

Page 1 of 35

FCC TEST REPORT

Product Name:	Mobile Phone
Trade Mark:	BLU
Model No.:	STUDIO X8 HD
Report Number:	181213004RFC-2
Test Standards:	FCC 47 CFR Part 15 Subpart C
FCC ID:	YHLBLUSTX8HD2
Test Result:	PASS
Date of Issue:	January 14, 2019

Prepared for:

BLU Products, Inc. 10814 NW 33rd St # 100 Doral, FL 33172

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Tested by:	stur h	Reviewed by:	Kavin Liang
	Henry Lu		Kevin Liang
	Project Engineer		Assistant Manager
Approved by:	(AtlaionTrust")	Date:	January 14, 2019
_	George Luo *		

Version

Version No.	Date	Description
V1.0	January 14, 2019	Original

CONTENTS

1.	GEN	ERAL INFORMATION	4
	1.1	CLIENT INFORMATION	4
	1.2	EUT INFORMATION	
		1.2.1 GENERAL DESCRIPTION OF EUT	
		1.2.2 DESCRIPTION OF ACCESSORIES	4
	1.3	PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	5
	1.4	OTHER INFORMATION	
	1.5	DESCRIPTION OF SUPPORT UNITS	
	1.6	TEST LOCATION	
	1.7	TEST FACILITY	
	1.8	DEVIATION FROM STANDARDS	-
	1.9	ABNORMALITIES FROM STANDARD CONDITIONS	
		OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	1.11	MEASUREMENT UNCERTAINTY	6
2.	TEST	SUMMARY	7
3.		PMENT LIST	
4.		CONFIGURATION	
		ENVIRONMENTAL CONDITIONS FOR TESTING	
	4.1		
		4.1.1 NORMAL OR EXTREME TEST CONDITIONS	
	4.2	4.1.2 RECORD OF NORMAL ENVIRONMENT	
	4.Z 4.3	EUT TEST CHANNELS	
	4.3 4.4	Test setup	
	4.4	4.4.1 FOR RADIATED EMISSIONS TEST SETUP	
		4.4.2 FOR CONDUCTED EMISSIONS TEST SETUP	
		4.4.2 FOR CONDUCTED EMISSIONS TEST SETUP	
	4.5	System Test Configuration	
	4.6	DUTY CYCLE	
5.	RADI	O TECHNICAL REQUIREMENTS SPECIFICATION	
	5.1	REFERENCE DOCUMENTS FOR TESTING	14
	5.2	ANTENNA REQUIREMENT	14
	5.3	CONDUCTED PEAK OUTPUT POWER	
	5.4	6 dB Bandwidth	16
	5.5	Power Spectral Density	19
	5.6	CONDUCTED OUT OF BAND EMISSION	
	5.7	RADIATED SPURIOUS EMISSIONS	
	5.8	BAND EDGE MEASUREMENTS (RADIATED)	29
	5.9	CONDUCTED EMISSION	32
	DENIDI	X 1 PHOTOS OF TEST SETUP	25
		X 2 PHOTOS OF FEST SETUP	

1. GENERAL INFORMATION

1.1 CLIENT INFORMATION

Applicant:	BLU Products, Inc.
Address of Applicant:	10814 NW 33rd St # 100 Doral, FL 33172
Manufacturer:	BLU Products, Inc.
Address of Manufacturer:	10814 NW 33rd St # 100 Doral, FL 33172

1.2 EUT INFORMATION

1.2.1 General Description of EUT

Mobile Phone			
STUDIO X8 HD			
BLU			
Identical Prototype	Identical Prototype		
GSM Bands:	GSM850/1900		
UTRA Bands:	Band II/ Band IV/ Band V		
2.4 GHz ISM Band:	IEEE 802.11b/g/n		
	Bluetooth V4.0		
Radiation: 869966026284628,869966026284643			
Conducted: 869966026284626,869966026284641			
December 13, 2018			
December 13, 2018 to January 2, 2019			
	STUDIO X8 HD BLU Identical Prototype GSM Bands: UTRA Bands: 2.4 GHz ISM Band: Radiation: 8699660262 Conducted: 8699660262 December 13, 2018		

1.2.2 Description of Accessories

Adapter			
Trade Mark:	BLU		
Model No.:	US-WT-0700		
Input:	100-240 V~50/60 Hz 0.2 A		
Output:	5.0 V == 0.7 A		

Battery			
Trade Mark:	BLU		
Model No.:	C765539200L		
Battery Type:	Lithium-ion Rechargeable Battery		
Rated Voltage:	3.8 Vdc		
Rated Capacity:	2000 mAh		

Cable		
Description:	USB Micro-B Plug Cable	
Cable Type:	Unshielded without ferrite	
Length:	1. 0 Meter	

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Frequency Band:	2400 MHz to 2483.5 MHz
Frequency Range:	2402 MHz to 2480 MHz
Bluetooth Version:	Bluetooth LE
Type of Modulation:	GFSK
Number of Channels:	40
Channel Separation:	2 MHz
Antenna Type:	IFA Antenna
Antenna Gain:	-1.8 dBi
Maximum Peak Power:	2.48 dBm
Normal Test Voltage:	3.8 Vdc

1.4 OTHER INFORMATION

f = 2402 + 2k MHz, k = 0,...,39

Note: f

k

is the operating frequency (MHz);

is the operating channel.

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
-	-	-	-	_

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
1	Antenna Cable	SMA	0.30 Meter	UnionTrust

1.6 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China 518109 Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

1.7 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

IC-Registration No.: 21600-1

The 3m Semi-anechoic chamber of Shenzhen UnionTrust Quality and Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 21600-1.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC Accredited Lab.

