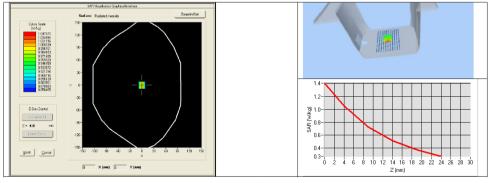


Test Report	17071301-FCC-H
Page	81 of 121


Ref: ACR.165.2.17.SATU.A

2300	52.9 ±5 %	1.81 ±5 %
2450	52.7 ±5 %	1.95 ±5 %
2600	52.5 ±5 %	2.16 ±5 %
3000	52.0 ±5 %	2.73 ±5 %
3500	51.3 ±5 %	3.31 ±5 %
3700	51.0 ±5 %	3.55 ±5 %
5200	49.0 ±10 %	5.30 ±10 %
5300	48.9 ±10 %	5.42 ±10 %
5400	48.7 ±10 %	5.53 ±10 %
5500	48.6 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps' : 57.5 sigma : 0.96
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
835	9.96 (1.00)	6.53 (0.65)	

Page: 10/11

Test Report	17071301-FCC-H
Page	82 of 121

Ref: ACR.165.2.17.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Manufacturer / Description Model		Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019	
Calipers	Carrera	CALIPER-01	01/2017	01/2020	
Reference Probe	MVG	EPG122 SN 18/11	10/2016	10/2017	
Multimeter	Keithley 2000	1188656	01/2017	01/2020	
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	01/2017	01/2020	
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Humidity Sensor	Control Company	150798832	10/2015	10/2017	

Page: 11/11

Test Report	17071301-FCC-H
Page	83 of 121

SAR Reference Dipole Calibration Report

Ref: ACR.165.4.17.SATU.A

SIEMIC TESTING AND CERTIFICATION SERVICES

ZONE A,FLOOR 1,BUILDING 2,WAN YE LONG TECHNOLOGY PARK,SOUTH SIDE OF ZHOUSHI ROAD, SHIYAN STREET,BAO'AN DISTRICT, SHENZHEN 518108 , GUANGDONG , P.R.C.

MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 1800 MHZ SERIAL NO.: SN 18/11 DIPF152

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 06/8/2017

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Test Report	17071301-FCC-H
Page	84 of 121

Ref: ACR.165.4.17.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	6/14/2017	JES
Checked by :	Jérôme LUC	Product Manager	6/14/2017	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	6/14/2017	thim nuthowshi

	Customer Name
Distribution :	SIEMIC Testing and Certification Services

Issue	Date	Modifications
А	6/14/2017	Initial release

Page: 2/11

 Test Report
 17071301-FCC-H

 Page
 85 of 121

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.165.4.17.SATU.A

TABLE OF CONTENTS

1	Intro	oduction	
2	Dev	ice Under Test	
3	Proc	luct Description	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Vali	dation measurement7	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	
8	List	of Equipment11	

Page: 3/11

 Test Report
 17071301-FCC-H

 Page
 86 of 121

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.165.4.17.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR 1800 MHz REFERENCE DIPOLE			
Manufacturer	MVG			
Model	SID1800			
Serial Number	SN 18/11 DIPF152			
Product Condition (new / used) Used				

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/11

 Test Report
 17071301-FCC-H

 Page
 87 of 121

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.165.4.17.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

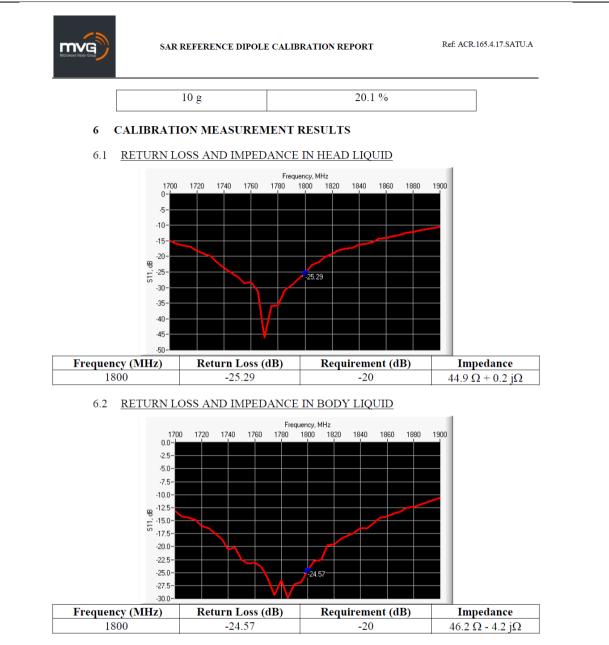
5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.


