

FCC PART 15B, CLASS B TEST REPORT

For

BLU Products, Inc.

10814 NW 33rd St # 100 Doral, FL 33172

FCC ID: YHLBLUTANK4

Report Type: Product Type:
Original Report Mobile phone

Report Number: RSZ170818002-00A

Report Date: 2017-09-01

Rocky Kang

Reviewed By: RF Engineer

Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen)

6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone,

Rocky Kang

Shenzhen, Guangdong, China

Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government. This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk "★". This report may contain data were produced under the subcontractor and shall be marked with an asterisk "△".

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	4
SYSTEM TEST CONFIGURATION	5
DESCRIPTION OF TEST CONFIGURATION	5
EUT Exercise Software	5
SPECIAL ACCESSORIES	
EQUIPMENT MODIFICATIONS	5
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	6
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	7
TEST EQUIPMENT LIST	8
FCC §15.107 – AC LINE CONDUCTED EMISSIONS	9
APPLICABLE STANDARD	
EUT SETUP.	
EMI TEST RECEIVER SETUP.	
TEST PROCEDURE	
CORRECTED FACTOR & MARGIN CALCULATION	10
TEST RESULTS SUMMARY	10
TEST DATA	10
FCC §15.109 - RADIATED SPURIOUS EMISSIONS	
FCC 315.109 - KADIA I ED SPUKIOUS EMIISSIONS	10
	10
APPLICABLE STANDARD	10 13
	10 13 13
APPLICABLE STANDARD EUT SETUP EMI TEST RECEIVER SETUP TEST PROCEDURE	1013131414
APPLICABLE STANDARD	1013131414
APPLICABLE STANDARD EUT SETUP EMI TEST RECEIVER SETUP TEST PROCEDURE	101313131414

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *BLU Products, Inc.*'s product, model number: TANK 4 (*FCC ID: YHLBLUTANK4*) or the "EUT" in this report was a *Mobile phone*, which was measured approximately: 12.5 cm (L) \times 5.2 cm (W) \times 1.0 cm (H), rated with input voltage: DC 3.8 V battery or DC 5V from adapter. The highest operating frequency is 2480MHz.

Report No.: RSZ170818002-00A

Adapter Information: Model: US-ZC-0600

Input: AC 100-240V, 50/60Hz, 0.2A

Output: DC 5.0V, 600 mA

Notes: The model TANK 4 has two configurations, one has front facing camera but another no front camera. The detailed information can be referred to the declaration which was stated and guaranteed by the applicant.

*All measurement and test data in this report was gathered from production sample serial number: 1701951 (Assigned by applicant). The EUT supplied by the applicant was received on 2017-08-18.

Objective

This test report is prepared on behalf of *BLU Products*, *Inc.* in accordance with Part 2-Subpart J, Part 15-Subparts A, B of the Federal Communication Commissions rules.

The objective of the manufacturer is to determine the compliance of the EUT with FCC Part 15 B.

Related Submittal(s)/Grant(s)

FCC Part 15.247 DSS and Part 22H/24E PCE submissions with FCC ID: YHLBLUTANK4.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2014, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter	uncertainty
Conducted Emissions	±1.95dB
All emissions, radiated	±4.88dB

FCC Part 15B, Class B Page 3 of 15

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

Report No.: RSZ170818002-00A

Bay Area Compliance Laboratories Corp. (Shenzhen) has been accredited to ISO/IEC 17025 by CNAS(Lab code: L2408). And accredited to ISO/IEC 17025 by NVLAP(Lab code: 200707-0), the FCC Designation No. CN5001 under the KDB 974614 D01.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Bay Area Compliance Laboratories Corp. (Shenzhen) was registered with ISED Canada under ISED Canada Registration Number 3062B.

FCC Part 15B, Class B
Page 4 of 15

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a manufacturer testing fashion.

EUT operation mode: Downloading (data transfer with computer)

EUT Exercise Software

"BurnIn test v5.3" exercise software was used.

Special Accessories

No special accessory.