Designation Number: CN1194 Test Firm Registration Number: 259480

1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty		
1	Conducted emission 9KHz-150KHz	±3.8 dB		
2	Conducted emission 150KHz-30MHz	±3.4 dB		
3	Radiated emission 9KHz-30MHz	±4.9 dB		
4	Radiated emission 30MHz-1GHz	±4.7 dB		
5	Radiated emission 1GHz-18GHz	±5.1 dB		
6	Radiated emission 18GHz-26GHz	±5.2 dB		
7	Radiated emission 26GHz-40GHz	±5.2 dB		

2. TEST SUMMARY

	FCC 47 CFR Part 15 Subpart C Tes	t Cases	
Test Item	Test Requirement	Test Method	Result
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	N/A	PASS
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013 Clause 6.2	PASS
Conducted Peak Output Power	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013 Clause 11.9.1.3	PASS
6dB Bandwidth	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013 Clause 11.8.1	PASS
Power Spectral Density			PASS
Conducted Out of Band Emission	FCC 47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013 Clause 11.11	PASS
Radiated Spurious Emissions	Radiated Spurious FCC 47 CFR Part 15 Subpart C Section		PASS
Band Edge Measurements (Radiated)	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013 Clause 11.13	PASS

3. EQUIPMENT LIST

	Radiated Emission Test Equipment List									
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)				
\boxtimes	3M Chamber & Accessory Equipment	ETS-LINDGREN	ЗM	N/A	Dec. 03, 2018	Dec. 03, 2021				
\boxtimes	Receiver	R&S	ESIB26	100114	Nov. 24, 2018	Nov. 24, 2019				
\boxtimes	Loop Antenna	ETS-LINDGREN	6502	00202525	Dec. 03, 2018	Dec. 03, 2019				
\boxtimes	Broadband Antenna ETS-LINDGR Image: Second strength of the second strengt ot te second strengt ot te second strenge strength ot te		3142E	00201566	Dec. 08, 2018	Dec. 08, 2019				
\boxtimes			RA6A5-N- 18	18103001	Dec. 08, 2018	Dec. 08, 2019				
\boxtimes	Preamplifier	HP	8447F	2805A02960	Nov. 24, 2018	Nov. 24, 2019				
\boxtimes	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	May 22, 2018	May 22, 2019				
\boxtimes	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A				
	Band Rejection Filter (2400MHz~2500MHz) Micro-Tror		BRM50702	G248	Jun. 06, 2018	Jun. 06, 2019				
\boxtimes	Test Software	Audix	e3	Sof	tware Version: 9.16	0333				

	Conducted Emission Test Equipment List										
Used	d Equipment Manufacturer		Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)					
\boxtimes	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Nov. 24, 2018	Nov. 24, 2019					
\boxtimes	Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	Nov. 24, 2018	Nov. 24, 2019					
\boxtimes	LISN	R&S	ESH2-Z5	860014/024	Nov. 24, 2018	Nov. 24, 2019					
\boxtimes	Test Software	est Software Audix		Software Version: 9.160323		0323					

	Conducted RF test Equipment List									
Used Equipment			Manufacturer	er Model No. Serial Number		Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)			
	\boxtimes	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Nov. 24, 2018	Nov. 24, 2019			
	\boxtimes	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	Nov. 24, 2018	Nov. 24, 2019			
	\boxtimes	Wideband Radio Communication Tester	R&S	CMW500	116254	Jun. 07, 2018	Jun. 07, 2019			

4. TEST CONFIGURATION 4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Environment Parameter	Selected Values During Tests						
Test Condition	Ambient						
Test Condition	Temperature (°C)	Voltage (V)	Relative Humidity (%)				
NT/NV	+15 to +35	3.8	20 to 75				
Remark: 1) NV: Normal Voltage; NT: Normal Temperature							

4.1.2 Record of Normal Environment

Test Item	Temperature (°C)	Relative Humidity (%)	Pressure (kPa)	Tested by				
AC Power Line Conducted Emission	22.2	52	99.80	Gemini Huang				
Conducted Peak Output Power	23.2	52	99.80	Terence Chen				
6dB Bandwidth	23.2	52	99.80	Terence Chen				
Power Spectral Density	23.2	52	99.80	Terence Chen				
Conducted Out of Band Emission	23.2	52	99.80	Terence Chen				
Radiated Spurious Emissions	24.4	51	99.44	Andy Lin				
Band Edge Measurements (Radiated)	24.4	51	99.44	Andy Lin				

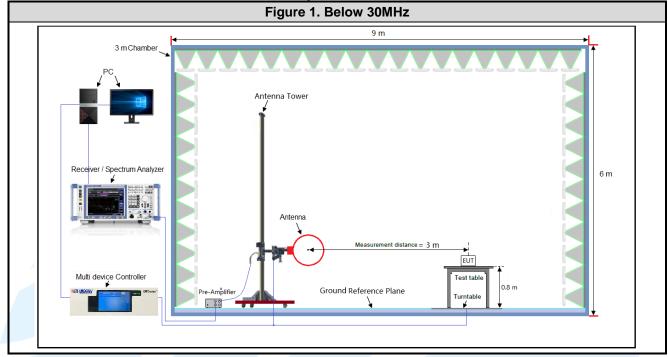
4.2TEST CHANNELS

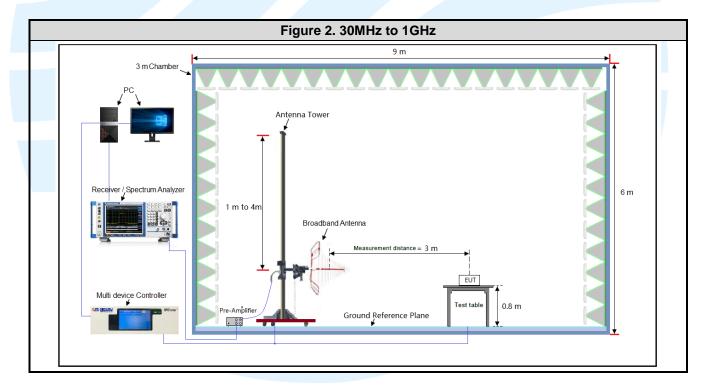
Type of Modulation	Tx/Rx Frequency	Te	est RF Channel List	ts
	GFSK 2402 MHz to 2480 MHz	Lowest(L)	Middle(M)	Highest(H)
GFSK		Channel 0	Channel 19	Channel 39
		2402 MHz	2440 MHz	2480 MHz

