In Collaboration with

е

D

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comhttp://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Ø

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

e

CALIBRATION LABORATORY

a

(C)

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	51.8 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.98 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.9 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.3 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.9 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	50.7 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.88 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.3 mW /g ± 18.7 % (k=2)

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.9Ω+ 4.08jΩ	
Return Loss	- 27.7dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.8Ω+ 4.69jΩ	
Return Loss	- 26.5dB	

General Antenna Parameters and Design

	1.060 ps
Floctrical Delay (one direction)	1.000 hs
Liectrical Delay (one direction)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

- 1		CDEAC
- 1	8.4 Constructed last	SPEAG
- 1	Manufactured by	• •••••••
- 1		

In Collaboration with e

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

ALIBRATION LABORATORY

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

Date: 03.22.2018

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 924 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.841$ S/m; $\epsilon r = 40.32$; $\rho = 1000$ kg/m3 Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(7.89, 7.89, 7.89); Calibrated: 9/12/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection) .
- Electronics: DAE4 Sn1525; Calibrated: 10/2/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 •
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.2 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 27.2 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 5.98 W/kg

Maximum value of SAR (measured) = 22.0 W/kg

0 dB = 22.0 W/kg = 13.42 dBW/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comhttp://www.chinattl.cn

Impedance Measurement Plot for Head TSL

In Collaboration with e a

Fax: +86-10-62304633-2504 http://www.chinattl.cn

LIBRATION LABORATORY

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

Date: 03.22.2018

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 924 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.998 S/m; ϵ_r = 51.28; ρ = 1000 kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(8.09, 8.09, 8.09); Calibrated: 9/12/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1525; Calibrated: 10/2/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 98.09 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.88 W/kg Maximum value of SAR (measured) = 21.5 W/kg

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Object

D2600V2 - SN: 1070

December 7, 2017

Calibration Procedure(s)

FF-Z11-003-01 Calibration Procedures for dipole validation kits

Calibration date:

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

		Cal Data(Calibrated by Certificate No.)	Scheduled Calibration
Primary Standards			Mar-18
Power Meter NRVD	102196	02-Mar-17 (CTTL, No.J17X01254)	Mar 19
Power sensor NRV-Z5	100596	02-Mar-17 (CTTL, No.J17X01254)	Iviar-18
Deference Brobe EX3DV/4	SN 3617	23-Jan-17(SPEAG,No.EX3-3617_Jan17)	Jan-18
DAE3	SN 536	09-Oct-17(CTTL-SPEAG,No.Z17-97198)	Oct-18
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Secondary Standards	MV49071430	13-Jan-17 (CTTL, No.J17X00286)	Jan-18
Network Analyzer E5071C	MY46110673	13-Jan-17 (CTTL, No.J17X00285)	Jan-18
			· · · · · · · · · · · · · · · · · · ·

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	A CONTRACTOR
Reviewed by:	Lin Hao	SAR Test Engineer	A CONTRACT
Approved by:	Qi Dianyuan	SAR Project Leader	
			Issued: December 10, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Glossary: tissue simulating liquid TSL sensitivity in TSL / NORMx,y,z ConvF not applicable or not measured N/A

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the . measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. . No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

In Collaboration with

<u>speag</u>

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comFax: +86-10-62304633-2504http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.0.1446
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.99 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

Condition	
250 mW input power	14.6 mW / g
normalized to 1W	58.2 mW /g ± 18.8 % (k=2)
Condition	
250 mW input power	6.51 mW / g
normalized to 1W	26.0 mW /g ± 18.7 % (k=2)
	Condition 250 mW input power normalized to 1W Condition 250 mW input power normalized to 1W

Body TSL parameters

The following parameters and calculations were applied.