Equipment Modifications

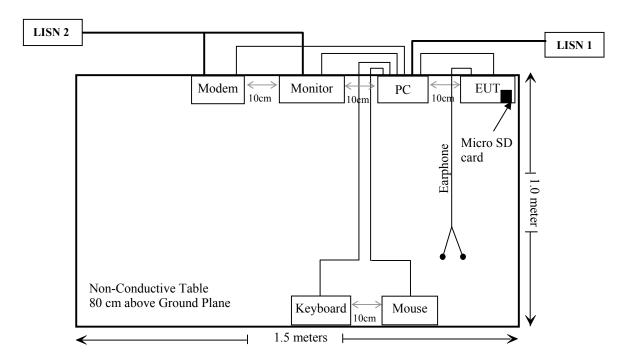
No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
DELL	PC	VOSTRO 220S	127BP2X
DELL	LCD Monitor	E178WFPC	CN-OWY564-64180-7C4-2SQH
DELL	Keyboard	L100	CNORH656658907BL05DC
DELL	Mouse	MOC5UO	G1900NKD
SAST	Modem	AEM-2100	0293
PHILIPS	Earphone	SBCHP250	N/A

Report No.: RSZ170818002-00A

FCC Part 15B, Class B Page 5 of 15


External I/O Cable

Cable Description	Length (m)	From/Port	То
Un-Shielding Detachable USB Cable	1.5	Host PC	Mouse
Un-Shielding Detachable Serial Cable	1.5	Host PC	Modem
Un-Shielding Detachable K/B Cable	1.5	Host PC	Keyboard
Un-Shielding Detachable VGA Cable	1.5	Host PC	LCD Monitor
Un-shielding Detachable Earphone Cable	1.2	EUT	Earphone
Un-shielding Detachable USB Cable	1.0	EUT	PC

Report No.: RSZ170818002-00A

Block Diagram of Test Setup

For conducted emission:

FCC Part 15B, Class B Page 6 of 15

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§15.107	AC Line Conducted Emissions	Compliance
§15.109	Radiated Spurious Emissions	Compliance

Report No.: RSZ170818002-00A

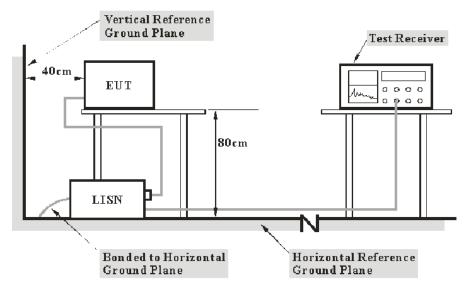
FCC Part 15B, Class B Page 7 of 15

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
	AC Li	ne Conducted En	nission Test		
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2016-10-19	2017-10-19
Rohde & Schwarz	LISN	ENV216	3560.6650.12- 101613-Yb	2016-12-07	2017-12-07
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2017-05-21	2017-11-19
Rohde & Schwarz	CE Test software	EMC 32	V8.53.0	NCR	NCR
N/A	Conducted Emission Cable	N/A	UF A210B-1- 0720-504504	2017-05-12	2017-11-12
Radiated Emission Test					
Sunol Sciences	Horn Antenna	DRH-118	A052604	2014-12-29	2017-12-28
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2017-04-24	2018-04-24
Sunol Sciences	Bi-log Antenna	JB1	A040904-2	2014-12-17	2017-12-16
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2017-02-14	2018-02-14
НР	Amplifier	HP8447E	1937A01046	2017-05-21	2017-11-19
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2016-12-07	2017-12-07
Ducommun technologies	RF Cable	UFA210A-1- 4724-30050U	MFR64369 223410-001	2017-05-21	2017-11-19
Ducommun technologies	RF Cable	104PEA	218124002	2017-05-21	2017-11-19
Ducommun technologies	RF Cable	RG-214	1	2017-05-21	2017-11-19
Ducommun technologies	RF Cable	RG-214	2	2017-05-22	2017-11-22