Scan Volume	Expanded Uncertainty
-------------	----------------------

-	1 g	20.3 %
H		

Page: 5/11

Test Report	17071301-FCC-H
Page	88 of 121

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		ry MHz L mm h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

 Test Report
 17071301-FCC-H

 Page
 89 of 121

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.165.4.17.SATU.A

450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.	PASS	41.7 ±1 %.	PASS	3.6 ±1 %.	PASS
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ε,΄)		Conductivi	ity <mark>(</mark> σ) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	

Page: 7/11

 Test Report
 17071301-FCC-H

 Page
 90 of 121

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.165.4.17.SATU.A

1800	40.0 ±5 %	PASS	1.40 ±5 %	PASS
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %		1.80 ±5 %	
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

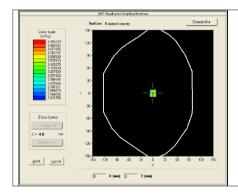
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

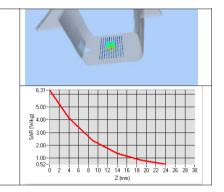
The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' : 41.7 sigma : 1.46
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1800 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4	37.99 (3.80)	20.1	20.05 (2.00)

Page: 8/11




Test Report	17071301-FCC-H
Page	91 of 121

Ref: ACR.165.4.17.SATU.A

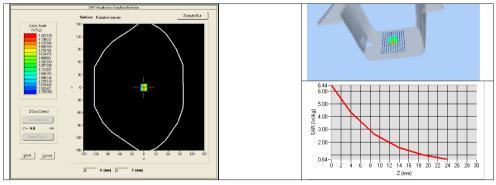
39.7	20.5
40.5	20.9
41.1	21.1
43.6	21.9
48.7	23.3
52.4	24
55.3	24.6
63.8	25.7
67.1	25
67.4	24.2
	40.5 41.1 43.6 48.7 52.4 55.3 63.8 67.1

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r ')		Conductivity (σ) S/m	
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %	PASS	1.52 ±5 %	PASS
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	

Page: 9/11

Test Report	17071301-FCC-H
Page	92 of 121


Ref: ACR.165.4.17.SATU.A

2300	52.9 ±5 %	1.81 ±5 %
2450	52.7 ±5 %	1.95 ±5 %
2600	52.5 ±5 %	2.16 ±5 %
3000	52.0 ±5 %	2.73 ±5 %
3500	51.3 ±5 %	3.31 ±5 %
3700	51.0 ±5 %	3.55 ±5 %
5200	49.0 ±10 %	5.30 ±10 %
5300	48.9 ±10 %	5.42 ±10 %
5400	48.7 ±10 %	5.53 ±10 %
5500	48.6 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps' : 53.9 sigma : 1.46
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1800 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
1800	39.62 (3.96)	21.19 (2.12)	

Page: 10/11

Test Report	17071301-FCC-H
Page	93 of 121

Ref: ACR.165.4.17.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Manufacturer / Description Model		Identification No.	Current Calibration Date	Next Calibration Date		
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019		
Calipers	Carrera	CALIPER-01	01/2017	01/2020		
Reference Probe	MVG	EPG122 SN 18/11	10/2016	10/2017		
Multimeter	Keithley 2000	1188656	01/2017	01/2020		
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	01/2017	01/2020		
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature and Humidity Sensor	Control Company	150798832	10/2015	10/2017		

