

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 31 of 109

Report No.: 2210112022RFC-4

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 32 of 109

Report No.: 2210112022RFC-4

Channel 106								Ch	annel 1	22			
Aglient Spectrum Analyzer - Occupied BW RL RF S00 DC Center Freq 5.530000000	GHz Center IFGain:Low Atten:	SEPULSE SOURCE OFF A Freq: 5.530000000 GHz te Run Avg Hold: 30 dB	ALIGN OFF 04:48:52PM Oct 21, 2022 Radio Std: None 10/10 Radio Device: BTS	Frequency		Agilent Spectrum Analyzer - Occu R RL RF 500 Center Freq 5.61000	upled BW DC 0000 GHz IFGain:Lov	Center Trig: Fr #Atten:	vseizuuse source off Freq: 5.610000000 Gi ree Run Avgli 30 dB	ALIGN OFF Iz Iold>10/10	04:49:39 P Radio Std: Radio Dev	10ct21,2022 None ice: BTS	Frequency
Ref Offset 11.5 dB 10 dB/div Ref 20.00 dBm	3					Ref Offset 10 dB/div Ref 20.00	11.5 dB 0 dBm						
	مى مەرىلىيە يىرىمى مىرىمىيە اسلىر قەرىپ	V ^{aran} terakanan	•••	Center Freq 5.53000000 GHz		10.0 0.00 	, the second second	*****	n franker andere andere				Center Freq 5.61000000 GHz
200 300 400 400 400 400 700						200 300 400 broketter - ersterstyldest 500 600 700					de-atradyseerstee	a	
Center 5.53 GHz #Res BW 820 kHz	#V	BW 3 MHz	Span 160 MHz Sweep 1 ms	CF Step		Center 5.61 GHz #Res BW 820 kHz		#\	/BW/3MHz		Span Swe	160 MHz ep 1 ms	CF Step
Occupied Bandwidth	n 279 MH-	Total Power	14.7 dBm	Auto Man		Occupied Bandy	width	MU-7	Total Power	15	.0 dBm		Auto Man
Transmit Freq Error	26.789 kHz	OBW Power	99.00 %	Freq Offset 0 Hz		Transmit Freq Erro	or 20.1	70 kHz	OBW Power	9	99.00 %		Freq Offset 0 Hz
x dB Bandwidth	80.70 MHz	x dB	-26.00 dB			x dB Bandwidth	79.7	8 MHz	x dB	-20	3.00 dB		
MSG			STATUS		87	ASG				STAT	US		

Shenzhen UnionTrust Quality and Technology Co., Ltd.

 Address: Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng science and technology park, Longhua district, Shenzhen, China

 Tel: +86-755-28230888
 Fax: +86-755-28230886
 E-mail: info@uttlab.com
 http://www.uttlab.com

 UTTR-RF-FCCPART15.407-V1.2
 Http://www.uttlab.com
 http://www.uttlab.com

5.46 DB BANDWIDTH

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.407 (e)

Test Method: KDB 789033 D02 v02r01Section C.2

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Test Procedure:

Limit:

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer.

Spectrum analyzer according to the following Settings:

a) Set RBW = 100 kHz.

b) Set the video bandwidth (VBW) \ge 3 * RBW.

c) Detector = Peak.

d) Trace mode = max hold.

e) Sweep = auto couple.

f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Re	efer to section 4.5.3 for details.
Instruments Used: R	efer to section 3 for details
Test Mode: Tr	ansmitter mode
Test Results: Pa	ass
Test Data:	

Mode	Channel/ Frequency (MHz)	6 dB Bandwidth (MHz)	6 dB Bandwidth Limit	Result
	149 (5745)	16.30	> 500 kHz	Pass
IEEE 802.11a	157 (5785)	15.98	> 500 kHz	Pass
	165 (5825)	13.82	> 500 kHz	Pass
	149 (5745)	17.66	> 500 kHz	Pass
IEEE 802.11n-HT20	157 (5785)	14.07	> 500 kHz	Pass
	165 (5825)	15.29	> 500 kHz	Pass
	151 (5755)	33.83	> 500 kHz	Pass
IEEE 002.1111-F1140	159 (5795)	32.60	<mark>> 50</mark> 0 kHz	Pass
	149 (5745)	16.62	> 500 kHz	Pass
IEEE 802.11ac-VHT20	157 (5785)	17.02	> 500 kHz	Pass
	165 (5825)	15.32	> 500 kHz	Pass
	151 (5755)	31.37	> 500 kHz	Pass
IEEE 802.11ac-VH140	159 (5795)	36.01	> 500 kHz	Pass
IEEE 802.11ac-VHT80	155 (5775)	73.85	> 500 kHz	Pass

Shenzhen UnionTrust Quality and Technology Co., Ltd.