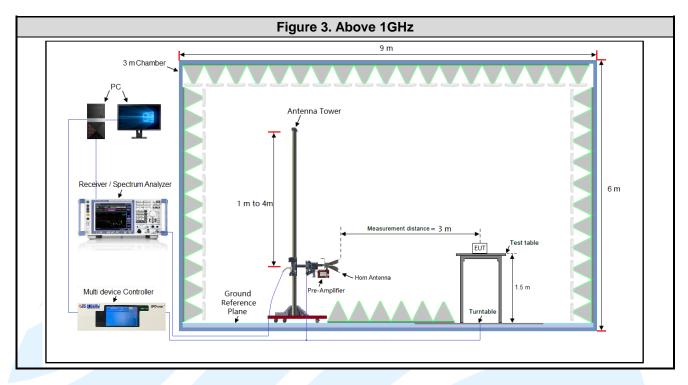
4.3 EUT TEST STATUS

Type of Modulation	Tx Function	Description				
GFSK	1Tx	1. Keep the EUT in continuously transmitting with modulation test single.				

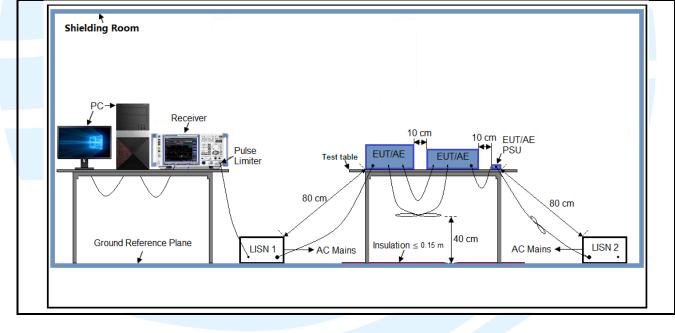
Power Setting

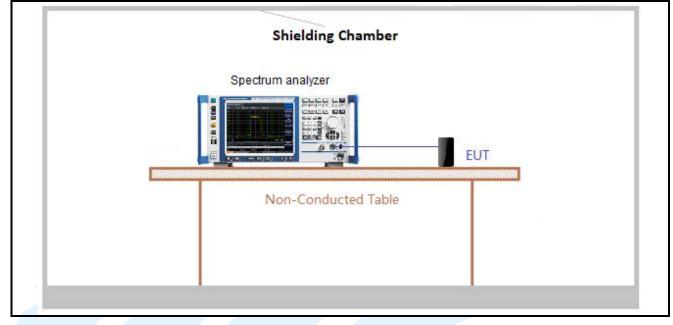

Power Setting: not applicable, test used software default power level.


Test Software


Signaling Mode

4.4 TEST SETUP


4.4.1 For Radiated Emissions test setup



4.4.2 For Conducted Emissions test setup

4.4.3 For Conducted RF test setup

4.5 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.8V battery. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

Frequency	Mode	Antenna Port	Worst-case axis positioning	
Above 1GHz	1TX	Chain 0	Y axis	

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

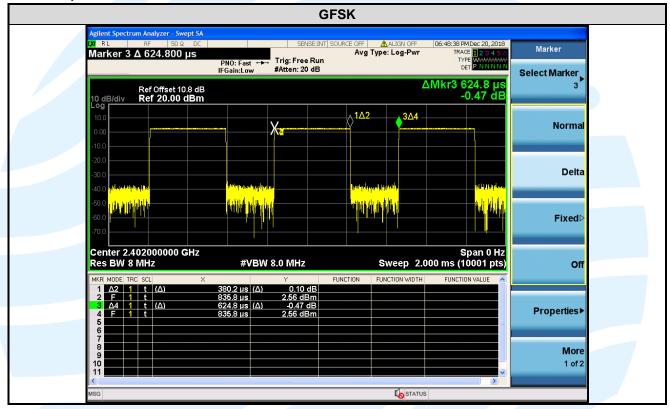
Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.6 DUTY CYCLE

Test Procedure: ANSI C63.10-2013 Clause 11.6.

Test Results

Type of Modulation	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)	Average Factor (dB)
GFSK	0.3802	0.6248	0.61	60.85	2.16	2.63	-4.31


Remark:

1) Duty cycle= On Time/ Period;

2) Duty Cycle factor = 10 * log(1/ Duty cycle);

3) Average factor = $20 \log_{10}$ Duty Cycle.

The test plot as follows

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title			
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations			
2	FCC 47 CFR Part 15	Radio Frequency Devices			
3	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices			
4	KDB 558074 D01 15.247 Meas Guidance v05	Guidance for compliance measurements on Digital Transmission Systems, Frequency Hopping Spread Spectrum system, and Hybrid system devices operating under Section 15.247 of the FCC rules			

5.2 ANTENNA REQUIREMENT

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

Antenna in the interior of the equipment and no consideration of replacement. The gain of the antenna is -1.8 dBi.