Page: 11/11

Test Report	17071301-FCC-H
Page	94 of 121

SAR Reference Dipole Calibration Report

Ref: ACR.165.5.17.SATU.A

SIEMIC TESTING AND CERTIFICATION SERVICES

ZONE A,FLOOR 1,BUILDING 2,WAN YE LONG TECHNOLOGY PARK,SOUTH SIDE OF ZHOUSHI ROAD, SHIYAN STREET,BAO'AN DISTRICT, SHENZHEN 518108 , GUANGDONG , P.R.C. MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 1900 MHZ SERIAL NO.: SN 18/11 DIPG153

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Test Report	17071301-FCC-H
Page	95 of 121

Ref: ACR.165.5.17.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	6/14/2017	JES
Checked by :	Jérôme LUC	Product Manager	6/14/2017	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	6/14/2017	Him nuthowshi

	Customer Name
Distribution :	SIEMIC Testing and Certification Services

Issue	Date	Modifications
А	6/14/2017	Initial release

Page: 2/11

Test Report	17071301-FCC-H
Page	96 of 121

Ref: ACR.165.5.17.SATU.A

TABLE OF CONTENTS

1	Intro	duction	
2	Devi	ce Under Test4	
3	Prod	uct Description	
	3.1	General Information	4
4	Mea	surement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Calil	pration Measurement Results6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Valie	dation measurement7	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	
8	List	of Equipment	

Page: 3/11

Test Report	17071301-FCC-H
Page	97 of 121

Ref: ACR.165.5.17.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test					
Device Type	COMOSAR 1900 MHz REFERENCE DIPOLE				
Manufacturer	MVG				
Model	SID1900				
Serial Number	SN 18/11 DIPG153				
Product Condition (new / used)	Used				

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/11

 Test Report
 17071301-FCC-H

 Page
 98 of 121

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.165.5.17.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

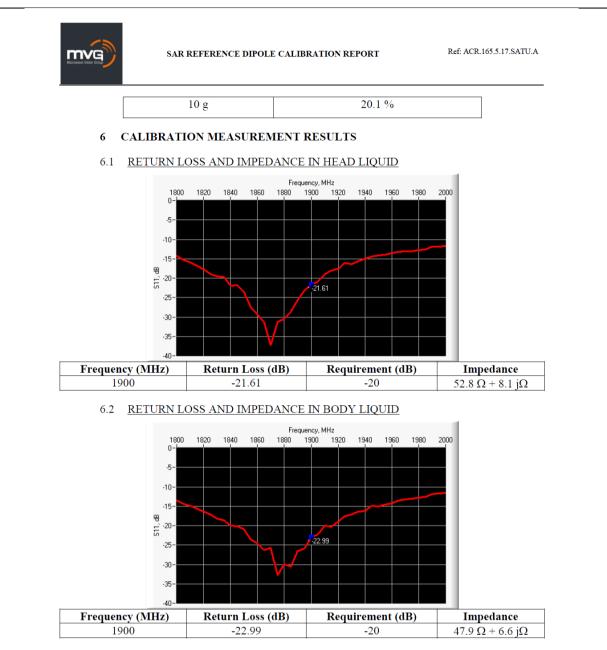
Frequency band	Expanded Uncertainty on Return Loss			
400-6000MHz	0.1 dB			

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length			
3 - 300	0.05 mm			

5.3 VALIDATION MEASUREMENT


The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty		
1 g	20.3 %		

Page: 5/11

Test Report	17071301-FCC-H
Page	99 of 121

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

 Test Report
 17071301-FCC-H

 Page
 100 of 121

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.165.5.17.SATU.A

450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.	PASS	39.5 ±1 %.	PASS	3.6 ±1 %.	PASS
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_r ')		Conductivity (σ) S/m	
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	

Page: 7/11

 Test Report
 17071301-FCC-H

 Page
 101 of 121

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.165.5.17.SATU.A

1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %	PASS	1.40 ±5 %	PASS
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %		1.80 ±5 %	
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

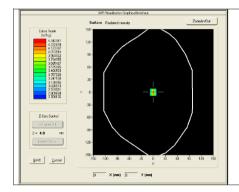
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