Report No.: RSZ170818002-00A

FCC Part 15B, Class B Page 8 of 15


^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.107 – AC LINE CONDUCTED EMISSIONS

Applicable Standard

According to FCC §15.107

EUT Setup

Report No.: RSZ170818002-00A

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with per ANSI C63.4-2014. The related limit was specified in FCC Part 15.107 Class B.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the host PC was connected to the first LISN and the other relevant equipments were connected to the second LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

FCC Part 15B, Class B Page 9 of 15

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN/ISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Report No.: RSZ170818002-00A

Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.107,

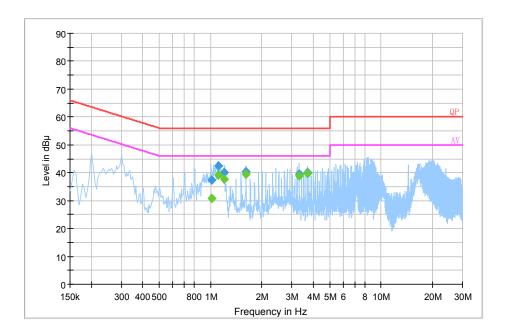
Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level is in compliance with the limit if

$$L_{\rm m} + U_{(L{\rm m})} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL., $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

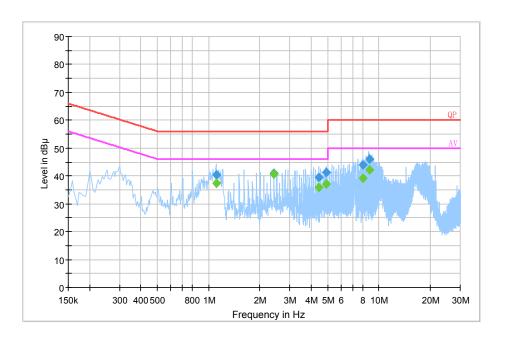

Temperature:	25 ℃
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Hill He on 2017-08-30.

FCC Part 15B, Class B Page 10 of 15

EUT Operation Mode: Downloading

AC 120V/60 Hz, Line



Report No.: RSZ170818002-00A

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
1.018910	37.3	20.1	56.0	18.7	QP
1.105410	42.3	20.1	56.0	13.7	QP
1.207970	40.0	20.1	56.0	16.0	QP
1.609850	40.3	20.1	56.0	15.7	QP
3.320230	39.6	20.1	56.0	16.4	QP
3.722170	40.1	20.1	56.0	16.0	QP
1.018910	30.9	20.1	46.0	15.1	Ave.
1.105410	39.3	20.1	46.0	6.7	Ave.
1.207970	37.7	20.1	46.0	8.3	Ave.
1.609850	39.4	20.1	46.0	6.6	Ave.
3.320230	38.8	20.1	46.0	7.2	Ave.
3.722170	39.8	20.1	46.0	6.2	Ave.

FCC Part 15B, Class B Page 11 of 15

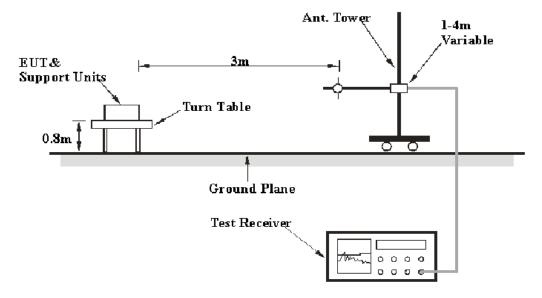
AC 120V/60 Hz, Neutral

Report No.: RSZ170818002-00A

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
1.109410	40.4	20.1	56.0	15.6	QP
2.413790	41.0	20.1	56.0	15.0	QP
4.423670	39.5	20.1	56.0	16.5	QP
4.924110	41.2	20.1	56.0	14.8	QP
8.041370	43.9	20.0	60.0	16.1	QP
8.846870	46.1	20.0	60.0	13.9	QP
1.109410	37.5	20.1	46.0	8.5	Ave.
2.413790	40.7	20.1	46.0	5.3	Ave.
4.423670	35.8	20.1	46.0	10.2	Ave.
4.924110	37.2	20.1	46.0	8.8	Ave.
8.041370	39.2	20.0	50.0	10.8	Ave.
8.846870	42.1	20.0	50.0	7.9	Ave.