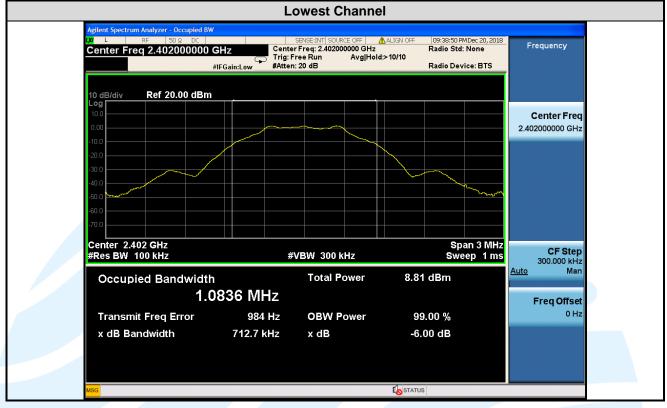
Page 15 of 35

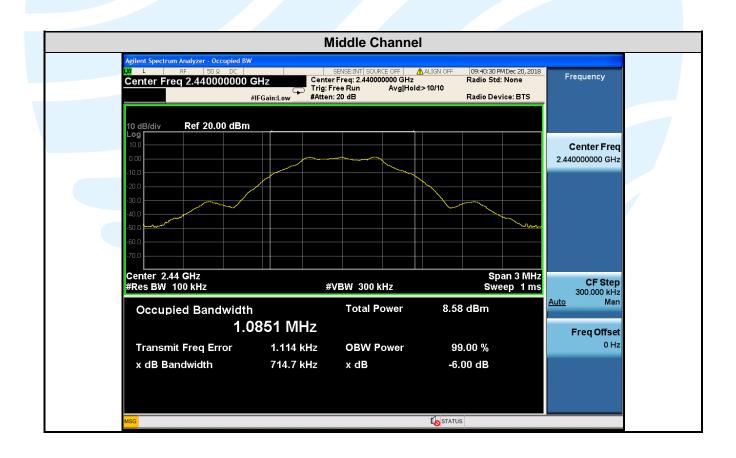
5.3 CONDUCTED PEAK OUTPUT POWER

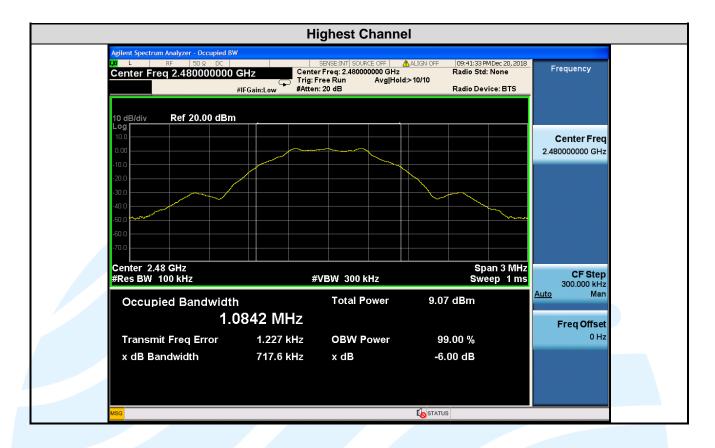
Test Requirement:	FCC 47 CFR Part 15 Subpart C Section15.247 (b)(3)
Test Method:	ANSI C63.10-2013 Clause 11.9.1.3
Limit:	For systems using digital modulation in the 2400-2483.5 MHz bands: 1 Watt.
Test Procedure:	 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter.
	2. Measure out each test modes' peak or average output power, record the power level.
	Note: The cable loss and attenuator loss were offset into measure device as an
	amplitude offset.
Test Setup:	Refer to section 4.4.3 for details.
Instruments Used:	Refer to section 3 for details
Test Results:	Pass

Type of Modulation	Channel	Frequency (MHz)	Frequency (MHz) Maximum Conducted Peak Power (dBm)	
	0	2402	2.04	1.60
GFSK	19	2440	2.48	1.77
	39	2480	1.87	1.54

Note: The antenna gain of -1.8 dBi less than 6dBi maximum permission antenna gain value based on 1 watt peak output power limit.