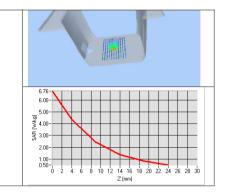
The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' : 38.5 sigma : 1.45
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	

Page: 8/11




Test Report	17071301-FCC-H	
Page	102 of 121	

Ref: ACR.165.5.17.SATU.A

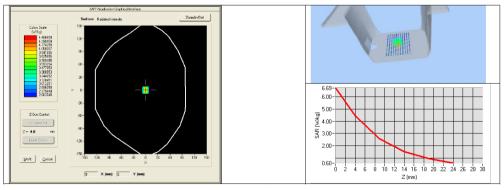
				-
1900	39.7	39.88 <mark>(</mark> 3.99)	20.5	20.52 (2.05)
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	
3700	67.4		24.2	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ε _r ')		Conductiv	ity (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %	PASS	1.52 ±5 %	PASS
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	

Page: 9/11

Test Report	17071301-FCC-H
Page	103 of 121


Ref: ACR.165.5.17.SATU.A

52.9 ±5 %	1.81 ±5 %
52.7 ±5 %	1.95 ±5 %
52.5 ±5 %	2.16 ±5 %
52.0 ±5 %	2.73 ±5 %
51.3 ±5 %	3.31 ±5 %
51.0 ±5 %	3.55 ±5 %
49.0 ±10 %	5.30 ±10 %
48.9 ±10 %	5.42 ±10 %
48.7 ±10 %	5.53 ±10 %
48.6 ±10 %	5.65 ±10 %
48.5 ±10 %	5.77 ±10 %
48.2 ±10 %	6.00 ±10 %
	52.7 ±5 % 52.5 ±5 % 52.0 ±5 % 51.3 ±5 % 51.0 ±5 % 49.0 ±10 % 48.9 ±10 % 48.6 ±10 % 48.5 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps' : 53.3 sigma : 1.56
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
1900	40.38 (4.04)	20.98 (2.10)	

Page: 10/11

Test Report	17071301-FCC-H
Page	104 of 121

Ref: ACR.165.5.17.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	lldenfi		Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019
Calipers	Carrera	CALIPER-01	01/2017	01/2020
Reference Probe	MVG	EPG122 SN 18/11	10/2016	10/2017
Multimeter	Keithley 2000	1188656	01/2017	01/2020
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	01/2017	01/2020
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	150798832	10/2015	10/2017

Page: 11/11

Test Report	17071301-FCC-H
Page	105 of 121

SAR Reference Dipole Calibration Report

Ref: ACR.165.7.17.SATU.A

SIEMIC TESTING AND CERTIFICATION SERVICES

ZONE A,FLOOR 1,BUILDING 2,WAN YE LONG TECHNOLOGY PARK,SOUTH SIDE OF ZHOUSHI ROAD, SHIYAN STREET,BAO'AN DISTRICT, SHENZHEN 518108 , GUANGDONG , P.R.C.

MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 2450 MHZ SERIAL NO.: SN 18/11 DIPJ155

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 06/8/2017

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Test Report	17071301-FCC-H
Page	106 of 121

Ref: ACR.165.7.17.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	6/14/2017	JS
Checked by :	Jérôme LUC	Product Manager	6/14/2017	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	6/14/2017	thim Muthowski

	Customer Name
Distribution :	SIEMIC Testing and Certification Services

Issue	Date	Modifications
А	6/14/2017	Initial release

Page: 2/11

Test Report	17071301-FCC-H
Page	107 of 121

Ref: ACR.165.7.17.SATU.A

TABLE OF CONTENTS

1	Intro	duction	
2	Dev	ice Under Test	
3	Proc	uct Description	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Vali	dation measurement7	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	List	of Equipment11	

Page: 3/11

Test Report	17071301-FCC-H
Page	108 of 121

Ref: ACR.165.7.17.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test	
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE
Manufacturer	MVG
Model	SID2450
Serial Number	SN 18/11 DIPJ155
Product Condition (new / used)	Used

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 <u>GENERAL INFORMATION</u>

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – *MVG COMOSAR Validation Dipole*

Page: 4/11

 Test Report
 17071301-FCC-H

 Page
 109 of 121

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.165.7.17.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 <u>RETURN LOSS REQUIREMENTS</u>

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

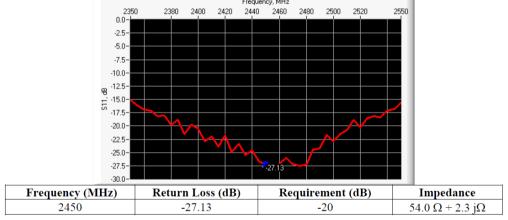
5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.