The following parameters and	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.6 ± 6 %	2.13 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

$24B$ successed over 1 cm^3 (1 g) of Body TSL	Condition	
SAR averaged over +	250 mW input power	13.7 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	55.2 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.11 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.5 mW /g ± 18.7 % (k=2)

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix(Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.3Ω- 5.52jΩ
Return Loss	- 24.0dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.5Ω- 4.72jΩ
Return Loss	- 23.3dB

General Antenna Parameters and Design

.r		1 011 pe
1.	the strike of Deley (one direction)	1.011113
1 1	lectrical Delay (one direction)	
1		

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

	•	SPEAG
Manufactured by		

e 2 D CALIBRATION LABORATORY

In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 12.07.2017

Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1070 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 1.985 \text{ S/m}$; $\epsilon r = 39.42$; $\rho = 1000 \text{ kg/m3}$ Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.3, 7.3, 7.3); Calibrated: 1/23/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 10/9/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 • (7417)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.8 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 31.6 W/kgSAR(1 g) = 14.6 W/kg; SAR(10 g) = 6.51 W/kg

Maximum value of SAR (measured) = 25.2 W/kg

0 dB = 25.2 W/kg = 14.01 dBW/kg

In Collaboration with

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comFax: +86-10-62304633-2504http://www.chinattl.cn

In Collaboration with

D

e

CALIBRATION LABORATORY

a

DASY5 Validation Report for Body TSL

Date: 12.07.2017

Test Laboratory: CTTL, Beijing, China **DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1070** Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 2.127$ S/m; $\epsilon_r = 52.63$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.48, 7.48, 7.48); Calibrated: 1/23/2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn536; Calibrated: 10/9/2017
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.1 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 29.4 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.11 W/kg

Maximum value of SAR (measured) = 23.6 W/kg

0 dB = 23.6 W/kg = 13.73 dBW/kg

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

	In Collaboration with S p e a g		CNAS	国际互认校准
Add: No.51 Xuey Tel: +86-10-6230 E-mail: cttl@chir	CALIBRATION LABORATORT uuan Road, Haidian District, Beijing, 100191, Chin 4633-2218 Fax: +86-10-62304633-2209 hattl.com <u>Http://www.chinattl.cn</u>	a Certificate No	o: Z17-97269	CALIBRATIC CNAS L057
ALIBRATION C	ERTIFICATE			
bject	DAE4 - SN: 1303			
alibration Procedure(s)	FF-711-002-01			
	Calibration Procedure for (DAEx)	the Data Acquisitio	on Electronics	
alibration date:	December 19, 2017			
Il calibrations have be	en conducted in the closed laborato	ry facility: environn	nent temperature(22	2±3)℃ and
All calibrations have be numidity<70%. Calibration Equipment us	en conducted in the closed laborato	ry facility: environn	nent temperature(22	2±3)℃ and
All calibrations have be numidity<70%. Calibration Equipment us Primary Standards	en conducted in the closed laborato sed (M&TE critical for calibration) ID # Cal Date(Calibrated by,	ry facility: environn Certificate No.)	nent temperature(22	2±3)℃ and
All calibrations have be numidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753	en conducted in the closed laborato ed (M&TE critical for calibration) ID # Cal Date(Calibrated by, 1971018 27-Jun-17 (CTTL, N	ry facility: environn Certificate No.) Io.J17X05859)	nent temperature(22 Scheduled Calibra June-18	2±3)°C and
All calibrations have be numidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753	en conducted in the closed laborato sed (M&TE critical for calibration) ID # Cal Date(Calibrated by, 1971018 27-Jun-17 (CTTL, N	ry facility: environn Certificate No.) Io.J17X05859)	Scheduled Calibra June-18	2±3)°C and
All calibrations have be numidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753	en conducted in the closed laborato sed (M&TE critical for calibration) ID # Cal Date(Calibrated by, 1971018 27-Jun-17 (CTTL, N	ry facility: environn Certificate No.) Io.J17X05859)	Scheduled Calibra June-18	2±3)°C and
All calibrations have be numidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753	en conducted in the closed laborato sed (M&TE critical for calibration) ID # Cal Date(Calibrated by, 1971018 27-Jun-17 (CTTL, N Name Function Zhao Jing SAR Test Eng	ry facility: environn Certificate No.) Io.J17X05859)	Signature	2±3)°C and
All calibrations have be numidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753 Calibrated by: Reviewed by:	en conducted in the closed laborato sed (M&TE critical for calibration) ID # Cal Date(Calibrated by, 1971018 27-Jun-17 (CTTL, N Name Function Zhao Jing SAR Test Eng Lin Hao SAR Test Eng	ry facility: environn Certificate No.) Io.J17X05859) ineer	Signature	2±3)°C and
All calibrations have be humidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753 Calibrated by: Reviewed by: Approved by:	en conducted in the closed laborato sed (M&TE critical for calibration) ID # Cal Date(Calibrated by, 1971018 27-Jun-17 (CTTL, N Name Function Zhao Jing SAR Test Eng Lin Hao SAR Test Eng Qi Dianyuan SAR Project L	ry facility: environn Certificate No.) Io.J17X05859) ineer ineer	Signature	2±3)℃ and
All calibrations have be humidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753 Calibrated by: Reviewed by: Approved by:	en conducted in the closed laborato sed (M&TE critical for calibration) ID # Cal Date(Calibrated by, 1971018 27-Jun-17 (CTTL, N Name Function Zhao Jing SAR Test Eng Lin Hao SAR Test Eng Qi Dianyuan SAR Project L	ry facility: environn Certificate No.) Io.J17X05859) ineer ineer eader	Scheduled Calibra June-18 Signature	2±3)℃ and ation 2, 2017