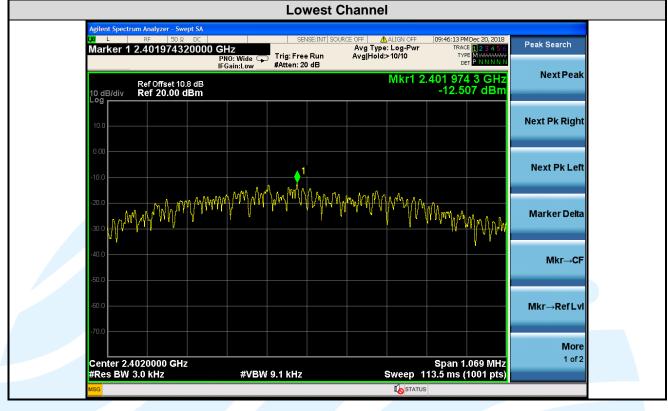

Page 16 of 35

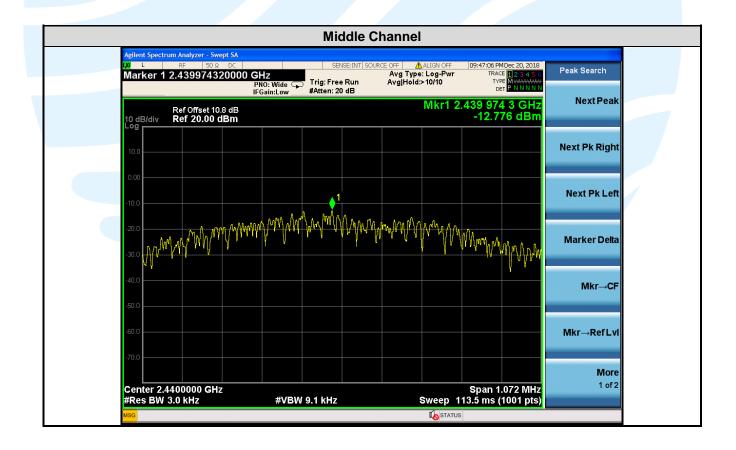

5.46 DB BANDWIDTH

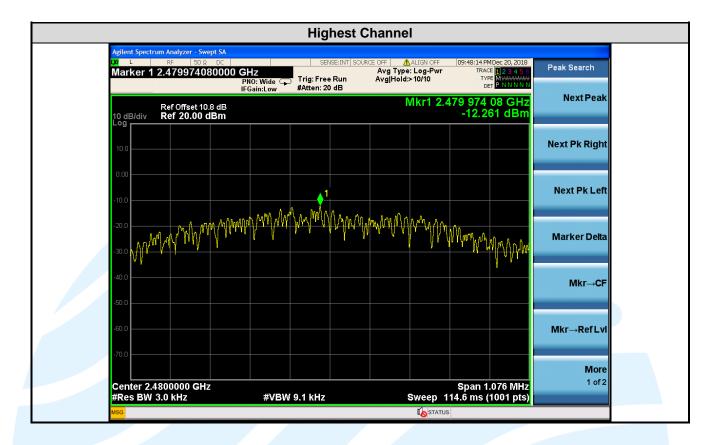

Test Requirement: Test Method: Limit: Test Procedure:	 FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(2) ANSI C63.10-2013 Clause 11.8.1 For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings: a) Set RBW = 100 kHz. b) Set the video bandwidth (VBW) ≥ 3 x RBW. c) Detector = Peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
	Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.
Test Setup:	Refer to section 4.4.3 for details.
Instruments Used:	Refer to section 3 for details
Test Results:	

Type of Modulation	Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	99% Bandwidth (MHz)	6 dB Bandwidth Limit	Pass / Fail
	0	2402	0.7127	1.0836	> 500 kHz	Pass
GFSK	19	2440	0.7147	1.0851	> 500 kHz	Pass
	39	2480	0.7176	1.0842	> 500 kHz	Pass

The test plots as follows:

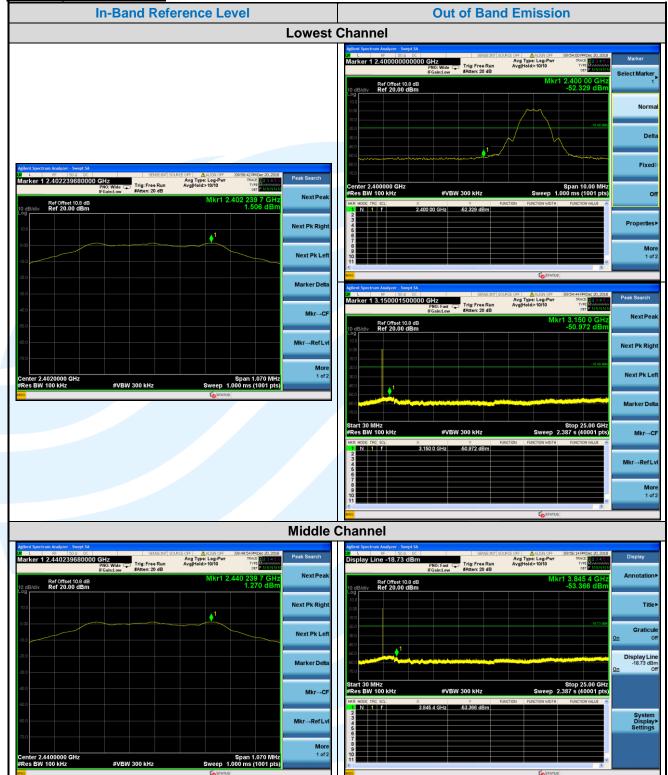

Page 19 of 35


5.5 POWER SPECTRAL DENSITY


Test Requiremer Test Method: Limit:	ANSI C63.10 For digitally intentional ra	Part 15 Subpart C -2013 Clause 11.1 modulated syster adiator to the anter me interval of contin	0.2 ns, the power sp nna shall not be gr	ectral density cor eater than 8dBm i	
Test Procedure: Test Setup:	Remove the antenna port Use the follor a) Set anal b) Set the c) Set the d) Set the d) Set the e) Detector f) Sweep t g) Trace m h) Allow tra i) Use the RBW. j) If measu Note: The c amplitude off	antenna from the to the spectrum and wing spectrum ana lyzer center frequent span to 1.5 times the RBW to: 3 kHz \leq R VBW \geq 3 x RBW. r = peak. ime = auto couple. ode = max hold. ace to fully stabilized peak marker function ured value exceeds able loss and atte	EUT and then con halyzer. Iyzer settings: Incy to DTS channe the DTS bandwidth. BW ≤ 100 kHz. Imit, reduce RBW enuator loss were	nnect a low loss F I center frequency. e maximum amplitu ' (no less than 3 kH	de level within the Iz) and repeat.
Instruments Use		ion 3 for details	o.		
Test Results:	Pass				
Type of Modulation	Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result (Pass / Fail)

Type of Modulation	Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result (Pass / Fail)
	0	2402	-12.507	8	Pass
GFSK	19	2440	-12.776	8	Pass
	39	2480	<mark>-12</mark> .261	8	Pass

The test plots as follows:



Page 22 of 35

5.6 CONDUCTED OUT OF BAND EMISSION

Test Requirement:	FCC 47 CFR Part 15 Subpart C Section 15.247(d)
Test Method:	ANSI C63.10-2013 Clause 11.11
Limit:	In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.
Test Procedure:	Remove the antenna from the EUT and then connect a low loss RF cable from the
	antenna port to the spectrum analyzer.
	Use the following spectrum analyzer settings:
	Step 1:Measurement Procedure REF
	a) Set instrument center frequency to DTS channel center frequency.
	 b) Set the span to ≥ 1.5 times the DTS bandwidth.
	c) Set the RBW = 100 kHz .
	d) Set the VBW \ge 3 x RBW.
	e) Detector = peak.
	 f) Sweep time = auto couple. g) Trace mode = max hold.
	 g) Trace mode = max hold. h) Allow trace to fully stabilize.
	i) Use the peak marker function to determine the maximum PSD level.
	j) Note that the channel found to contain the maximum PSD level can be used to
	establish the reference level.
	Step 2:Measurement Procedure OOBE
	a) Set RBW = 100 kHz.
	b) Set VBW ≥ 300 kHz.
	c) Detector = peak.
	d) Sweep = auto couple.
	e) Trace Mode = max hold.
	f) Allow trace to fully stabilize.
	g) Use the peak marker function to determine the maximum amplitude level.
	Note: The cable loss and attenuator loss were offset into measure device as an
	amplitude offset.
Test Setup:	Refer to section 4.4.3 for details.
Instruments Used:	Refer to section 3 for details
Test Results:	Pass