Scan Volume	Expanded Uncertainty
1 g	20.3 %

Page: 5/11

Test Report	17071301-FCC-H
Page	110 of 121

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		h m	m	d r	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

Test Report	17071301-FCC-H
Page	111 of 121

Ref: ACR.165.7.17.SATU.A

					1 1	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.	PASS	30.4 ±1 %.	PASS	3.6 ±1 %.	PASS
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (εr')		Conductivity (σ) S/m	
	required	required measured		measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	

Page: 7/11

Test Report	17071301-FCC-H
Page	112 of 121

Ref: ACR.165.7.17.SATU.A

40.0 ±5 %		1.40 ±5 %	
40.0 ±5 %		1.40 ±5 %	
40.0 ±5 %		1.40 ±5 %	
40.0 ±5 %		1.40 ±5 %	
39.8 ±5 %		1.49 ±5 %	
39.5 ±5 %		1.67 ±5 %	
39.2 ±5 %	PASS	1.80 ±5 %	PASS
39.0 ±5 %		1.96 ±5 %	
38.5 ±5 %		2.40 ±5 %	
37.9 ±5 %		2.91 ±5 %	
	$\begin{array}{c} 40.0 \pm 5 \ \% \\ 40.0 \pm 5 \ \% \\ 40.0 \pm 5 \ \% \\ 39.8 \pm 5 \ \% \\ 39.5 \pm 5 \ \% \\ 39.2 \pm 5 \ \% \\ 39.0 \pm 5 \ \% \\ 38.5 \pm 5 \ \% \end{array}$	40.0 ±5 % 40.0 ±5 % 40.0 ±5 % 39.8 ±5 % 39.5 ±5 % 39.2 ±5 % 39.0 ±5 % 38.5 ±5 %	40.0 ±5 % 1.40 ±5 % 40.0 ±5 % 1.40 ±5 % 40.0 ±5 % 1.40 ±5 % 40.0 ±5 % 1.40 ±5 % 39.8 ±5 % 1.49 ±5 % 39.5 ±5 % 1.67 ±5 % 39.2 ±5 % PASS 39.0 ±5 % 1.96 ±5 % 38.5 ±5 % 2.40 ±5 %

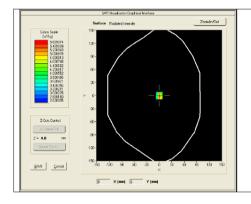
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

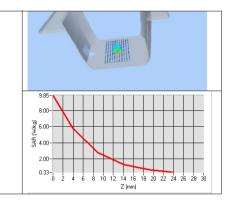
The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' : 37.5 sigma : 1.80
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9. <mark>5</mark> 6		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	

Page: 8/11




Test Report	17071301-FCC-H
Page	113 of 121

Ref: ACR.165.7.17.SATU.A

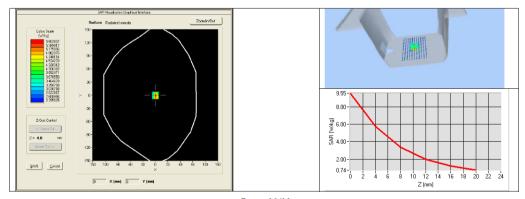
39.7		20.5	
40.5		20.9	
41.1		21.1	
43.6		21.9	
48.7		23.3	
52.4	53.18 (5.32)	24	23.97 (2.40)
55.3		24.6	
63.8		25.7	
67.1		25	
67.4		24.2	
	40.5 41.1 43.6 48.7 52.4 55.3 63.8 67.1	40.5 41.1 43.6 48.7 52.4 53.18 (5.32) 55.3 63.8 67.1	40.5 20.9 41.1 21.1 43.6 21.9 48.7 23.3 52.4 53.18 (5.32) 24 55.3 24.6 63.8 25.7 67.1 25