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2218E-mail: cttl@chinattl.comFax: +86-10-62304633-2209Http://www.chinattl.cn

Glossary: DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- *DC Voltage Measurement*: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2218Fax: +86-10-62304633-2209E-mail: cttl@chinattl.comHttp://www.chinattl.cn

DC Voltage Measurement

Calibration Factors	X	Υ	Z
High Range	405.569 ± 0.15% (k=2)	403.452 ± 0.15% (k=2)	$404.893 \pm 0.15\%$ (k=2)
Low Range	3.96471 ± 0.7% (k=2)	3.99229 ± 0.7% (k=2)	4.01287 ± 0.7% (k=2)

Connector Angle

	26 50 + 1 0
Connector Angle to be used in DASY system	30.5 ± 1
Connector Aligie to be used in briter eyetette	

OVANELEX RVANE (O) N COE RAELE

Sporton

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2218E-mail: cttl@chinattl.comHttp://www.chinattl.cn

In Collaboration with

FF-Z11-004-01

CALIBRATION LABORATORY

Certificate No: Z17-97273

Object

EX3DV4 - SN:3958

Calibration Procedure(s)

Client

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

January 11, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Data/Calibrated by Oralicate No.	
		<u>Cal Date(Calibrated by, Certificate No.)</u>	Scheduled Calibration
	101919	27-Jun-17 (CTTL, No.J17X05857)	Jun-18
Power sensor NRP-Z91	101547	27-Jun-17 (CTTL, No.J17X05857)	Jun-18
Power sensor NRP-Z91	101548	27-Jun-17 (CTTL, No.J17X05857)	Jun-18
Reference10dBAttenuator	18N50W-10dB	13-Mar-16(CTTL,No.J16X01547)	Mar-18
Reference20dBAttenuator	18N50W-20dB	13-Mar-16(CTTL, No.J16X01548)	Mar-18
Reference Probe EX3DV4	SN 7464	12-Sep-17(SPEAG,No.EX3-7464_Sep17)	Sep-18
DAE4	SN 1524	13-Sep-17(SPEAG, No.DAE4-1524_Sep17)	Sep -18
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	27-Jun-17 (CTTL, No.J17X05858)	Jun-18
Network Analyzer E5071C	MY46110673	13-Jan-17 (CTTL, No.J17X00285)	Jan -18
	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	A
Reviewed by:	Lin Hao	SAR Test Engineer	TAK -5
Approved by:	Qi Dianyuan	SAR Project Leader	
		Issued: January	13. 2018
This calibration cortificate ab.		· · · · · · · · ·	,

his calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx.v.z
DCP	diode compression point
CF	crest factor (1/duty_cvcle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center)
	θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system **Calibration is Performed According to the Following Standards:**

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E² -field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- *Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:*A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- *Connector Angle:* The angle is assessed using the information gained by determining the *NORMx* (no uncertainty required).