The test plots as follows:

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 36 of 109

Report No.: 2210112022RFC-4

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 37 of 109

5.5 MAXIMUM CONDUCTED OUTPUT POWER

Test Requirement:FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)Test Method:KDB 789033 D02 v02r01 Section E.3.a(Method PM)Limits:

1. For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

- 2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 3. For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure:

- 1. Connected the EUT's antenna port to measure device by 10dB attenuator.
- 2. Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of Tx on burst.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup:	Refer to section 4.5.3 for details.
Instruments Used:	Refer to section 3 for details
Test Mode:	Transmitter mode
Test Results:	Pass
Test Data:	

Antenna gain and the maximum output power limit.

Frequency Band	Antenna Gain (dBi)	Peak Power Limits (dBm)
U-NII-1	1.17	24.0
U-NII-2A	1.17	24.0
U-NII-2C	1.17	24.0
U-NII-3	1.17	30.0

For U-NII-1 Band:

Mode	Channel/ Frequency	Maximum con power	ducted output (dBm)	Limit	Result	
	(MHz)	Meas Power	Corr'd Power	(авш)		
	36 (5180)	12.52	12.69	24	Pass	
IEEE 802.11a	44 (5220)	12.44	12.61	24	Pass	
	48 <mark>(5240)</mark>	12.37	12.54	24	Pass	
	36 (5180)	10.88	11.04	24	Pass	
IEEE 802.11n-HT20	44 (5220)	10.75	10.91	24	Pass	
	48 (5240)	10.52	10.68	24	Pass	
	38 (5190)	10.72	11.32	24	Pass	
IEEE 002.1111-11140	46 (5230)	10.48	11.08	24	Pass	
	36 (5180)	10.83	11.01	24	Pass	
IEEE 802 11ac-\/HT20	44 (5220)	10.79	10.97	24	Pass	
002.1180-011120	48 (5240)	10.65	10.83	24	Pass	
IEEE 802.11ac-VHT40	38 (5190)	10.77	11.30	24	Pass	
	46 (5230)	10.56	11.09	24	Pass	
IEEE 802.11ac-VHT80	42 (5210)	10.37	10.98	24	Pass	

Remark:

1. Corr'd Power = Meas Power + Duty Cycle Factor

For U-NII-2A Band:

Mode	Channel/ Frequency	Maximum con power	ducted output (dBm)	Limit	Result
	(MHz)	Meas Power	Corr'd Power	(авш)	
	52 (5260)	12.28	12.45	23.88	Pass
IEEE 802.11a	60 (5300)	12.16	12.33	23.88	Pass
	64 (5320)	12.24	12.41	23.88	Pass
	52 (5260)	10.78	10.94	23.98	Pass
IEEE 802.11n-HT20	60 (5300)	10.67	10.83	23.98	Pass
	64 (5320)	10.45	10.61	23.98	Pass
	54 (5270)	10.54	11.14	24	Pass
IEEE 002.1111-11140	62 (5310)	10.37	10.97	24	Pass
	52 (5260)	10.74	10.92	23.98	Pass
IEEE 802 11ac-V/HT20	60 (5300)	10.59	10.77	23.98	Pass
002.11ac-v11120	<mark>64 (</mark> 5320)	10.46	10.64	23.98	Pass
IEEE 802.11ac-VHT40	54 (5270)	10.43	10.96	24	Pass
	62 (5310)	10.34	10.87	24	Pass
IEEE 802.11ac-VHT80	58 (5290)	10.21	10.82	24	Pass

Remark:

1. Corr'd Power = Meas Power + Duty Cycle Factor

Note:

For IEEE 802.11 a, the minimum 26 dB emission bandwidth is 19.43 MHz 11 dBm + $10\log_{10}(19.43) = 23.88$ dBm < 24 dBm (250mW) So the 23.88 dB limit applicable