The test plots as follows:

Highest C	Channel
	Addrest Spectrum Analyzer, Swept St
	Log
Agelent Spectrum Analyzer Swept SA It Markor 12/4802306800000 GHz Stress 211 SXAPC OFF Ax1221 OFF (0948561MOes:00.008) Markor 12/4802306800000 GHz Frig: Free Run Avg1teid=1010 Trig: Free Run Avg1teid=1000 Trig: Free Run Avg1teid=10000 Trig: Free Run Avg1teid=10000 Trig: Free Run Avg1teid=100000 Trig: Free Run Avg1teid=10000000 Trig: Free Run Avg1teid=1000000000000000000000000000000000000	400 1 Fixed> 700 Fixed> Fixed> 700 Span 10.00 MHz Fixed> 701 Fixed> Fixed> 702 Span 10.00 MHz Fixed> 703 Fixed> Fixed>
Ref Offset 10.8 dB Mkr1 2.480 238 63 GHz Next Peak 10 dB/olv Ref 20.00 dBm 1.785 dBm Next Pick 100 1 1 Next Pick Right	N 1 f 2.48350 GHz 53341 dBm PARTON WORTH
Next Pk Left Next Pc Left Marker Detta	8 More 1 of 2
-00	No. L IP Solo OC Selecting SCARC OFF Autor off IO Selecting SCARC OFF IO Selectin
400 Mkr→RefLvl 100 More Center 2.4800000 GHz Span 1.080 MHz #Res BW 100 kHz #VBW 300 kHz	100
	200 Marker Deta 700 Start 30 MHz #Res BW 100 kHz #VBW 300 kHz Stop 25.00 GHz Mkr—CF
	NR 1 7 3.1192 GHz 5.1191 dBm Parcton Parcton wdbH
	10 1 of 2 C 2 Most Most

5.7 RADIATED SPURIOUS EMISSIONS

Test Requirement:FCC 47 CFR Part 15 Subpart C Section 15.205/15.209Test Method:ANSI C63.10-2013 Clause 11.11 & Clause 11.12DescriptionSection 15.205/15.209

Receiver Setup:

Frequency	RBW
0.009 MHz-0.150 MHz	200/300 kHz
0.150 MHz -30 MHz	9/10 kHz
30 MHz-1 GHz	100/120 kHz
Above 1 GHz	1 MHz

Limits:

Spurious Emissions

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)	
0.009 MHz-0.490 MHz	2400/F(kHz)	:		300	
0.490 MHz-1.705 MHz	24000/F(kHz)			30	
1.705 MHz-30 MHz	30			30	
30 MHz-88 MHz	100	40.0	Quasi-peak	3	
88 MHz-216 MHz	150	43.5	Quasi-peak	3	
216 MHz-960 MHz	200	46.0	Quasi-peak	3	
960MHz-1GHz	500	54.0	Quasi-peak	3	
Above 1 GHz	500	54.0	Average	3	

Remark:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Test Setup:Refer to section 4.4.1 for details.

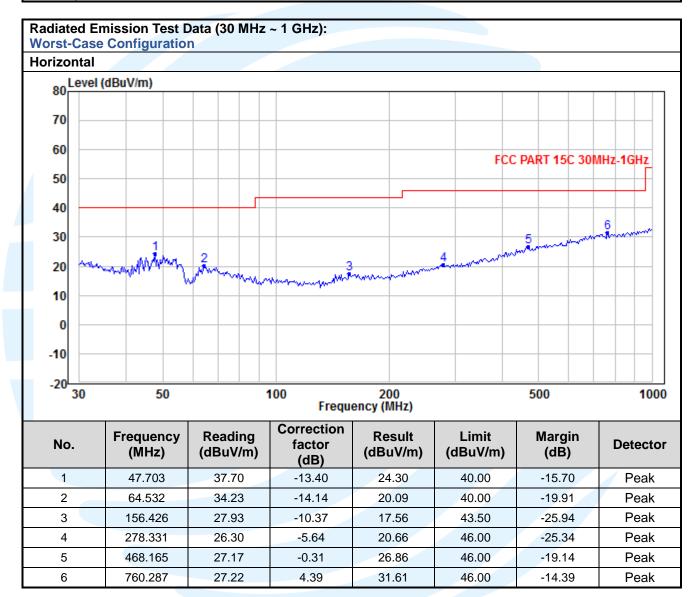
Test Procedures:

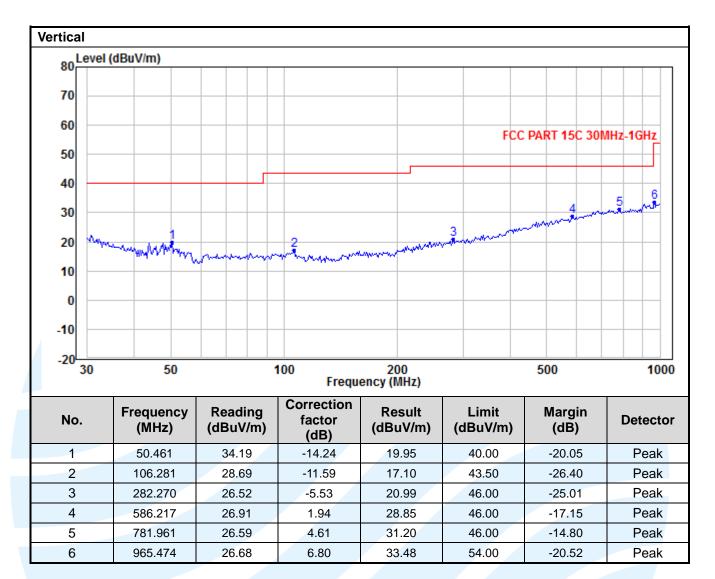
- 1. From 30 MHz to 1GHz test procedure as below:
- 1) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- 2. Above 1GHz test procedure as below:
- 1) Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- 2) Test the EUT in the lowest channel ,middle channel, the Highest channel
- 3) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found

Page 26 of 35

the Y axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete. 4)


Equipment Used: Refer to section 3 for details. Pass


Test Result:

The measurement data as follows:

Radiated Emission Test Data (9 KHz ~ 30 MHz):

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

Radiated Er	nission Test Data	a (Above 1GHz	z):			
Lowest Cha	innel:					
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	4804.00	47.16	74.00	-26.84	Peak	Horizontal
2	4804.00	35.02	54.00	-18.98	Average	Horizontal
3	7206.00	50.39	74.00	-23.61	Peak	Horizontal
4	7206.00	38.35	54.00	-15.65	Average	Horizontal
5	4804.00	42.42	74.00	-31.58	Peak	Vertical
6	4804.00	31.84	54.00	-22.16	Average	Vertical
7	7206.00	48.81	74.00	-25.19	Peak	Vertical
8	7206.00	37.17	54.00	-16.83	Average	Vertical
Middle Cha	nnel:					
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	4880.00	43.30	74.00	-30.70	Peak	Horizontal
2	4880.00	31.88	54.00	-22.12	Average	Horizontal
3	7320.00	48.78	74.00	-25.22	Peak	Horizontal
4	7320.00	36.55	54.00	-17.45	Average	Horizontal
5	4880.00	42.96	74.00	-31.04	Peak	Vertical
6	4880.00	31.48	54.00	-22.52	Average	Vertical
7	7320.00	47.98	74.00	-26.02	Peak	Vertical
8	7320.00	36.50	54.00	-17.50	Average	Vertical
Highest Cha	annel:					
No.	Frequency (MHz)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	4960.00	44.64	74.00	-29.36	Peak	Horizontal
2	4960.00	32.97	54.00	-21.03	Average	Horizontal
3	7440.00	48.44	74.00	-25.56	Peak	Horizontal
4	7440.00	37.01	54.00	-16.99	Average	Horizontal
5	4960.00	44.68	74.00	-29.32	Peak	Vertical
6	4960.00	32.54	54.00	-21.46	Average	Vertical
7	7440.00	48.57	74.00	-25.43	Peak	Vertical
8	7440.00	36.46	54.00	-17.54	Average	Vertical

Page 29 of 35

5.8 BAND EDGE MEASUREMENTS (RADIATED)

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.205/15.209

Test Method:

ANSI C63.10-2013 Clause 11.13

Limits:

Radiated emissions which fall in the restricted bands, as defined in section 15.205(a), must also comply with the radiated emission limits specified in section 15.209(a).

Frequency	Limit (dBµV/m @3m)	Remark
30 MHz-88 MHz	40.0	Quasi-peak Value
88 MHz-216 MHz	43.5	Quasi-peak Value
216 MHz-960 MHz	46.0	Quasi-peak Value
960 MHz-1 GHz	54.0	Quasi-peak Value
Above 1 GHz	54.0	Average Value
	74.0	Peak Value

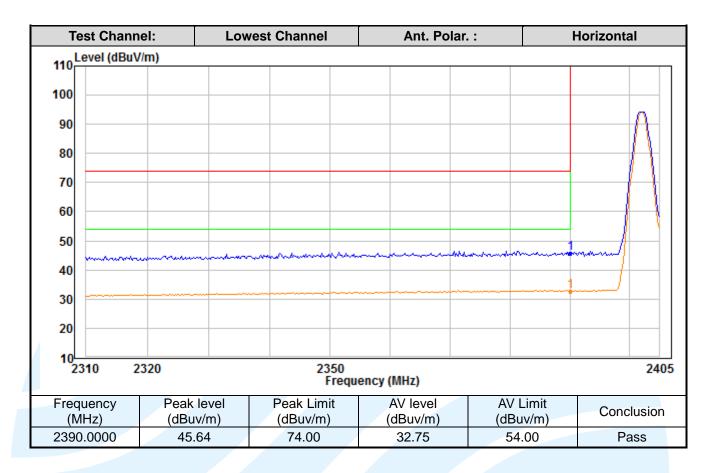
Test Setup: Refer to section 4.4.1 for details.

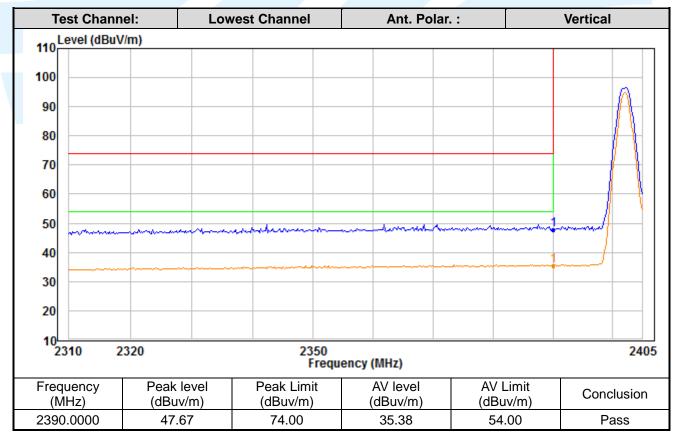
Test Procedures:

Radiated band edge measurements at 2390 MHz and 2483.5 MHz were made with the unit transmitting in the low end of the channel range and the high end closest to the restricted bands respectively. The emissions were made on the 966 Semi-Chamber. Use (resolution bandwidth (RBW) = 1 MHz, video bandwidth (VBW) = 3 MHz for peak levels and RBW = 1 MHz and VBW = 10 Hz or 1/T for average levels).