In Collaboration with

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2218Fax: +86-10-62304633-2209E-mail: cttl@chinattl.comHttp://www.chinattl.cn

Probe EX3DV4

SN: 3958

Calibrated: January 11, 2018

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Fax: +86-10-62304633-2209 Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3958

Basic Calibration Parameters

Sensor X		Sensor Y	Sensor Z	linc (k=2)	
<u>Norm(</u> μV/(V/m)²) ^Α	0.50	0.46	0.54	+10.0%	
DCP(mV) ^B	103.2	105.3	105.6	10.070	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	171.2	+2.4%
		Y	0.0	0.0	1.0		161.3	
		Z	0.0	0.0	1.0		175.2	-

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Fax: +86-10-62304633-2209 Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3958

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) [⊦]	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G	Unct.
750	41.9	0.89	10.59	10.59	10.59	0.40	0.70	+ 12 1%
835	41.5	0.90	10.31	10.31	10.31	0.12	1.46	+ 12.170
900	41.5	0.97	10.17	10.17	10.17	0.12	1.40	+ 12.170
1750	40.1	1.37	8.79	8.79	8.79	0.12	1.01	+ 12.1%
1900	40.0	1.40	8.43	8.43	8.43	0.23	1.04	+ 12 104
2000	40.0	1.40	8.50	8.50	8.50	0.33	0.86	+ 12.1%
2300	39.5	1.67	8.38	8.38	8.38	0.47	0.75	+12.1%
2450	39.2	1.80	7.92	7.92	7.92	0.55	0.72	+ 12.1%
2600	39.0	1.96	7.82	7.82	7.82	0.65	0.67	+ 12 1%
5200	36.0	4.66	6.01	6.01	6.01	0.40	1 40	+13.3%
5300	35.9	4.76	5.77	5.77	5.77	0.40	1.45	+13.3%
5500	35.6	4.96	5.39	5.39	5.39	0.45	1.40	$\pm 13.3\%$
5600	35.5	5.07	5.16	5.16	5.16	0.40	1.30	$\pm 13.3\%$
5800	35.3	5.27	5.24	5.24	5.24	0.40	1.60	±13.3%

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Fax: +86-10-62304633-2209 Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3958

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G	Unct.
750	55.5	0.96	10.52	10.52	10.52	0.40	0.80	(k-2) + 12 1%
835	55.2	0.97	10.19	10.19	10.19	0.16	1.48	+ 12 1%
1750	53.4	1.49	8.61	8.61	8.61	0.24	1.05	+12.1%
1900	53.3	1.52	8.27	8.27	8.27	0.20	1.18	+12.1%
2300	52.9	1.81	8.14	8.14	8.14	0.40	0.98	+12.1%
2450	52.7	1.95	8.00	8.00	8.00	0.30	1.35	±12.1%
2600	52.5	2.16	7.84	7.84	7.84	0.45	0.88	+12.1%
5200	49.0	5.30	5.50	5.50	5.50	0.45	1.55	+13.3%
5300	48.9	5.42	5.20	5.20	5.20	0.45	1.50	+13.3%
5500	48.6	5.65	4.50	4.50	4.50	0.55	1.60	+13.3%
5600	48.5	5.77	4.30	4.30	4.30	0.50	1.85	+13.3%
5800	48.2	6.00	4.40	4.40	4.40	0.55	1.35	±13.3%

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^GAlpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies

between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Fax: +86-10-62304633-2209 Http://www.chinattl.cn

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Fax: +86-10-62304633-2209 Http://www.chinattl.cn

Receiving Pattern (Φ), θ =0°

f=600 MHz, TEM

f=1800 MHz, R22

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Page 9 of 11

Conversion Factor Assessment

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Other Probe Parameters

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3958

Sensor Arrangement	Triangular
Connector Angle (°)	42.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm