⊂ 000000 G 000000 G 00000 G 00000 G 00000 G 00000 G 00000 G 00000 G 0000 G 00000 G 00000 G 00000 G 0000 G 00000 G 0000 G 000	MHz 100 kHz mage.png> m Analyzer - S RF 50 eq 6.5000 Ref 20.00 1 1 1 1 1 1 1 1 1 1 1 1 1	30.0 BW File < Spectru Idiv
Frequency Auto Tu 6.50000000 C Start Fr 1.00000000 C Stop Fr 12.00000000 C CF St 1.100000000 C Auto N Freq Offs 0	1.0000 GHz (10001 pts)	Stop 1.1 0.0 ms (1 0.3:48:56 F TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	Sweep 9/ status :Log-Pwr Mk	Avg Typ	Iz SENBECINT ree Run 30 dB		#VBV	saved	MHz 100 kHz image.png> m Analyzer - S RF 50 eq 6.5000 Ref 20.00 1 1 1 1 1 1 1 1 1 1 1 1 1	30.0 BW File < Spectru fdiv
Frequency Auto Tu Center Fr 6.500000000 G Start Fr 1.000000000 G Stop Fr 1.1000000000 G Auto Tu Freq Off: 0	1.0000 GHz (10001 pts)	Stop 1.0 0.0 ms (1 0.3:48:56 F TRA TRA TRA TRA TRA TRA TRA TRA TRA TRA	Sweep 9 status allishauto : Log-Pwr Mk	Avg Typ	1z SENSE (INT) FRE Run 30 dB		#VBV	saved	MHz 00 kHz mage.png> m Analyzer - S RF 50 eq 6.5000 Ref 20.00 1 1 1 1 1 1 1 1 1 1 1 1 1	30.0 BW File < Spectru /div

Channel 06 (2437MHz)

Agilent Spectrum Analyzer - Swept SA					
RL RF 50 Q AC	00 GHz	SENSE(INT)	ALIGNAUTO Avg Type: Log-Pwr	03:50:07 PMNov 28, 2012 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 20.00 dBm	PNO: Fast IFGain:Low	J Trig: Free Run #Atten: 30 dB	Mkr	1 23.936 6 GHz -47.92 dBm	Auto Tune
10.0					Center Freq 18.500000000 GHz
-10.0					Start Freq 12.000000000 GHz
-20.0				-18.71 dBm	Stop Freq 25.000000000 GHz
-40.0				↓ ¹	CF Step 1.300000000 GHz Auto Man
-60.0	n an	and the first of the second			Freq Offset 0 Hz
-70.0					
Start 12.000 GHz #Res BW 100 kHz	#VBW	1.0 MHz	Sweep	Stop 25.000 GHz 1.20 s (10001 pts)	
MSG JFile <image.png> saved</image.png>			STATU	5	

RL	RF 5	DΩ AC		SENS	E:INT		ALIGN AUTO	04:14:17 PMNov 28, 20:	2
Center Fre	q 515.0	00000	MHz	Trig: Free I	Run	Avg Typ	e: Log-Pwr	TRACE 1 2 3 4 5 TYPE MWWWW	6 Frequency
0 dB/div F	Ref 20.0	0 dBm	IFGain:Low	#Atten: 30	dB		Mkr	^{Der P NNNN} 1 479.983 MH -49.73 dBr	N Auto Tune
10.0				1					Center Free
0.00									
10.0									Start Free 30.000000 MH;
20.0				1.1.1				-18.58 dE	m
30.0									Stop Free 1.000000000 GH
40.0					_				CF Step
50.0				1					97.000000 MH <u>Auto</u> Mai
60.0								Annual Pills and and a successful state	Freq Offse
70.0					and the second second	and the second second		1995 (1997) (1997) (1997) (1997) (1997) (1997) (1997)	он
70.0		1							
tart 30.0 M	Hz 10 kHz		#VBW	1.0 MHz			Sweep 9	Stop 1.0000 GH 0.0 ms (10001 pts	z 5)

Channel 11 (2462MHz)

Agilent Spectrum Analyzer - Swept SA				
RL RF 50 Q AC	SENSE:INT	ALIGNAUTO	04:14:53 PM Nov 28, 2012	Frequency
Center Freq 18.500000000 GHZ PNO: Fast G IFGain:Low	Trig: Free Run #Atten: 30 dB	Mkr	1 23.817 0 GHz -47.44 dBm	Auto Tune
10.0				Center Freq 18.50000000 GHz
-10.0				Start Freq 12.000000000 GHz
-20.0			-18.58 dBm	Stop Freq 25.000000000 GHz
-40.0			↓ ¹	CF Step 1.300000000 GHz <u>Auto</u> Man
-60.0				Freq Offset 0 Hz
-70.0 Start 12.000 GHz #Res BW 100 kHz #VBV	/ 1.0 MHz	Sweep	Stop 25.000 GHz 1.20 s (10001 pts)	

Product	:	iDEA ⁺ Docking Station
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Channel 01 (2412MHz)

MHz PN0: Fast IFGain:Low	Trig: Free #Atten: 30	Run) dB	Avg Type	Mkr	1 479.9 -50.	06 dBm	Frequency Auto Tune Center Free 515.000000 MH Start Free 30.000000 MH
IFGain:Low	Trig: Free #Atten: 30	Run) dB		Mkr	1 479.9 -50.	283 MHz 06 dBm	Auto Tune Center Free 515.00000 MH Start Free 30.000000 MH
							Center Fre 515.00000 MH Start Fre 30.000000 MH
							Start Fre 30.000000 MH
	· - · ·						
						-22.18 dBm	Stop Fre 1.000000000 G⊦
	♦ ¹						CF Ste 97.000000 MH Auto Ma
	Dimension (Dalla) Anno 1997 - Anno	THE REAL PROPERTY IN THE	n kang palang panakan Mang palang panakan		(0. 111 - 111)		Freq Offse 0 F
#\/P\M	1.0 MHz			Sweep 0	Stop 1.0	0000 GHz	
	#VBW	#VBW 1.0 MHz	#VBW 1.0 MHz	#VBW 1.0 MHz	#VBW 1.0 MHz Sweep 9	#VBW 1.0 MHz	#VBW 1.0 MHz

Agilent Spectr	um Analyzer - Swept	SA.							
Contor E	RF 50 Ω		SEN	SE:INT	Ava Type	ALIGNAUTO	04:29:10 P	MNov 28, 2012	Frequency
10 dB/div	Ref 20.00 dE	PNO: Fast IFGain:Low	J Trig: Free #Atten: 30	Run dB		Mkr1 2.413 -2.1			Auto Tune
10.0				-					Center Freq 6.500000000 GHz
-10.0	+ + '								Start Freq 1.000000000 GHz
-20.0		_						-22.18 dBm	Stop Freq 12.000000000 GHz
-40.0									CF Step 1.100000000 GHz <u>Auto</u> Man
-60.0	<u></u>	Net the second second				×A		here the second	Freq Offset 0 Hz
Start 1.00 #Res BW	0 GHz 100 kHz	#VBM	/ 1.0 MHz			Sweep	Stop 12 1.02 s (1	.000 GHz 0001 pts)	
MSG 🤳 Poin	ts changed; all tra	ices cleared				STATUS			

Agilent Spectrum Analyzer - S	wept SA				
Center Freq 18.500	Ω AC 000000 GHz		ALIGNAUTO Avg Type: Log-Pwr	04:30:22 PMNov 28, 2012 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 20.00	PNO: Fast IFGain:Low dBm	#Atten: 30 dB	Mkr	1 21.196 2 GHz -48.04 dBm	Auto Tune
10.0					Center Freq 18.500000000 GHz
-10.0					Start Freq 12.000000000 GHz
-20.0				-22:18 dBm	Stop Freq 25.000000000 GHz
-40.0			1	da d	CF Step 1.300000000 GHz <u>Auto</u> Man
-60.0					Freq Offset 0 Hz
-70.0 Start 12.000 GHz #Res BW 100 kHz	#VBW	1.0 MHz	Sweep	Stop 25.000 GHz 1.20 s (10001 pts)	
MSG 🥹 File <image.png></image.png>	saved		STATU	s	

RL	RF 50	Q AC		SEN	SEINT	1	ALIGNAUTO	04:39:50 P	MNov 28, 2012	
enter F	req 515.00	00000 MH	z	Trig: Free	Run	Avg Type	: Log-Pwr	TRAC	CE 123456 PE MWWWWWW	Frequency
0 dB/div	Ref 20.00	dBm	Gain:Low	#Atten: 30 dB			Mkr		er⊫ NNNNN 983 MHz 91 dBm	Auto Tune
10.0				-						Center Free 515.000000 MH
0.00										Start Free 30.000000 MH
0.0									-22.50 dBm	Stop Free 1.000000000 GH
0.0				● ¹						CF Ste 97.000000 MH <u>Auto</u> Ma
0.0	and the sector of		de all destaurs	and and any similar		l trabal mittas trajum				Freq Offse 0 H
0.0					_					
tart 30.0 Res BW	MHz 100 kHz		#VBW	1.0 MHz			Sweep 9	Stop 1.0 0.0 ms (1	0000 GHz 0001 pts)	
G J File	<lmage.png></lmage.png>	saved					STATUS			

Channel 06 (2437MHz)

	CENCEINIT	ALIGNALITO	04/20/14 DMMov 20: 2012	1
enter Freg 6 50000000 GI	3514352,041	Ava Type: Loa-Pwr	TRACE 1 2 3 4 5 6	Frequency
P IFI IO dB/div Ref 20.00 dBm	No: Fast Trig: Free Run Gain:Low #Atten: 30 dB	Mł	type MWWWWW Det P NNNNN cr1 2.437 7 GHz -2.50 dBm	Auto Tune
10.0				Center Fred 6.500000000 GH:
10.0				Start Free 1.000000000 GH:
30.0			-22.50 dBm	Stop Fre 12.000000000 GH
40.0				CF Stej 1.100000000 GH <u>Auto</u> Ma
	and the second			Freq Offse 0 H
70.0 Start 1.000 GHz	#VBW 1.0 MHz	Sween	Stop 12.000 GHz	
	#VDV 1.0 MI12	oncep	1.02 3 (10001 pt3)	

Agilent Spectrum Analyzer - Swept SA								
(X) RL RF 50Ω AC		SENS	EINT		ALIGNAUTO	04:40:25 P	MNov 28, 2012	Frequency
10 dB/div Ref 20.00 dBm	PNO: Fast 🖵 IFGain:Low	┘ Trig: Free Run #Atten: 30 dB		ing type	Mkr	туре мулики Deт P NNNNN 1 21.272 9 GHz -47.99 dBm		Auto Tune
10.0								Center Freq 18.500000000 GHz
-10.0								Start Freq 12.000000000 GHz
-20.0							-22.50 dBm	Stop Freq 25.000000000 GHz
-40.0					↓ ¹	The state of the s	and the second second	CF Step 1,30000000 GHz <u>Auto</u> Man
-60.0								Freq Offset 0 Hz
-70.0 Start 12.000 GHz #Res BW 100 kHz	#VBW	1.0 MHz			Sweep	Stop 25 1.20 s (1	.000 GHz 0001 pts)	
MSG 🥹 File <image.png> saved</image.png>	1				STATUS			

Igilent Spect	trum Analyzer - S	wept SA			Letters as treat		AN INCIDE A LANDING	lan is series on a s		1
Center F	Freq 515.00	00000 MHz			ISE:INT	Avg Type	E: Log-Pwr	04:55:341 TRA	MNov 28, 2012 CE 1 2 3 4 5 6	Frequency
0 dB/div	Ref 20.00	PI IFC	lO: Fast 😱 iain:Low	#Atten: 30 dB			Mkr1		983 MHz 85 dBm	Auto Tune
10.0					-					Center Fre 515.000000 MH
10.0		1.2								Start Free 30.000000 MH
20.0									-22.39 dBm	Stop Fre 1.000000000 GH
0.0				● ¹						CF Ste 97.000000 MH <u>Auto</u> Ma
so.o	lann girin danaha		ntegen) (Josef La Mi	Angling and Korrel Solid Control of State		la manya kita kati filami			enerina tel modere	Freq Offse 0 H
/0.0										
tart 30. Res BW	0 MHz / 100 kHz		#VBW	1.0 MHz			Sweep 9	Stop 1. 0.0 ms ('	0000 GHz 10001 pts)	
sg 🤳 File	<image.png></image.png>	saved					STATUS	3		

Channel 11 (2462MHz)

	MNey 20, 2012	DAVEA FO D	ALICALALITO		NICENTALIC	l cri	T	swept SA	n Analyzer -	pient spectru
Frequency	E 1 2 3 4 5 6	TRACE 1 2 3 4 5		Avg Type] John Fann	Hz	000000 G	eq 6.500	enter Fr
Auto Tun) 8 GHz 39 dBm	۳۳۳ Mkr1 2.460 8 G -2.39 dl			0 dB	#Atten: 30	PNO: Fast 😱 Gain:Low) dBm	Ref 20.0) dB/div
Center Fre 6.500000000 GH										0.0
Start Fre 1.000000000 GH									+	0.00
Stop Fre 12.000000000 GH	-22.39 dBm									0.0
CF Ste 1.100000000 GH Auto Ma										0.0
Freq Offse 0 H	-		~~~	and the second second		an Allon a Allo Marine a Allon	-			i0.0
	.000 GHz 0001 pts)	Stop 12 1.02 s (1	Sweep			1.0 MHz	#VBW		GHz 00 kHz	tart 1.000
1	and the second		STATUS				ared	all traces clea	changed:	G Deints

M RL RF SOQ AC SENSEDNT ALISNANTO Design for Max 28, 2012 Frequency Center Freq 18.500000000 GHz IFGainLow Trig: Free Run #Atten: 30 dB Avg Type: Log:Pwr TriAct 12, 13, 45, 56 TriAct 12, 10, 44, 54, 55, 100 GHz Auto Tur 10 dB/div Ref 20.00 dBm -48.03 dBm -48.03 dBm Center Fre 10 dB/div Ref 20.00 dBm -48.03 dBm -48.03 dBm Center Fre 10.0	Agilent Spectrum Analyzer - Swept S/	L					
Certifier Fried 18.50000000 GHZ Trig: Free Run #Atten: 30 dB Trig: Free Run #Atten: 30 dB Mkr1 24.645 1 GHZ Auto Tur 10 dB/div Ref 20.00 dBm -48.03 dBm -48.03 dBm -48.03 dBm -48.03 dBm 10 dB/div Ref 20.00 dBm -20.00	IXI RL RF 50Ω AC		SENSE:IN	Ava T	ALIGNAUTO	04:56:10 PM Nov 28, 2012	Frequency
10.0 Center Fre 10.0 Start Fre 20.0 Start Fre 20.0 Start Fre 30.0 Start Start Start Fre <	10 dB/div Ref 20.00 dBm	PNO: Fast 😱 IFGain:Low	Trig: Free Run #Atten: 30 dB		Mkr	1 24.645 1 GHz -48.03 dBm	Auto Tune
0.00	10.0			-			Center Freq 18.500000000 GHz
-20.0 -22.33 dBm -30.0 -22.33 dBm -40.0 -22.33 dBm -60.0 -20.0 -60.0 -20.0 -60.0 -20.0 -60.0 -20.0 -70.0 -20.0 Start 12.000 GHz Stop 25.000 GHz Freq Offs: 0 Hz	-10.0						Start Freq 12.000000000 GHz
40.0 -60.0 -60.0 -70	-20.0					-22.39 dBm	Stop Freq 25.000000000 GHz
-60.0 Freq Offso -70.0 Start 12.000 GHz #Rec BW 100 kHz Styles 1 20 c (20001 btc)	-40.0		- Marcello Iv. 7			111111-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	CF Step 1.300000000 GHz <u>Auto</u> Man
-70.0 Start 12.000 GHz #V/DW 1.0 MHz Stype 1.20 c (2000 Hz)	-60.0						Freq Offset 0 Hz
#RES BW 100 KH2 #VBW 1.0 WH2 Sweep 1.20 S (1000 F pts)	-70.0 Start 12.000 GHz #Res BW 100 kHz	#VBW	1.0 MHz		Sweep	Stop 25.000 GHz 1.20 s (10001 pts)	

Product	:	iDEA ⁺ Docking Station
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

Channel 01 (2412MHz)

50.0 80								
Loo IF We		SEN	ISE:INT		ALIGN AUTO	05:29:37 P	MNov 28, 2012	Frequency
15.000000 N	IHZ PNO: Fast ⊊ IFGain:Low	Trig: Free Run #Atten: 30 dB Mkr1			r1 359.9	[∞] 123456 PE MWWWWW ET P NNNNN 94 MHz	Auto Tune	
20.00 dBm			- 7			-49.	87 dBm	
		-						Center Free 515.000000 MH:
								Start Free 30.000000 MH
							-22.10 dBm	Stop Free 1.000000000 GH
	♦ ¹							CF Ste 97.000000 MH <u>Auto</u> Ma
								Freq Offse 0 H
						Stop 1.0	0000 GHz	
	20.00 dBm	20.00 dBm	20.00 dBm	20.00 dBm 20.00 dBm 1 Isgain:Low 1 Isgain	PN0: Fast Trig: Free Run PN0: Fast #Atten: 30 dB 20.00 dBm Image: State of the sta	Avg type. Log-Fwr PRO: Fast IFGain:Low Atten: 30 dB Mk 20.00 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1	Avg (ype. Log+wr PRO: Fast IFGain:Low Mkr1 359,9 20.00 dBm -49. Mkr1 359,9 -49. Mkr1 359,9 -49. Mkr1 359,9 -49. Mkr1 359,9 -49. Stop 1.0 KHz #VBW 1.0 MHz Sweep 90.0 ms (1	PN0: Fast Trig: Free Run Avg ripe: Log-Fwr Trig: Free Run 20.00 dBm Mkr1 359.994 MHz -49.87 dBm 20.00 dBm -49.87 dBm -49.87 dBm

Page : 65 of 124

Agilent Spectrum	Analyzer - Swept S	λ.							
UU RL	RF 50 Ω A0		SENSE	INT		ALIGN AUTO	05:29:01 P	MNov 28, 2012	Frequency
Center Free	9 6.5000000	00 GHz	Tria: Free R	un	Avg Type	: Log-Pwr	TY	23456 EMWWWWW	
10 dB/div R	ef 20.00 dBn	IFGain:Low	#Atten: 30 dl	B		Mk	⊳ r1 2.40 -2.	6 9 GHz 10 dBm	Auto Tune
10.0					-				Center Freq 6.500000000 GHz
-10.0	* '								Start Freq 1.000000000 GHz
-20.0								-22.10 dBm	Stop Freq 12.000000000 GHz
-40.0									CF Step 1.100000000 GHz <u>Auto</u> Man
-60.0	Auto		(declarition)	antalata) antalata	بالبيان الراب				Freq Offset 0 Hz
-70.0									
Start 1.000 0 #Res BW 10	GHZ 0 kHz	#VBW	1.0 MHz			Sweep	Stop 12 1.02 s (1	.000 GHz 0001 pts)	
MSG 🤳 Points c	hanged; all trace	es cleared				STATUS			_

M RL RF 50.2: AC SENSE:INT ALIGN AUTO D5:30:12 PMNov 28, 2012 Frequ Center Freq 18.500000000 GHz Trig: Free Run IFGain:Low Trig: Free Run #Atten: 30 dB Avg Type: Log-Pwr Type: Log-Pwr TRACE 12:3:4:5:6 Frequ PN0: Fast Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 23.831 3 GHz Au 10 dR/diu Ref 20:00 dBm -47.75 dBm -47.75 dBm -47.75 dBm	uency uto Tune
Avg Type: Log-Pwr Trig: Free Run PNO: Fast Trig: Free Run Avg Type: Log-Pwr Trig: Free Clig Trig: Free Run IFGain: Low #Atten: 30 dB Mkr1 23.831 3 GHz Aug 10 dP/diu Ref 20 00 dBm -47.75 dBm Aug	ito Tune
PN0: Fast Ing: Free Kun IFGain:Low #Atten: 30 dB Mkr1 23.831 3 GHz -47.75 dBm -47.75 dBm	ito Tune
10 dB/diu Bef 20.00 dBm -47.75 dBm	
Cer	ter Fred
10.0 18 50000	0000 GHz
	0000 0112
0.00	
Si	tart Freq
-10.0 12.00000	0000 GHz
	A . A.C.Y
-20.0	
S	top Freq
-30.0 25.00000	0000 GHZ
-40.0	CF Step
↓ 1.30000	0000 GHz Man
	man
-60.0 Fre	q Offset
	0 Hz
-70.0	
Start 12.000 GHz Stop 25.000 GHz	
#Res BW 100 kHz #VBW 1.0 MHz Sweep 1.20 s (10001 pts)	
MSG J File <image.png> saved status</image.png>	

Agilent Spectrum	n Analyzer - S	wept SA								
Center Fre	RF 50	Ω AC	z	SEN	ISE:INT	Avg Type	ALIGNAUTO	05:44:04 P TRAC	Frequency	
10 dB/div	0 dB/div Ref 20.00 dBm			^a Trig: Free Run #Atten: 30 dB			онтрания Мkr1 479.983 MHz -50.06 dBm			Auto Tune
10.0					-					Center Freq 515.000000 MHz
-10.0					Ξ					Start Freq 30.000000 MHz
-20.0		-							-22.19 dBm	Stop Freq 1.000000000 GHz
-40.0				♦ ¹						CF Step 97.000000 MHz <u>Auto</u> Man
-60.0	and the state of t		den state den	De Alexander de Mille A		l J.S., B. of Africance J. org. J. world (an taon an tao an ta	Freq Offsel 0 Hz
-70.0										
Start 30.0 M #Res BW 10	/IHz 00 kHz		#VBW	1.0 MHz			Sweep 9	Stop 1.0 0.0 ms (1	0000 GHz 0001 pts)	
MSG 🧼 File <ir< td=""><td>mage.png></td><td>saved</td><td></td><td></td><td></td><td></td><td>STATUS</td><td>1</td><td></td><td></td></ir<>	mage.png>	saved					STATUS	1		

Channel 06 (2437MHz)

	MNov 28, 2012	05:43:28 PI	ALIGN AUTO		VSE:INT	SEN		Q AC	RF 5	RL
Frequency	E123456	TRAC	: Log-Pwr	Avg Type			GHz	000000	q 6.500	enter Fr
Auto Tune	2 2 GHz 19 dBm	r1 2.432	Mk		e Run) dB	#Atten: 30	PNO: Fast 🖵 IFGain:Low) dBm	Ref 20.0	0 dB/div
Center Fred 6.500000000 GH										0.0
Start Free 1.000000000 GH										0.00
Stop Fre 12.000000000 GH	-22:19 dBm									80.0
CF Stej 1.100000000 GH Auto Ma										0.0
Freq Offse 0 H	-				an a	and contraints	and the state of the		A	0.0
	.000 GHz	Stop 12	Sween			1.0 MHz	#VBW		GHz 00 kHz	tart 1.000

Agilent Spectrum	n Analyzer - Swe	pt SA						
IXI RL	RF 50 Ω	AC	SE	NSE:INT	Aug Tung	ALIGNAUTO	05:44:39 PM Nov 28, 2012	Frequency
Center Fre	ref 20.00 d	PNO: Fast IFGain:Low	Trig: Free #Atten: 30	e Run) dB	Avg Type	Mkr	1 23.208 6 GHz -48.27 dBm	Auto Tune
Log				1	1	-		
10.0			1					Center Freq 18.50000000 GHz
0.00						1		
-10.0								Start Freq 12.000000000 GHz
-20.0							-22.19 dBn	Stop Freq
-30.0							· · · · · · · · · · · · · · · · · · ·	25.000000000 GHZ
-40.0							▲ 1	CF Step 1.30000000 GHz
-50.0			A			and the second second second second	States of the state of the state of the state	<u>Auto</u> Man
-60.0	Service Services	المحلوب المتحافظ						Freq Offset 0 Hz
-70.0								
Start 12.00 #Res BW 1	0 GHz 00 kHz	#VE	SW 1.0 MHz			Sweep	Stop 25.000 GHz 1.20 s (10001 pts	
MSG 🤳 File <li< td=""><td>mage.png> sa</td><td>ved</td><td></td><td></td><td></td><td>STATUS</td><td>i i</td><td></td></li<>	mage.png> sa	ved				STATUS	i i	

RL	RF	50 Q AC		SENSE:IN	1	ALIGN AUTO	05:57:25 PM Nov 28, 2012	
enter F	req 515.	000000	MHz] Tria: Free Run	Avg	Гуре: Log-Pwr	Frequency	
0 dB/div	Ref 20.	00 dBm	IFGain:Low	#Atten: 30 dB		Mki	DET P NNNN 1 479.983 MHz -49.75 dBm	Auto Tune
J				1				Center Free
10.0								515.000000 MH
0.00								Start Fre
10.0								30.000000 MH
0.0	_	_					-22.47 dBm	Stop Fre
30.0	_							1.000000000 GH
0.0								CF Ste
50.0				1				97.000000 MH <u>Auto</u> Ma
	1	16	in the second		1			Freg Offse
and the state	in a la l	artered by day in	http://www.angel.ch/pointearc		uter of later the			0 H
70.0						1		
tart 30.0	MHz 100 kHz		#VBW	1.0 MHz		Sween 9	Stop 1.0000 GHz	
		A. 6. A				CTATIC		

Channel 11 (2462MHz)

Agilent Spectrum Analyzer - Swept SA							
X RL RF 50Ω AC		SENS	BE:INT	Aug Typ.	ALIGNAUTO	05:58:01 PMNov 28, 2012	Frequency
10 dB/div Ref 20.00 dBm	UU GHZ PNO: Fast 🖵 IFGain:Low	Trig: Free I #Atten: 30	Run dB	OVY IVP	Mkr	1 23.832 6 GHz -47.39 dBm	Auto Tune
10.0		1-1	-				Center Freq 18.500000000 GHz
-10.0							Start Freq 12.000000000 GHz
-20.0						-22.47 dBm	Stop Freq 25.00000000 GHz
-40.0					political and	1	CF Step 1.300000000 GHz <u>Auto</u> Man
-60.0							Freq Offset 0 Hz
-70.0 Start 12.000 GHz #Res BW 100 kHz	#VBW	1.0 MHz			Sweep	Stop 25.000 GHz 1.20 s (10001 pts)	
MSG UFile < Image.png> saved					STATUS		

Product	:	iDEA ⁺ Docking Station
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)

Channel 01 (2422MHz)

Agilent Spectru	m Analyzer - S	iwept SA										
XI RL	RF 50	Ω AC		SEN	ISE:INT		ALIGN AUTO	06:09:30	PMNov 28, 2012	Frequency		
Center Fre	eq 515.0	00000 M	Hz PNO: Fast 😱	Avg Ty Trig: Free Run #Atten: 30 dB			J Type: Log-Pwr TRACE 123456 TYPE MWWWWW DET P NNNN			Frequency		
10 dB/div	0 dB/div Ref 20.00 dBm				water, oo da				Mkr1 479.983 MHz -50.01 dBm			
10.0						-			1	Center Free 515.000000 MH		
0.00										Start Free 30.000000 MH		
20.0									-25.29 dBm	Stop Free 1.000000000 GH		
40.0				♦ ¹						CF Ste 97.000000 MH <u>Auto</u> Ma		
60.0	ana ditado dan				le crai ^{le} here is	el duy dire el biop	- naire		in an an in the second	Freq Offse 0 H		
-70.0												
Start 30.0 #Res BW 1	MHz 00 kHz		#VBW	1.0 MHz			Sweep	Stop 1 90.0 ms (.0000 GHz 10001 pts)			
ISG 🤳 File <	mage.png>	saved					STATL	IS				

Page : 71 of 124

Agilent Spectrum Analyzer - Swept SA		
RL RF 50 Ω AC Center Freq 6.500000000 GHz	SENSE:INT	ALIGNAUTO 06:08:55 PMNov 28, 2012 Avg Type: Log-Pwr TRACE 1 2 3 4 5 6 Frequency
PNO: IFGain 10 dB/div Ref 20.00 dBm	ast 🖵 Trig: Free Run Low #Atten: 30 dB	Mkr1 2.432 2 GHz -5.29 dBm
10.0		Center Freq 6.50000000 GHz
-10.0		Start Freq 1.00000000 GHz
-20.0		-25.29 dBh 12.00000000 GHz
-40.0		CF Step 1.10000000 GHz <u>Auto</u> Man
-60.0	a (a transferration of the second	Freq Offset 0 Hz
Start 1.000 GHz #Res BW 100 kHz	#VBW 1.0 MHz	Stop 12.000 GHz Sweep 1.02 s (10001 pts)

Agilent Spectr	um Analyzer - Swep	ot SA		1			0
Contor F	RF 50 Ω		SENSE:IN	Ava Tur	ALIGNAUTO	D6:10:06 PM Nov 28, 2012 TRACE 1, 2, 2, 4, 5, 6	Frequency
Center F	req 18.5000	PNO: Fast G IFGain:Low	Trig: Free Run #Atten: 30 dB	OV9 IV	e. Log-r wi	TYPE MWWWWWW DET P N N N N N	
10 dB/div	Ref 20.00 dl	Зm			Mkr	1 23.139 7 GHz -47.17 dBm	Auto Tune
LUg							Contor From
10.0							18 E0000000 CU
							18.50000000 GH2
0.00				-			Otant Enor
10.0		1	1			L	12 00000000 GHz
-10.0							12.000000000000
-20.0					-		
					-	-25.29 dBm	Stop Freq
-30.0				-			25.00000000 GH2
10.0							CE Sten
-40.0						▲ 1	1.30000000 GHz
-50.0					the olders	the hereit	<u>Auto</u> Man
	No. I CANADA CANADA	A State of the second second second	day of the part of the second		and the second diversion of	Indiana and a second second	
-60.0					-		Freq Offset
							0 Hz
-70.0							
					_		
#Res BW	100 GHZ	#VBV	V 1.0 MHz		Sweep	5top 25.000 GHz 1.20 s (10001 pts)	
MSG J File	<lmage.ong> say</lmage.ong>	ved	- 410 - 111 -		STATUS	States (1999) - Barl	

RL RF	50 Q AC		SENSE:INT		ALIGN AUTO	06:19:35 PMNov 28, 201	2
enter Freq 51	5.000000	MHz	Trig: Free Run	Avg Type: Log-Pwr Run		TRACE 1 2 3 4 5 TYPE MWWWWW	6 Frequency
dB/div Ref 2	20.00 dBm	IFGain:Low	#Atten: 30 dB		Mkr	z Auto Tuno	
	1112		1.0				Center Free
0.0							515.000000 MH
.00				-	-		Start Fre
0.0	_				_		30.000000 MH
0.0						24.00.45	Stop Fre
0.0						-24.33 00	1.000000000 GH
0.0							CF Ste
0.0			1				97.000000 MH Auto Ma
	- 0	100		-0	1.5.4		Freq Offs
U.U. Har melli di al a U planim meneri aggi parta perte	reserved block broad and broad		and a fit and a birrephy		U. Helingel Date Sold	 The second s	OH
0.0							
tart 30.0 MHz Res BW 100 ki	łz	#VBW	1.0 MHz		Sweep 9	Stop 1.0000 GH	z s)

Channel 04 (2437MHz)

Agilent Spectrum Analyzer - Swept S	A.					
<mark>XIRL</mark> RF 50Ω A	C	SENSE:IN	τ	ALIGN AUTO	06:20:10 PM Nov 28, 2012	Fraguanay
Center Freq 18.500000	000 GHz	Trig: Free Run	Avg Typ	e: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
10 dB/div Ref 20.00 dBr	IFGain:Low	#Atten: 30 dB		Mkr	^{DET P NNNNN} 1 23.146 2 GHz -47.86 dBm	Auto Tune
Log				1		1.0100.000
10.0		1	_	1		Center Freq 18.50000000 GHz
0.00					L	
-10,0	<u> </u>					Start Freq 12.000000000 GHz
-20.0					-24 99 dBm	Stop Freq
-30.0						25.00000000 GHz
-40.0					▲ 1	CF Step 1.30000000 GHz
-50.0		ma la a co	in the second of the	10.00	and a state of the state of the	<u>Auto</u> Man
-60.0						Freq Offset
-70.0						
Start 12.000 GHz #Res BW 100 kHz	#VBW	1.0 MHz	1	Sweep	Stop 25.000 GHz	
мsg 🤳 File <lmage.png> saved</lmage.png>	1			STATUS		

RL	RF	50Ω AC		SENSE:	INT		ALIGN AUTO	06:31:04 P	MNov 28, 2012	
enter Fre	eq 515.0	000000	MHz] Tria: Free Ru	m	Avg Typ	e: Log-Pwr	TRAC TY	E 123456	Frequency
) dB/div	Ref 20.0	0 dBm	IFGain:Low	#Atten: 30 dE	1		Mkr	□ 1 479.9 -49.	et P NNNNN 983 MHz 57 dBm	Auto Tuno
		1112		1.00	11				1	Center Fre
0.0										515.000000 MH
00										Start Fre 30.000000 M⊦
									-25.09 dBm	Stop Fre
0.0										CF Ste
0.0				1						97.000000 MH <u>Auto</u> Ma
.0.0								and the second	and the last of	Freq Offs
		and the second second					a a construction of the lands	and the second	for any Markey of Prov	01-
0.0										
tart 30.0 I Res BW 1	VIHz 00 kHz		#VBW	1.0 MHz			Sweep 9	Stop 1.0 0.0 ms (1	0000 GHz 0001 pts)	

Channel 07 (2452MHz)

								wept SA	n Analyzer - S	ent Spectrum
Frequency	MNov 28, 2012 E 1 2 3 4 5 6	06:31:40 P TRAC	ALIGNAUTO	SENSE:INT ALIGNAUT AVG Type: Log-Pw Trig: Free Run			SHz	Ω AC	RF 50	RL enter Fre
Auto Tune	2 8 GHz 46 dBm	DE DE 1 23.252 -48	Mkr		Run dB	Trig: Free #Atten: 30	NO: Fast 🦕 Gain:Low	dBm	Ref 20.00	dB/div I
Center Freq 18.500000000 GHz		1								.0
Start Free 12.000000000 GHz										.0
Stop Fred 25.000000000 GH;	-25.09 dBm									.0
CF Step 1.300000000 GH: Auto Mar			e te com							.0
Freq Offse 0 H			- Strangeline and a							.0
	.000 GHz	Stop 25	Sween		_	1 0 MHz	#VBW		0 GHz	art 12.000
	0001 pts)	1.20 s (1	Sweep STATUS			1.0 MHz	#VBW	saved	00 kHz mage.png>	File <ir< td=""></ir<>

6. Band Edge

6.1. Test Equipment

RF Conducted Measurement

The following test equipments are used during the band edge tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3		Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2012
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2012
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2012
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2012
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2012
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2012
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2012
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	X	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note:

1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

6.2. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

6.4. Test Procedure

The EUT was setup according to ANSI C63.4: 2003 and tested according to DTS test procedure of ANSI C63.10: 2009 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4: 2003 on radiated measurement.

6.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

6.6. Test Result of Band Edge

Product	:	iDEA ⁺ Docking Station
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

RF Radiated Measurement (Horizontal):

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Degult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	33.739	23.424	57.163	74.00	54.00	Pass
01 (Peak)	2411.000	33.769	62.077	95.846			Pass
01 (Average)	2390.000	33.739	11.777	45.516	74.00	54.00	Pass
01 (Average)	2409.400	33.767	58.583	92.350			Pass

Figure Channel 01:

Horizontal (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	iDEA ⁺ Docking Station
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	32.267	22.434	54.701	74.00	54.00	Pass
01 (Peak)	2411.000	32.244	61.589	93.833			Pass
01 (Average)	2390.000	32.267	13.260	45.527	74.00	54.00	Pass
01 (Average)	2409.400	32.245	58.163	90.407			Pass

Figure Channel 01:

VERTICAL (Peak)

VERTICAL (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	iDEA ⁺ Docking Station
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2460.900	33.890	59.252	93.142			Pass
11 (Peak)	2483.500	33.951	21.683	55.633	74.00	54.00	Pass
11 (Average)	2459.300	33.886	55.891	89.777			Pass
11 (Average)	2483.500	33.951	11.132	45.082	74.00	54.00	Pass

Figure Channel 11:

Horizontal (Peak)

Figure Channel 11:

Horizontal (Average) 120.0 110.0 100.0 90.0 80.0 70.0 Level(dBuV/m) 60.0 50.0 40.0 30.0 20.0 10.0 0.0 - 2433.500 2440.000 2450.000 2460.000 2470.000 2480.000 2490.000 2500.000 2510.000 2520.000 2533.500 Frequency (MHz)

- All readings above 1GHz are performed with peak and/or average measurements as necessary. 1.
- Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto. 2.
- Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. 3.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.

Product	:	iDEA ⁺ Docking Station
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2460.900	32.476	59.267	91.742			Pass
11 (Peak)	2483.500	32.586	22.165	54.750	74.00	54.00	Pass
11 (Average)	2459.300	32.468	55.973	88.440			Pass
11 (Average)	2483.500	32.586	11.128	43.713	74.00	54.00	Pass

Figure Channel 11:

VERTICAL (Peak)

Figure Channel 11:

VERTICAL (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	iDEA' Docking Station
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	33.739	23.273	57.012	74.00	54.00	Pass
01 (Peak)	2409.600	33.768	60.704	94.471			Pass
01 (Average)	2390.000	33.739	11.486	45.225	74.00	54.00	Pass
01 (Average)	2410.200	33.768	51.691	85.459			Pass

Figure Channel 01:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	iDEA ⁺ Docking Station
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	32.267	23.059	55.326	74.00	54.00	Pass
01 (Peak)	2409.000	32.244	60.655	92.899			Pass
01 (Average)	2390.000	32.267	11.393	43.660	74.00	54.00	Pass
01 (Average)	2410.000	32.244	51.824	84.068			Pass

Figure Channel 01:

VERTICAL (Peak)

Figure Channel 01:

VERTICAL (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	iDEA' Docking Station
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2460.100	33.887	58.583	92.471			Pass
11 (Peak)	2483.500	33.951	24.101	58.051	74.00	54.00	Pass
11 (Average)	2460.500	33.889	49.595	83.484			Pass
11 (Average)	2483.500	33.951	11.194	45.144	74.00	54.00	Pass

Figure Channel 11:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	iDEA ⁺ Docking Station
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2459.500	32.468	57.124	89.592			Pass
11 (Peak)	2483.500	32.586	22.498	55.083	74.00	54.00	Pass
11 (Peak)	2487.300	32.603	24.833	57.436	74.00	54.00	Pass
11 (Average)	2458.700	32.465	48.173	80.638			Pass
11 (Average)	2483.500	32.586	11.146	43.731	74.00	54.00	Pass

Figure Channel 11:

VERTICAL (Peak)

VERTICAL (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	iDEA ⁺ Docking Station
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

Channel No.	Frequency (MHz)	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Result
	(WITIZ)	(uD)	(uDuv)	(uDu v/III)	(uDu v/III)	(uDu v/III)	
01 (Peak)	2390.000	33.739	22.700	56.439	74.00	54.00	Pass
01 (Peak)	2408.800	33.766	60.549	94.315			Pass
01 (Average)	2390.000	33.739	11.523	45.262	74.00	54.00	Pass
01 (Average)	2409.200	33.766	51.214	84.980			Pass

Figure Channel 01:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	iDEA ⁺ Docking Station
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
01 (Peak)	2390.000	32.267	23.137	55.404	74.00	54.00	Pass
01 (Peak)	2409.000	32.244	60.157	92.401			Pass
01 (Average)	2390.000	32.267	11.509	43.776	74.00	54.00	Pass
01 (Average)	2415.000	32.263	50.843	83.105			Pass

Figure Channel 01:

VERTICAL (Peak)

VERTICAL (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	1DEA' Docking Station
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Decult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2458.900	33.885	58.622	92.507			Pass
11 (Peak)	2483.500	33.951	22.911	56.861	74.00	54.00	Pass
11 (Average)	2458.900	33.885	49.104	82.989			Pass
11 (Average)	2483.500	33.951	11.192	45.142	74.00	54.00	Pass

Figure Channel 11:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	iDEA ⁺ Docking Station
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
11 (Peak)	2456.500	32.454	56.877	89.331			Pass
11 (Peak)	2483.500	32.586	22.843	55.428	74.00	54.00	Pass
11 (Average)	2456.700	32.454	47.382	79.837			Pass
11 (Average)	2483.500	32.586	11.129	43.714	74.00	54.00	Pass

Figure Channel 11:

VERTICAL (Peak)

Figure Channel 11:

VERTICAL (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	iDEA ⁺ Docking Station
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
03 (Peak)	2386.800	33.736	25.636	59.372	74.00	54.00	Pass
03 (Peak)	2390.000	33.739	24.538	58.277	74.00	54.00	Pass
03 (Peak)	2412.200	33.772	57.636	91.408			Pass
03 (Average)	2390.000	33.739	12.333	46.072	74.00	54.00	Pass
03 (Average)	2411.800	33.771	48.150	81.921			Pass

Figure Channel 03:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	iDEA ⁺ Docking Station
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
03 (Peak)	2388.200	32.279	25.022	57.301	74.00	54.00	Pass
03 (Peak)	2390.000	32.267	23.344	55.611	74.00	54.00	Pass
03 (Peak)	2432.400	32.341	57.139	89.480			Pass
03 (Average)	2390.000	32.267	12.178	44.445	74.00	54.00	Pass
03 (Average)	2412.400	32.250	47.743	79.994			Pass

Figure Channel 03:

VERTICAL (Peak)

VERTICAL (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	1DEA' Docking Station
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Docult
	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
09 (Peak)	2462.300	33.893	56.282	90.175			Pass
09 (Peak)	2483.500	33.951	22.945	56.895	74.00	54.00	Pass
09 (Average)	2461.300	33.890	46.443	80.334			Pass
09 (Average)	2483.500	33.951	11.461	45.411	74.00	54.00	Pass

Figure Channel 09:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	iDEA ⁺ Docking Station
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW)

	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Arerage Limit	Dogult
Channel No.	(MHz)	(dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dBuV/m)	Result
09 (Peak)	2442.300	32.386	55.654	88.040			Pass
09 (Peak)	2483.500	32.586	23.491	56.076	74.00	54.00	Pass
09 (Average)	2441.500	32.382	45.956	78.338			Pass
09 (Average)	2483.500	32.586	11.298	43.883	74.00	54.00	Pass

Figure Channel 09:

VERTICAL (Peak)

VERTICAL (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. Occupied Bandwidth

7.1. Test Equipment

	Equipment	Equipment Manufacturer Model No./Serial No.				
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012		
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012		
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012		

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

7.2. Test Setup

7.3. Limits

The minimum bandwidth shall be at least 500 kHz.

7.4. Test Procedure

The EUT was setup according to ANSI C63.4: 2003; tested according to DTS test procedure of ANSI C63.10: 2009 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 1-5% of the emission bandwidth, VBW \geq 3*RBW

7.5. Uncertainty

 \pm 150Hz

7.6. Test Result of Occupied Bandwidth

Product	:	iDEA ⁺ Docking Station
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412	12300	>500	Pass

Figure Channel 1:

	MNov 28, 2012	03:27:19 PM	ALIGN AUTO		SENSE:INT			AC	50 Ω	RF		L	R
Frequency	E 1 2 3 4 5 6 E M WWWW	TRACE 1 2 3 4 5 6 TYPE MWWWWW		Avg Type: Log-Pwr] Tria: Free Run		0000 GH	12000	2.4	Fre	ter	Cen
- Annala	TPNNNNN	DE	-0.0	_	: 30 dB	#A	ain:Low	IFGain:Low			-		
Auto Tune	85 GHz 70 dBm	2.405 -3.7	Mkr2					Bm	0.00 dl	lef 2	F	B/div	10 dl
Center Fre	1		-		A1		100						-og
2 412000000 GH	-2.94 dBm			$\langle \rangle^3$	manning phinning								0.00
				M	1		JAN V						10.0
				The state		_	1					-	20.0
Start Free		-		3	-		/			_		_	30.0
2.387000000 GH		0	han phy					and and	A		_		40.0
	Signal second	Vivente	Arr					An	Twin	and the second	-	Antata	50.0
Stop Fre		= -									_		60.0
2.437000000 GH					-						_		70.0
CF Ster 5 000000 MH	0.00 MHz 1001 pts)	Span 5 .00 ms ('	Sweep 1		Hz	1.0	#VBW		SHZ Z	200 (0 kH	2.41 N 30	s B	Re
Auto Mai	IN VALUE	FUNCTIO	ICTION WIDTH	ICTION				×		SCL	TRC	MODE	MKR
1					dBm dBm) GHz	2.411 00		f	1	N	1
Freq Offse					BdBm	-	GHz	2.418 15		f	1	N	3
0 H													5
											-		6
													8
										-	-	-	9
		-											11
L										_	-	_	121

Product	:	iDEA ⁺ Docking Station
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437	12300	>500	Pass

Figure Channel 6:

		lon an or						pt SA	lyzer - Swe	m Ana	ectru	nt Spe	Agiler
Frequency	ACE 1 2 3 4 5 6	ALIGNACIO U347/33 PMNOV 28, 2012 Avg Type: Log-Pwr TRACE 2 3 4 5 6 TYPE MuwWWWW				z	0000 GH	.43700	eq 2	Fre	ter	Cer	
Auto Tune		2 2 420	Mkr		dB	#Atten: 30	iain:Low	IFG				_	
	8.80 dBm	-3.				_		IBm	20.00 d	Ref	v	B/div	10 d
Center Free 2.437000000 GH:	3:10 dDm			Q ³	MANANA C	manning							10.0
Start Free				a why			J. J. J.						-10.0 -20.0 -30.0
Stop Free	15 april and the second state	- Maria	Maria					Marria Marrie	mont	Con M	-	a ciliana	-40.0 -50.0 -60.0
2.462000000 GH	50.00 MHz ; (1001 pts)	Span : 1.00 ms	Sweep '			1.0 MHz	#VBW) GHz (Hz	3700 300 H	2.4: W 3	ter s B	-70.0 Cer #Re
<u>Auto</u> Ma	TION VALUE	FUNCT	NCTION WIDTH	NCTION F	3m	y 2.90 di) GHz	× 2.436 0		f Sol	TRC	MODE N	MKR 1
Freq Offse 0 H					3m 3m	-3.80 dl -3.42 dl	5 GHz 5 GHz	2.430 8 2.443 1		f f	1	N	23456
													7 8 9 10
			STATUS		1							-	12

Product	:	iDEA ⁺ Docking Station
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462	12300	>500	Pass

Figure Channel 11:

Agilent Spo	ectrur	n Anal	yzer - Swa	pt SA			Name of the	T				1
Center	Fre	q 2	.46200	0000 G	Hz	Trig: Fre	Run	Avg T	ype: Log-Pwr	U4:11:U91 TRA TY	CE 1 2 3 4 5 6 PE MWWWWW	Frequency
		è		UF UF	Gain:Low	#Atten: 3) dB		Mkr	2 2 455		Auto Tune
10 dB/di	v	Ref	20.00 c	IBm	_			_	IVINI	-3.	65 dBm	
10.0	-					2	1	∧3				Center Fre
-10.0	-				JAS .	V	provin	Ma			-2,92 dBm	2.462000000 GH
-20.0	_				1			- N	2			Start Fre
-30.0				17	1	1			Jan	1		2.437000000 GH
-50.0	por the	and a	Maar	and we a					a stere	Vine	and the second	
-60.0												Stop Free 2.487000000 GH
Center #Res B	2.40 W 3	6200 00 k	GHz Hz		#VB	W 1.0 MHz			Sweep	Span : 1.00 ms	50.00 MHz (1001 pts)	CF Ste
MKR MODE	TRC	SEL		X		Y 2.00 d		UNCTION	FUNCTION WIDTH	FUNCT	ON VALUE	Auto Ma
2 N 3 N	1	f		2.461 0	35 GHz 15 GHz	-3.65 d	Bm Bm					F
4 5												Pred Onse 0 H
6 7 8			_		-							
9 10	1											
11 12												
ASG									STATU	s		

Product	:	iDEA ⁺ Docking Station
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412	16400	>500	Pass

Figure Channel 1:

gilent Spectrum Analyzer - Swept SA				
RL RF 50 Ω AC	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	04:26:32 PMNov 28, 2012 TRACE 1 2 3 4 5 6	Frequency
PNO: Fast G IFGain:Low	Trig: Free Run #Atten: 30 dB		DET P N N N N N	T-84557
0 dB/div Ref 20.00 dBm		Mkr	2 2.403 80 GHz -2.40 dBm	Auto Tune
	mon	X 3	-2,04 dBm	Center Fre 2.412000000 GH
		Jone	ma	Start Free 2.387000000 GH
500				Stop Fre 2.437000000 GH
center 2.41200 GHz Res BW 300 kHz #VBV	V 1.0 MHz	Sweep	Span 50.00 MHz 1.00 ms (1001 pts)	CF Ste
IN 1 F 2.416 15 GHz	3.96 dBm	JNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Ma
2 N 1 f 2.403 80 GHz 3 N 1 f 2.420 20 GHz 4 - - - 5 - - - 6 - - -	-2.40 dBm -2.25 dBm			Freq Offse 0 H
7 8 9 0				

Product	:	iDEA ⁺ Docking Station
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437	16400	>500	Pass

Figure Channel 6:

Spe	etrun	n Ana	yzer - Sw	rept SA										
er	Fre	eq 2	.4370	2 AC	0 GI		ast 🕞	Trig: Free	Run	Avg Ty	pe: Log-Pwr	04:37:56 P TRAC TYI	MNov 28, 2012 E 1 2 3 4 5 6 E MWWWWW	Frequency
div		Ref	20.00	dBm	UF	Gain:l	ow	#Atten: 30) dB		Mkr	2 2.428 -2.1	80 GHz 65 dBm	Auto Tune
						-	2	Newson		2 pmp	3		-2.08 dBm	Center Fred 2.437000000 GH:
	Water		m	- mar		1					base	www.		Start Free 2.412000000 GH:
-d													Mult-	Stop Fred 2.462000000 GH:
er : B\	2.4: N 3	3700 00 k	GHz Hz			#	#VBW	1.0 MHz			Sweep	Span 5 1.00 ms (0.00 MHz 1001 pts)	CF Step 5.000000 MH
N N	1	f f		2	.441 2 .428 8	20 GH	iz iz	3.92 d -2.65 d	Bm Bm	INCTION	FUNCTION WIDTH	FUNCTIO	IN VALUE	<u>Auto</u> Mar
N	1	f		2	.445 2	20 GH		-2.10 d	Bm					Freq Offse 0 H:
	er BN N N	Spectrum er Fre /div er 2.4.1 BW 3 003 103 N 1 N 1 N 1	Spectrum Anal RF er Freq 2 /div Ref /div Ref /div Ref //div Ref	Spectrum Analyzer. Sw RF 505 er Freq 2.4370 /div Ref 20.00 /div Ref 20.00 er 2.43700 BW 300 kHz BW 300 kHz OO2 TEC SCI F N 1 N 1 I I I I I I I I	Spectrum Analyzer Swept SA RF 50 R gr Freq 2.43700000 /div Ref 20.00 dBm /div Ref 20.00 dBm	Spectrum Analyzer - Swept SA RF 50 Q AC er Freq 2.437000000 GI P P /div Ref 20.00 dBm /div Ref 20.00 dBm er F /div Ref 20.00 dBm er F /div Ref 20.00 dBm er E galaxies F er 2.43700 GHz BW 300 kHz X N 1 f 2.441 2 N 1 f 2.445 2 F 2.445 2	Spectrum Analyzer - Swept SA RF 50 Ω AC er Freq 2.437000000 GHz PN0: F /div Ref 20.00 dBm //div Ref 20.00 dBm //div Ref 20.00 dBm //div Ref 20.00 dBm //div Ref 20.00 dBm //div Ref 20.00 dBm //div Ref 20.00 dBm //div Ref 20.00 dBm //div //div Ref 20.00 dBm //div //div Ref 20.00 dBm //div //div //div Ref 20.00 dBm //div <p< td=""><td>Spectrum Analyzer - Swept SA RF 50.2 AC er Freq 2.437000000 GHz PN0: Fast Floain:Low /div Ref 20.00 dBm //div Ref 20.00 dHz //div Ref 20.00 GHz BW 300 kHz #VBW 003 Tf 2.441 20 GHz N 1 1 1 2.445 20 GHz 1 1</td><td>Spectrum Analyzer - Swept 5A see RF 50 Q AC see er Freq 2.437000000 GHz Trig:Free Trig:Free PN0: Fast #Atten: 30 /div Ref 20.00 dBm 2 //div Ref 20.00 dHz 3/2 div //div Ref 20.00 dHz #VBW 1.0 MHz //div 1 2.441 20 GHz 3.92 div //div 1 2.445 20 GHz 2.10 div</td><td>Spectrum Analyzer - Swept SA RF 50 2 AC SENSE:INT er Freq 2.437000000 GHz Trig: Free Run IFGain:Low Trig: Free Run #Atten: 30 dB /div Ref 20.00 dBm 2 /div Ref 20.00 GHz 3.92 dBm N I F 2.445 20 GHz /div I 2.10 dBm 2.10 dBm</td><td>Spectrum Analyzer - Swept SA RF 500 AC SENSE:INT Avg Ty PNO: Fast PNO: Fast PNO: Fast PNO: Fast PNO: Fast POID AD BM /div Ref 20.00 dBm /div Ref 20.00 dBm 2 /div Ref 20.00 GHz 2 /div Ref 20.00 GHz 3.92 dBm /div Ref 20.00 KHz 3.92 dBm N 1 f 2.445 20 GHz /div Ref 2.10 dBm 2.10 dBm</td><td>Spectrum Analyzer - Swept SA RF 50 2 AC SENSE:INT AUXIAUTO Avg Type: Log-Pwr Trig: Free Run MKr MKr //div AC SENSE:INT Avg Type: Log-Pwr MKr //div Add to grad to</td><td>Spectrum Analyzer - Swept SA RF 50 Q AC SENSE:INT ALIGNAUTO D4:37:56 P ITrig: Free Run IFGain:Low Avg Type: Log-Pwr Trig: PWC Type: Log-Pwr Mkr2 2.428 /div Ref 20.00 dBm Q Q Q Q Q Q Q Q Mkr2 2.428 /div Ref 20.00 dBm Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q</td><td>Spectrum Analyzer Swept SA RF 50 gr AC SENSE::INT ALIGNAUTO D4:37:56 PMINov 28; 2012 er Freq 2.437000000 GHz Trig: Free Run Avg Type: Log.Pwr TRACE 12:34:56 PNO: Fast PNO: Fast Trig: Free Run Avg Type: Log.Pwr TRACE 12:34:56 /div Ref 20.00 dBm -2.65 dBm -2.65 dBm -2.65 dBm /div Ref 20.00 dBm -2.65 dBm -2.08 dbm -2.08 dbm /div Ref 20.00 dBm -2.65 dBm -2.08 dbm -2.08 dbm PNO: Ref 20.00 dBm -2.08 dbm -2.08 dbm -2.08 dbm -2.08 dbm PNO: NO PNO: NO PNO: NO PNO: NO PNO: NO PNO: NO rdiv Ref 20.00 dBm -2.08 dbm -2.08 dbm -2.08 dbm -2.08 dbm PNO: NO PNO: NO PNO: NO PNO: NO PNO: NO PNO: NO PNO: NO PNO: NO PNO: NO <t< td=""></t<></td></p<>	Spectrum Analyzer - Swept SA RF 50.2 AC er Freq 2.437000000 GHz PN0: Fast Floain:Low /div Ref 20.00 dBm //div Ref 20.00 dHz //div Ref 20.00 GHz BW 300 kHz #VBW 003 Tf 2.441 20 GHz N 1 1 1 2.445 20 GHz 1 1	Spectrum Analyzer - Swept 5A see RF 50 Q AC see er Freq 2.437000000 GHz Trig:Free Trig:Free PN0: Fast #Atten: 30 /div Ref 20.00 dBm 2 //div Ref 20.00 dHz 3/2 div //div Ref 20.00 dHz #VBW 1.0 MHz //div 1 2.441 20 GHz 3.92 div //div 1 2.445 20 GHz 2.10 div	Spectrum Analyzer - Swept SA RF 50 2 AC SENSE:INT er Freq 2.437000000 GHz Trig: Free Run IFGain:Low Trig: Free Run #Atten: 30 dB /div Ref 20.00 dBm 2 /div Ref 20.00 GHz 3.92 dBm N I F 2.445 20 GHz /div I 2.10 dBm 2.10 dBm	Spectrum Analyzer - Swept SA RF 500 AC SENSE:INT Avg Ty PNO: Fast PNO: Fast PNO: Fast PNO: Fast PNO: Fast POID AD BM /div Ref 20.00 dBm /div Ref 20.00 dBm 2 /div Ref 20.00 GHz 2 /div Ref 20.00 GHz 3.92 dBm /div Ref 20.00 KHz 3.92 dBm N 1 f 2.445 20 GHz /div Ref 2.10 dBm 2.10 dBm	Spectrum Analyzer - Swept SA RF 50 2 AC SENSE:INT AUXIAUTO Avg Type: Log-Pwr Trig: Free Run MKr MKr //div AC SENSE:INT Avg Type: Log-Pwr MKr //div Add to grad to	Spectrum Analyzer - Swept SA RF 50 Q AC SENSE:INT ALIGNAUTO D4:37:56 P ITrig: Free Run IFGain:Low Avg Type: Log-Pwr Trig: PWC Type: Log-Pwr Mkr2 2.428 /div Ref 20.00 dBm Q Q Q Q Q Q Q Q Mkr2 2.428 /div Ref 20.00 dBm Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	Spectrum Analyzer Swept SA RF 50 gr AC SENSE::INT ALIGNAUTO D4:37:56 PMINov 28; 2012 er Freq 2.437000000 GHz Trig: Free Run Avg Type: Log.Pwr TRACE 12:34:56 PNO: Fast PNO: Fast Trig: Free Run Avg Type: Log.Pwr TRACE 12:34:56 /div Ref 20.00 dBm -2.65 dBm -2.65 dBm -2.65 dBm /div Ref 20.00 dBm -2.65 dBm -2.08 dbm -2.08 dbm /div Ref 20.00 dBm -2.65 dBm -2.08 dbm -2.08 dbm PNO: Ref 20.00 dBm -2.08 dbm -2.08 dbm -2.08 dbm -2.08 dbm PNO: NO PNO: NO PNO: NO PNO: NO PNO: NO PNO: NO rdiv Ref 20.00 dBm -2.08 dbm -2.08 dbm -2.08 dbm -2.08 dbm PNO: NO PNO: NO PNO: NO PNO: NO PNO: NO PNO: NO PNO: NO PNO: NO PNO: NO <t< td=""></t<>

Product	:	iDEA ⁺ Docking Station
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462	16450	>500	Pass

Figure Channel 11:

gilent Spectrum Analyzer - Swept SA				le
	Trig: Free Run	Aug Type: Log-Pwr	D4:52:25 PM Nov 28, 2012 TRACE 1 2 3 4 5 6 TYPE M WWWWW	Frequency
IFGain:Lo 10 dB/div Ref 20.00 dBm	#Atten: 30 dB	Mkr	2 2.453 80 GHz -2.43 dBm	Auto Tune
	n la m		-1.98.dBm	Center Free 2.462000000 GH
20.0 30.0 40.0		how	in the second	Start Free 2.437000000 GH
60.0			"Long.	Stop Fre 2.487000000 GH
Center 2.46200 GHz Res BW 300 kHz #V	BW 1.0 MHz	Sweep	Span 50.00 MHz 1.00 ms (1001 pts)	CF Ste
AKR MODE TRC SCL X 1 N 1 f 2.459 75 GHz 2 N 1 f 2.453 90 CHz	4.02 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Ma
2,430 80 912 4 5 6 7 8 9	-3.04 dBm			Freq Offse 0 H
10				

Product	:	iDEA ⁺ Docking Station
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412	17600	>500	Pass

Figure Channel 1:

gilent Spectrum Analyzer - S	Swept SA				1
Center Freq 2.412	000000 GHz	Trig: Free Run	ALIGNAUTO Avg Type: Log-Pwr	05:26:23 PMNov 28, 2012 TRACE 1 2 3 4 5 6 TYPE MWWWWWW	Frequency
0 dB/div Ref 20.00	IFGain:Low	#Atten: 30 dB	Mkr	2 2.403 20 GHz -2.45 dBm	Auto Tune
.0g 10.0 0.00	2	1	~~~^ ³	-2.13 dBm	Center Free 2.412000000 GH
20.0 30.0 40.0	mark			muner with the same and a	Start Fre 2.387000000 GH
0.0					Stop Fre 2.437000000 G⊦
enter 2.41200 GHz Res BW 300 kHz	#VB1	N 1.0 MHz	Sweep	Span 50.00 MHz 1.00 ms (1001 pts)	CF Ste
R MODE TRO SCI	2.407 10 GHz	3.87 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Ma
N I I 4 - - 5 - - 6 - - 7 - - 8 - - 9 - -	2.403 20 GHz	-2.58 dBm			Freq Offse 0 H

Product	:	iDEA ⁺ Docking Station
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437	17600	>500	Pass

Figure Channel 6:

Agilent Sp	ectru	m Analy	zer - Swept SA								I
Center	r Fre	eq 2.	437000000 C	GHz	Trig: Free	SE:INT	Avg Type	alignauto : Log-Pwr	05:42:08 F TRAI TY	MNov 28, 2012 CE 1 2 3 4 5 6 PE MWWWWWW	Frequency
	_		1	IFGain:Low	#Atten: 30	dB		Mkr	D		Auto Tune
10 dB/di	iv	Ref 2	20.00 dBm					NIKL	-2.	64 dBm	
10.0 0.00				♦ ²	1 min		Q ³	8		2.58 dBm	Center Free 2.437000000 GH
-10.0				1			1				Start Fre
-30.0	- AM	rent		1				home and	- con	W manager	2.412000000 GH
-50.0 -60.0 -70.0											Stop Fre 2.462000000 GH
Center Res B	2.43 W 3	3700 100 ki	GHz Iz	#VB	W 1.0 MHz			Sweep	Span 5 1.00 ms (0.00 MHz 1001 pts)	CF Ste
MKR MODI	E TRC	SCL f	× 2.432	2 15 GHz	¥ 3.42 dB	FU	NCTION FU	NCTION WIDTH	FUNCTI	ON VALUE	<u>Auto</u> Ma
2 N 3 N 4 5	1	f f	2.428 2.445	3 20 GHz 5 80 GHz	-2.64 dB -2.64 dB	m					Freq Offse 0 H
7 8 9											
11 12											
ISG								STATUS	1		

Product	:	iDEA ⁺ Docking Station
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462	17600	>500	Pass

Figure Channel 11:

		long and			Name and and	- cir		ept SA	yzer - Sw	n Anal	ctrun	r spe	D
Frequency	ACE 1 2 3 4 5 6 YPE MWWWWW	U0:04:J T	: Log-Pwr	Avg Ty	e Run	Trig: Fre	Z	00000 GH	.4620	q 2	Fre	ter	ent
Auto Tune	20 GHz 85 dBm	2 2.45	Mkr		0 dB	#Atten: 3	ain:Low	IBm	20.00	Ref		Bidiy	dE
Center Fre 2.462000000 GH	-2.67 dBm					21	\$ ²		20.00				9 0.0 .00
Start Fre 2.437000000 GH	and a say where	~	1 A Bearing					monsact	~~	100	New York	-	0.0 0.0 0.0
Stop Fre 2.487000000 GH													0.0 0.0 0.0
CF Ste	50.00 MHz (1001 pts)	Spar 1.00 m	Sweep			1.0 MHz	#VBV		GHz Hz	6200 00 k	2.46 N 3	ter : s B\	ent
Auto Ma	ION VALUE	FUN	ICTION WIDTH	NCTION	Bm Bm	3.33 d	5 GHz	× 2.457 1		f	TRE	N	F N
Freq Offse 0 H					Bm	-2.81 d) GHz	2.470 8		f	1	Ň	3 4 5 6 7
													8 9 0

Product	:	iDEA ⁺ Docking Station
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2422MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
3	2422	36200	>500	Pass

Figure Channel 1:

gilent Spec	trum Analy	vzer - Swept SA		-		-		0
enter	Freq 2.	422000000 GHz PN0: East	Trig: Free Rur	Avg Typ	e: Log-Pwr	06:06:18 PF TRAC TYP	4Nov 28, 2012 E 1 2 3 4 5 6 E M WAAAAAAA	Frequency
0 dB/div	Ref	IFGain:Low 20.00 dBm	#Atten: 30 dB		Mk	r2 2.403 -0.6	9 GHz 5 dBm	Auto Tune
.og 10.0 0.00		²			3		0.17 dBm	Center Free 2.422000000 GH
20.0 30.0 40.0	-	man				- where	- Mr way	Start Free 2.372000000 GH
50.0 50.0 70.0	+							Stop Fre 2.472000000 GH
enter 2 Res BV	2.42200 N 1.0 M	GHz Hz #VE	3W 3.0 MHz		Sweep	Span 1 1.00 ms (′	00.0 MHz 1001 pts)	CF Ste
KR MODE		2.432.2 GHz	5.82 dBm		INCTION WIDTH	FUNCTIO	N VALUE	<u>Auto</u> Ma
3 N 4 5 6		2.403 9 GHz 2.440 1 GHz	-0.05 dBm -0.27 dBm					Freq Offse 0 H
7 8 9 10 11								
sg					STATUS			

Product	:	iDEA ⁺ Docking Station
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437	36200	>500	Pass

Figure Channel 4:

		lan an an	A REPORT OF A REPORT	1	orea teners as ten		1	ept SA	lyzer - Sw	m Ana	etru	nt Spe	Agile	
Frequency	PMINOV 28, 2012 ACE 1 2 3 4 5 6 APE MAXAMAN	TRACE 1 2 3 4 5 6 TYPE MWWWWW		Avg Type: Log-Pwr ee Run			enter Freq 2.437000000 GHz				0000 GHz PN0: Fast C Trig: Free			Cer
Auto Tune	8 9 GHz 48 dBm	r2 2.41 -0.	Mk		en: 30 dB	4	iain:Low	IFC 1Bm	20.00	Ref		B/div	10 d	
Center Free 2.437000000 GH	-0.24 dBm				\$ ¹	-							Log 10.0 0.00	
Start Free 2.387000000 GH	and any construction of the		ton					nnt	ser	~	gran a	ן און די	-10.0 -20.0 -30.0 -40.0	
Stop Free 2.487000000 GH										-			-50.0 -60.0 -70.0	
CF Step	100.0 MHz (1001 pts)	Span 1.00 ms	Sweep		ЛНz	N 3	#VB) GHz 1Hz	3700 1.0 N	2.4: W 1	ter s B	Cer #Re	
<u>Auto</u> Mar	ION VALUE	FUNCT	ICTION WIDTH	INCTION CON	76 dBm		7 GHz	× 2.434		f	TRC 1	MODE	MKE 1	
Freq Offse 0 H					48 dBm 28 dBm		1 GHz	2.418		f	1	N	2 3 4 5 6	
													7 8 9 10 11	
6			STATUS		I	_	1						12 MSG	

Product	:	iDEA ⁺ Docking Station
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2452MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
9	2452	36200	>500	Pass

Figure Channel 7:

RL		RF	50 Ω AC			SEI	ISE:INT	1	ALIGNAUTO	06:27:54	PMNov 28, 2012	
enter	Fre	q 2.45	520000	00 GH	Z 10: Fast Ģ	Trig: Free	Run	Avg T	ype: Log-Pwr	TRA TY	CE 123456 PE MWWWWW	Frequency
dB/di	v	Ref 20	.00 dBm	IFG 1	ain:Low	#Atten: 30	dB		Mk	r2 2.43 -0.	3 9 GHz 72 dBm	Auto Tune
9 0.0 00 1.0					◆ ²	-	_	Q1	⊘ ³		-0.42 dBm	Center Free 2.452000000 GH:
.0	Ar WARTSTON	har	ann	Jul .					- communities	man	and the generally	Start Free 2.402000000 GH;
0												Stop Free 2.502000000 GH;
nter es B	2.45 W 1.	200 G 0 MHz	Hz		#VBV	/ 3.0 MHz			Sweep	Span 1 1.00 ms	100.0 MHz (1001 pts)	CF Step
N N		scu f		× 2.462 3	3 GHz	5.58 dl	3m 2m	INCTION	FUNCTION WIDTH	FUNCTI	ION VALUE	<u>Auto</u> Mar
Ň	1	ŕ		2.470	I GHz	-0.55 dl	3m					Freq Offsel 0 Hz
)))												
3 3 2												

8. **Power Density**

8.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limits

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

8.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003; tested according to DTS test procedure of ANSI C63.10: 2009 for compliance to FCC 47CFR 15.247 requirements. Set RBW= 100 kHz, VBW \geq 300KHz, SPAN to 5-30 % greater than the EBW, Scale the observed power level to an equivalent value in 3 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where BWCF = 10log (3 kHz/100 kHz = -15.2 dB).

8.5. Uncertainty

 \pm 1.27 dB
8.6. Test Result of Power Density

Product	:	iDEA ⁺ Docking Station
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1	2412	-13.501	< 8dBm	Pass

Agilent Spectrum Analyzer - Swept SA				
Center Freq 2.412000000 GHz	SENSEIINT	ALIGNAUTO Avg Type: Log-Pwr	03:33:38 PMNov 28, 2012 TRACE 1 2 3 4 5 6	Frequency
PNO: Fas IFGain:Lo 10 dB/div Ref 4.80 dBm	t 🖵 Trig: Free Run w #Atten: 30 dB	Avg Heid>100/100	Det P NNNN 1 2.412 98 GHz -13.501 dBm	Auto Tune
-5.20	1			Center Freq 2.412000000 GHz
-15.2 -25.2	And prin	America		Start Freq 2.402000000 GHz
-35.2 -45.2			N	Stop Freq 2.422000000 GHz
-56.2 				CF Step 2.000000 MHz <u>Auto</u> Man
-75.2				Freq Offset 0 Hz
Center 2.41200 GHz #Res BW 100 kHz #\	/BW 300 kHz	Sweep 1	Span 20.00 MHz I.93 ms (1001 pts)	

Product	:	iDEA ⁺ Docking Station
Test Item	:	Power Density Data
Test Site	:	No.3OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437	-13.937	< 8dBm	Pass

L RF 50 Q AC	INT ALIGNAUTO 03:52:35 PMNov 28, 2012	
nter Freq 2.437000000 GH	Avg Type: Log-Pwr TRACE 123456 Frequium Avg Hold>100/100 TYPE MWWWWW	ency
Ref Offset -15.2 dB B/div Ref 4.80 dBm	ی معنی میں معنی معنی معنی معنی معنی معنی معنی معنی	ito Tune
	Ceni 2.437000	iter Fred 0000 GHz
- Martin	St. 2.427000	art Freq 0000 GHz
		t op Frec 0000 GHz
	2.000 Auto	CF Step 3000 MHz Mar
	Fre	q Offsel 0 Hz
nter 2.43700 GHz s BW 100 kHz	Span 20.00 MHz Sweep 1.93 ms (1001 pts)	

Product	:	iDEA ⁺ Docking Station
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
11	2462	-13.819	< 8dBm	Pass

GHz PNO: Fast 🌩 IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 1 2 3 4 5 6	Frequency
PNO: Fast 😱 IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold:>100/100	TYPE MILANARABALAN	
		Mkr	DET P NNNNN 1 2.462 98 GHz -13.819 dBm	Auto Tune
	▲ ¹			Center Fred 2.462000000 GH;
And	- market	Anna		Start Free 2.452000000 GH:
			M	Stop Free 2.472000000 GH
				CF Stej 2.000000 MH <u>Auto</u> Ma
				Freq Offse 0 H
#VBW	300 kHz	Sweep	Span 20.00 MHz 1.93 ms (1001 pts)	-
		#VBW 300 kHz	#VBW 300 kHz Sweep	#VBW 300 KHz Span 20.00 MHz Sweep 1.93 ms (1001 pts)

Product	:	iDEA ⁺ Docking Station
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

Channel No. Frequency (MHz)		Measure Level (dBm)	Limit (dBm)	Result
1	2412	-17.092	< 8dBm	Pass

RL RE 50.Q AC		SENSE:INT	6	LIGN AUTO	04:32:49 PMNov 28, 2012	
enter Freq 2.412000000		Trig: Free Run	Avg Type: Avg Hold:>	Log-Pwr 100/100	TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
Ref Offset -15.2 dB dB/div Ref 4.80 dBm	IFGain:Low	#Atten: 30 dB		Mkr1	2.416 14 GHz -17.092 dBm	Auto Tune
20				1		Center Fred 2.412000000 GH:
2 marsharman	umanna	handre have	r-manner of	v	mm	Start Free 2.402000000 GH
.2 .2					J. J	Stop Fre 2.422000000 GH
.2						CF Stej 2.000000 MH <u>Auto</u> Ma
.2						Freq Offse 0 H
enter 2.41200 GHz	#\/P\M	300 kHz		Swoon	Span 20.00 MHz	

Product	:	iDEA ⁺ Docking Station
Test Item	:	Power Density Data
Test Site	:	No.3OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437	-17.225	< 8dBm	Pass

RL RF 50.0 AC		SENSE:INT	ALIGNAUTO	04:42:53 PMNov 28, 2012	I share the second second second
nter Freq 2.437000000 G	Hz	Trig: Free Run	Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 123456 TYPE MWWWWWW	Frequency
Ref Offset -15.2 dB B/div Ref 4.80 dBm	FGain:Low	#Atten: 30 dB	Mkr	1 2.441 14 GHz -17.225 dBm	Auto Tune
					Center Fred 2.437000000 GH:
2	mmm	mm	alman when w	imming	Start Free 2.427000000 GH:
2					Stop Free 2.447000000 GH:
2					CF Step 2.000000 MH: <u>Auto</u> Mar
2				-	Freq Offse 0 H
nter 2.43700 GHz	#VBW 3	00 kHz	Sweep	Span 20.00 MHz 1 93 ms (1001 nts)	

Product	:	iDEA ⁺ Docking Station
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
11	2462	-17.041	< 8dBm	Pass

RE RF 50 Q AC		SENSE:INT	AL	IGN AUTO	04:58:37 PMNov 28, 2012	
enter Freq 2.462000000 G	Hz	Trig: Free Run	Avg Type: L Avg Hold>1	.og-Pwr	TRACE 123456 TYPE MWWWWW	Frequency
Ref Offset -15.2 dB dB/div Ref 4.80 dBm	Gain:Low	#Atten: 30 dB		Mkr1	DET P NNNNN 2.459 72 GHz -17.041 dBm	Auto Tune
20						Center Free 2.462000000 GH
1.2 1.2	munt	www.	vimmenwerv	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mont	Start Fre 2.452000000 GH
						Stop Fre 2.472000000 GH
.2					-	CF Ste 2.000000 MH Auto Ma
.2						Freq Offse 0 H
enter 2.46200 GHz tes BW 100 kHz	#VBW 3	300 kHz	s	weep 1	Span 20.00 MHz 93 ms (1001 pts)	

Product	:	iDEA ⁺ Docking Station
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2412MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1	2412	-16.695	< 8dBm	Pass

RL RE 50.0 AC	SENSE:INT	ALIGN AUTO	05:32:40 PMNov 28, 2012	
nter Freq 2.412000000 GHz		Avg Type: Log-Pwr	TRACE 123456	Frequency
PN0: Fast G IFGain:Low Ref Offset -15.2 dB dB/div Ref 4.80 dBm	#Atten: 30 dB	Mkr	DET P NNNNN 1 2.409 12 GHz -16.695 dBm	Auto Tuno
				Center Fred 2.412000000 GH:
2 prosperson what we want	-roundry hymn	www.www.	monter	Start Free 2.402000000 GH
2 2 2			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Stop Fre 2.422000000 GH
2				CF Ste 2.000000 MH <u>Auto</u> Ma
2				Freq Offse 0 H
nter 2.41200 GHz es BW 100 kHz #VB	V 300 kHz	Sweep	Span 20.00 MHz 1.93 ms (1001 pts)	

Product	:	iDEA ⁺ Docking Station
Test Item	:	Power Density Data
Test Site	:	No.3OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437	-16.758	< 8dBm	Pass

RL	RF 50 Q AC		SEN	ISE:INT		ALIGN AUTO	05:47:07 P	MNov 28, 2012	I second a second
nter Fre	q 2.437000000	GHz	Tria: Free	Run	Avg Type Avg Hold:	: Log-Pwr > 100/100	TRAC	E 123456 E MWWWWW	Frequency
dB/div	Ref Offset -15.2 dB Ref 4.80 dBm	IFGain:Low	#Atten: 30	dB		Mkr1	2.434 -16.7	12 GHz 58 dBm	Auto Tune
0				_			-		Center Fred 2.437000000 GH:
2 2	mann	ver Vern Layra	umarin l	Mann	mmM	marynowith	www.		Start Free 2.427000000 GH:
2 2 2								No No	Stop Free 2.447000000 GH
2								_	CF Stej 2.000000 MH <u>Auto</u> Ma
2									Freq Offse 0 H
nter 2.43	00 GHz	#\/B\//	300 kHz			Sween 1	Span 2	0.00 MHz	

Product	:	iDEA ⁺ Docking Station
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n MCS0 7.2Mbps 20M-BW) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
11	2462	-16.670	< 8dBm	Pass

RL RF	50 Q AC		SEL	VSE:INT		ALIGN AUTO	06:00:28 PI	MNov 28, 2012	
enter Freq	2.462000000 G	Hz PNO: East	Trig: Free	Run	Avg Type Avg Hold:	: Log-Pwr 100/100	TRAC TYP	E 1 2 3 4 5 6 E M WWWW	Frequency
Ref dB/div Re	Offset -15.2 dB f 4.80 dBm	Gain:Low	#Atten: 30	I dB		Mkr1	2.459 -16.6	12 GHz 70 dBm	Auto Tune
20		41							Center Free 2.462000000 GH
5.2 5.2	www.www.	mm	monthy	Manne	mmM	᠆᠁᠊᠕ᢇᡨ᠘ᠺ		wy	Start Free 2.452000000 GH
5.2 A								1 h	Stop Fre 2.472000000 GH
5.2									CF Ste 2.000000 MH <u>Auto</u> Ma
5.2				-					Freq Offse 0 H
enter 2.4620	0 GHz kHz	#VBW	300 kHz	_		Sween 1	Span 2 93 ms (0.00 MHz	

Product	:	iDEA ⁺ Docking Station
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2422MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
3	2422	-20.014	< 8dBm	Pass

NL NP JUM AL	SENSE:INT	ALIGNAUTO	06:12:33 PMNov 28, 2012	I THE CONTRACTOR
enter Freq 2.422000000 GHz	Trig: Free Run	Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE MWWWWWW	Frequency
Ref Offset -15.2 dB dB/div Ref 4.80 dBm	#Atten: 30 dB	Mkr	1 2.425 48 GHz -20.014 dBm	Auto Tune
20				Center Freq 2.422000000 GHz
2 Annother and the second seco	Adamony provident	1 Unonon-phononan-in-phon	and manufactured	Start Fred 2.402000000 GHz
.2	¥			Stop Free 2.442000000 GH
.2				CF Step 4.000000 MH: <u>Auto</u> Mar
.2				Freq Offse 0 H;
2				

Product	:	iDEA ⁺ Docking Station
Test Item	:	Power Density Data
Test Site	:	No.3OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437	-20.017	< 8dBm	Pass

RL RF 50.0 AC		SENS	E:INT		LIGNAUTO	06:22:38 P	MNov 28, 2012	
enter Freq 2.437000000	GHz]	Run	Avg Type:	Log-Pwr	TRAC	E 123456	Frequency
Ref Offset -15.2 dB 0 dB/div Ref 4.80 dBm	IFGain:Low	#Atten: 30 d	18	in all room.	Mkr	ة 1 2.429 -20.0	12 GHz 17 dBm	Auto Tune
.20						i.		Center Fred 2.437000000 GHz
5.2 5.2 million frankrike marken	1-	ויייישיאיאעען 	ran ann an	โพระการจำห ว ่าจำจังจำจำจำจำจำจำจำจำจำจำจำจำจำจำจำจำจำจ	አካ <mark>ቀምት_ር በ</mark> ሆኑ ከማሪካሪ	yww?s=-yww	Winnin	Start Free 2.417000000 GH:
5.2 10 10 10 10 10 10 10 10 10 10 10 10 10							h.	Stop Free 2.457000000 GH
		1						CESta
5.2								4.000000 MH: <u>Auto</u> Mar
62 6.2 6.2								4.000000 MH: Auto Mar Freq Offse 0 H:
5.2								4.000000 MHI Auto Mar Freq Offset 0 Hz

Product	:	iDEA ⁺ Docking Station
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11n MCS0 15Mbps 40M-BW) (2452MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
9	2452	-19.932	< 8dBm	Pass

11 St. 42	SENSE:INT	ALIGNAUTO	06:34:07 PMNov 28, 2012	
enter Freq 2.452000000 C	GHz Trig: Free Run	Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 123456 TYPE MWWWWWW	Frequency
Ref Offset -15.2 dB 0 dB/div Ref 4.80 dBm	File Fast #Atten: 30 dB	Mkr	DET P NNNN 1 2.455 52 GHz -19.932 dBm	Auto Tune
5.20				Center Fred 2.452000000 GH:
5.2 phone manufacture	notice and and and present	 เหล่าในของการสุขายาริการณาให้การถูกก	mar mar mar mar and a mar and a mar and a mar and a mar a	Start Free 2.432000000 GH
15.2 yr	V			Stop Fre 2.472000000 GH
56.2				CF Stej 4.000000 MH <u>Auto</u> Ma
56.2 56.2 56.2 56.2				CF Stej 4.000000 MH <u>Auto</u> Mai Freq Offse 0 H

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.