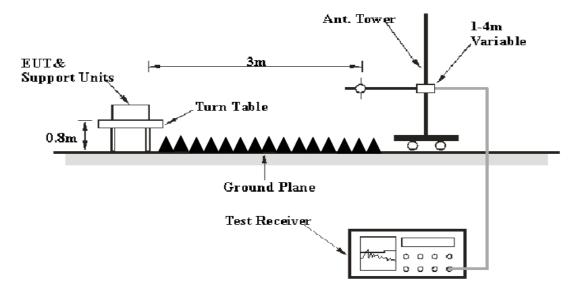
- Correction Factor =LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation
 Corrected Amplitude = Reading + Correction Factor
 Margin = Limit Corrected Amplitude

FCC Part 15B, Class B Page 12 of 15


FCC §15.109 - RADIATED SPURIOUS EMISSIONS

Applicable Standard

FCC §15.109


EUT Setup

Below 1GHz:

Report No.: RSZ170818002-00A

Above 1GHz:

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.4-2014. The specification used was the FCC Part 15.109 Class B limits.

FCC Part 15B, Class B Page 13 of 15

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

Report No.: RSZ170818002-00A

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The system was investigated from 30 MHz to 12.4 GHz.

During the radiated emission test, the EMI test receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
Above I GHZ	1MHz	10 Hz	/	Ave.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the data in the following table, the EUT complied with the FCC §15.109 Class B,

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level is in compliance with the limit if

$$L_{\rm m} + U_{\rm (Lm)} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

FCC Part 15B, Class B Page 14 of 15

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Hill He on 2017-08-25.

EUT Operation Mode: Downloading

30MHz - 12.4 GHz:

Frequency (MHz)	Receiver		Turntable	Rx Antenna			Corrected	FCC Part 15B	
	Reading (dBµV)	Detector (PK/QP/Ave.)	Degree	Height (m)	Polar (H / V)	Factor (dB/m)	Amplitude (dBuV/m)	Limit (dBuV/m)	Margin (dB)
287.91	38.46	QP	20	2.6	Н	-3.1	35.36	46.00	10.64
300.07	43.25	QP	170	2.2	Н	-2.9	40.35	46.00	5.65
371.99	36.88	QP	171	1.0	Н	-1.4	35.48	46.00	10.52
480.03	35.19	QP	278	1.9	Н	1.9	37.09	46.00	8.91
503.91	31.36	QP	10	1.0	Н	3.1	34.46	46.00	11.54
599.93	28.26	QP	225	1.9	Н	3.5	31.76	46.00	14.24
1854.24	56.22	PK	99	1.6	Н	-5.17	51.05	74	22.95
1854.24	30.69	Ave.	99	1.6	Н	-5.17	25.52	54	28.48
1869.36	57.31	PK	232	1.3	V	-5.17	52.14	74	21.86
1869.36	30.79	Ave.	232	1.3	V	-5.17	25.62	54	28.38
2397.36	48.63	PK	238	2.2	Н	-0.88	47.75	74	26.25
2397.36	29.87	Ave.	238	2.2	Н	-0.88	28.99	54	25.01
2402.63	47.78	PK	293	2.0	V	-0.88	46.90	74	27.10
2402.63	29.26	Ave.	293	2.0	V	-0.88	28.38	54	25.62

Report No.: RSZ170818002-00A

Note:

- 1) Correction Factor=Antenna factor (RX) + cable loss amplifier factor
- 2) Corrected Amplitude = Correction Factor + Reading
- 3) Margin = Limit Corrected Amplitude

***** END OF REPORT *****

FCC Part 15B, Class B Page 15 of 15