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ε _r ')	Conductiv	ity (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	

Page: 9/11

Test Report	17071301-FCC-H
Page	114 of 121


Ref: ACR.165.7.17.SATU.A

52.9 ±5 %		1.81 ±5 %	
52.7 ±5 %	PASS	1.95 ±5 %	PASS
52.5 ±5 %		2.16 ±5 %	
52.0 ±5 %		2.73 ±5 %	
51.3 ±5 %		3.31 ±5 %	
51.0 ±5 %		3.55 ±5 %	
49.0 ±10 %		5.30 ±10 %	
48.9 ±10 %		5.42 ±10 %	
48.7 ±10 %		5.53 ±10 %	
48.6 ±10 %		5.65 ±10 %	
48.5 ±10 %		5.77 ±10 %	
48.2 ±10 %		6.00 ±10 %	
	52.7 ±5 % 52.5 ±5 % 52.0 ±5 % 51.3 ±5 % 49.0 ±10 % 48.9 ±10 % 48.6 ±10 % 48.6 ±10 %	52.7 ±5 % PASS 52.5 ±5 % 52.0 ±5 % 51.3 ±5 % 51.0 ±5 % 49.0 ±10 % 48.9 ±10 % 48.6 ±10 % 48.5 ±10 %	52.7 ±5 % PASS 1.95 ±5 % 52.5 ±5 % 2.16 ±5 % 52.0 ±5 % 2.73 ±5 % 51.3 ±5 % 3.31 ±5 % 51.0 ±5 % 3.55 ±5 % 49.0 ±10 % 5.30 ±10 % 48.9 ±10 % 5.42 ±10 % 48.7 ±10 % 5.53 ±10 % 48.6 ±10 % 5.65 ±10 % 48.5 ±10 % 5.77 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps' : 53.2 sigma : 1.89
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
2450	52.73 (5.27)	24.27 (2.43)

Page: 10/11

Test Report	17071301-FCC-H
Page	115 of 121

Ref: ACR.165.7.17.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019
Calipers	Carrera	CALIPER-01	01/2017	01/2020
Reference Probe	MVG	EPG122 SN 18/11	10/2016	10/2017
Multimeter	Keithley 2000	1188656	01/2017	01/2020
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	01/2017	01/2020
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	150798832	10/2015	10/2017

Page: 11/11

Test Report	17071301-FCC-H
Page	116 of 121

Annex B SAR System PHOTOGRAPHS

Liquid depth \ge 15cm

Test Report	17071301-FCC-H
Page	117 of 121

Annex C SETUP PHOTOGRAPHS

Right Head Touch View

Right Head Tilt View

Test Report	17071301-FCC-H
Page	118 of 121

Left Head Touch View

Left Head Tilt View

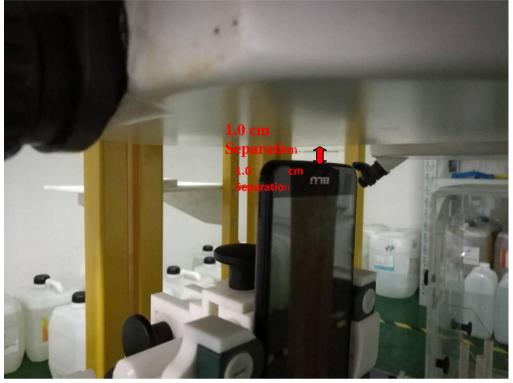
Test Report	17071301-FCC-H
Page	119 of 121

Body Setup Photo (LCD UP)

Body Setup Photo (LCD DOWN)

Test Report	17071301-FCC-H
Page	120 of 121

Body Setup Photo (LCD LEFT)


Body Setup Photo (LCD RIGHT)

Test Report	17071301-FCC-H
Page	121 of 121

Body Setup Photo (LCD BOTTOM)

Body Setup Photo (LCD TOP)