1. Use radiated spurious emission test procedure described in clause 5.10. The transmitter output (antenna port) was connected to the test receiver.

2. Set the PK and AV limit line.

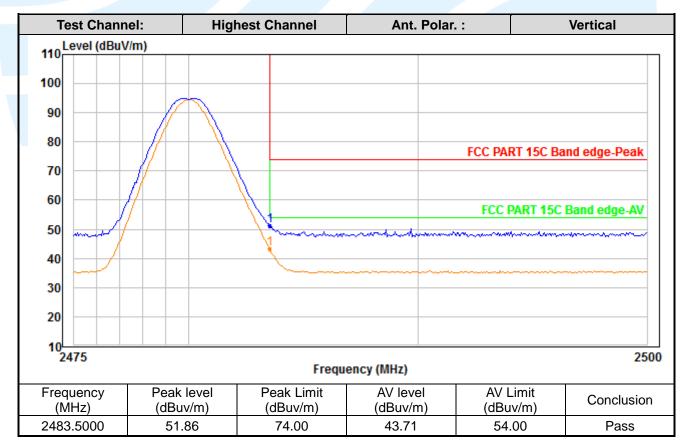

3. Record the fundamental emission and emissions out of the band-edge.


4. Determine band-edge compliance as required.

Refer to section 3 for details. Equipment Used: Pass

Test Result:


The measurement data as follows:



Page 31 of 35

Report No.: 181213004RFC-2

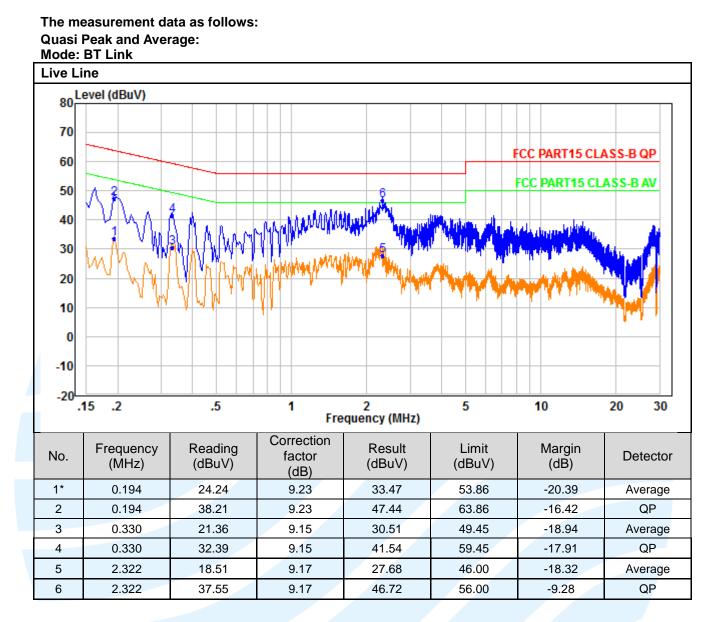
5.9 CONDUCTED EMISSION

Test Requirement:	47 CFR Part 15C Section 15.207	
Test Method:	ANSI C63.10-2013 Section 6.2	
Limits:		

Frequency range	Limits (dB(µV)	
(MHz)	Quasi-peak	Average
0,15 to 0,50	66 to 56	56 to 46
0,50 to 5	56	46
5 to 30	60	50

Remark:

- The lower limit shall apply at the transition frequencies. 1.
- The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz. 2.
- Test Setup: Refer to section 4.4.2 for details.


Test Procedures:

Test frequency range :150KHz-30MHz

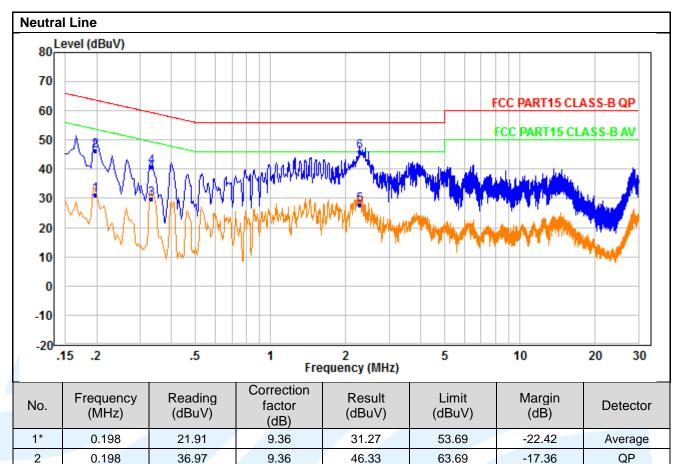
- The mains terminal disturbance voltage test was conducted in a shielded room. 1)
- The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) 2) which provides a $50\Omega/50\mu$ H + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for 3) floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from 4) the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- In order to find the maximum emission, the relative positions of equipment and all of the interface cables 5) must be changed according to ANSI C63.10 on conducted measurement.

Equipment Used: Refer to section 3 for details. Pass

Test Result:

-19.66

-18.73


-18.09

-10.16

Average

QP

Average QP

Remark:

3 4

5

6

0.330

0.330

2.274

2.274

20.48

31.41

18.58

36.51

1. An initial pre-scan was performed on the Phase and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

29.79

40.72

27.91

45.84

49.45

59.45

46.00

56.00

9.31

9.31

9.33

9.33

APPENDIX 1 PHOTOS OF TEST SETUP

See test photos attached in Appendix 1 for the actual connections between Product and support equipment.

APPENDIX 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS

Refer to Appendix 2 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of UnionTrust, this report can't be reproduced except in full.