For IEEE 802.11n-HT20/ac-VHT20, the minimum 26 dB emission bandwidth is 19.87 MHz 11 dBm + $10\log_{10}(19.87) = 23.98$ dBm < 24 dBm (250mW) So the 23.98 dB limit applicable

For IEEE 802.11n-HT40/ac-VHT40/ac-VHT80, the minimum 26 dB emission bandwidth is 39.93 MHz 11 dBm + $10\log_{10}(39.93) = 27.01 \text{ dBm} > 24 \text{ dBm} (250\text{mW})$ So the 24 dB limit applicable

For U-NII-2C Band:

Mada	Channel/	Channel/Maximum conducted outputFrequencypower (dBm)(MHz)Meas PowerCorr'd Power		Limit	Result	
WODE	(MHz)			(dBm)		
	100 (5500)	11.83	12.00	23.94	Pass	
IEEE 802.11a	120 (5600)	12.03	12.20	23.94	Pass	
	140 (5700)	12.12	12.29	23.94	Pass	
	100 (5500)	10.11	10.27	23.97	Pass	
IEEE 802.11n-HT20	120 (5600)	10.25	10.41	23.97	Pass	
	140 (5700)	10.19	10.35	23.97	Pass	
	102 (5510)	10.01	10.61	24	Pass	
IEEE 802.11n-HT40	118 (5590)	10.05	10.65	24	Pass	
	134 (5670)	10.07	10.67	24	Pass	
	100 (5500)	10.07	10.25	23.97	Pass	
1666 802 11ac-V/HT20	120 (5600)	10.15	10.33	23.97	Pass	
002.1100 11120	140 (5700)	10.24	10.42	23.97	Pass	
	102 (5510)	10.04	10.57	24	Pass	
802 11ac-V/HT40	118 (5590)	9.96	10.49	24	Pass	
002.1140 11140	134 (5670)	10.21	10.74	24	Pass	
IEEE	106 (5530)	9.58	10.19	24	Pass	
802.11ac-VHT80	122 (5610)	9.83	10.44	24	Pass	
Pomarki						

Corr'd Power = Meas Power + Duty Cycle Factor 1.

Note:

For IEEE 802.11 a, the minimum 26 dB emission bandwidth is 19.70 MHz 11 dBm + 10log₁₀(19.70) = 23.94 dBm < 24 dBm (250mW) So the 23.94 dB limit applicable

For IEEE 802.11n-HT20/ac-VHT20, the minimum 26 dB emission bandwidth is 19.82 MHz 11 dBm + 10log₁₀(19.82) = 23.97 dBm < 24 dBm (250mW) So the 23.97 dB limit applicable

For IEEE 802.11n-HT40/ac-VHT40/ac-VHT80, the minimum 26 dB emission bandwidth is 39.83 MHz 11 dBm + $10\log_{10}(39.83) = 27.00 \text{ dBm} > 24 \text{ dBm} (250 \text{ mW})$ So the 24 dB limit applicable

For U-NII-3 Band:

Mode	Channel/ Frequency	Maximum con power	Vaximum conducted output power (dBm) R		
	(MHz)	Meas Power	Corr'd Power	(автт)	
	149 (5745)	11.54	11.71	30	Pass
IEEE 802.11a	157 (5785)	11.46	11.63	30	Pass
	165 (5825)	11.26	11.43	30	Pass
	149 (5745)	10.32	10.48	30	Pass
IEEE 802.11n-HT20	157 (5785)	10.26	10.42	30	Pass
	165 (5825)	10.15	10.31	30	Pass
	151 (5755)	10.02	10.62	30	Pass
IEEE 002.1111-1140	159 (5795)	10.03	10.63	30	Pass
	149 (5745)	10.33	10.51	30	Pass
IEEE 802 11ac-V/HT20	157 (5785)	10.20	10.38	30	Pass
002.11ac-v11120	165 (5825)	10.21	10.39	30	Pass
IEEE 802.11ac-VHT40	151 (5755)	10.13	10.66	30	Pass
	159 (5795)	10.15	10.68	30	Pass
IEEE 802.11ac-VHT80	155 (5775)	9.68	10.29	30	Pass

Remark:

1. Corr'd Power = Meas Power + Duty Cycle Factor

Page 42 of 109

5.6 PEAK POWER SPECTRAL DENSITY

Test Requirement:FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)Test Method:KDB 789033 D02 v02r01 Section FLimits:

1. For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

- 2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 3. For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure:

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer.

Spectrum analyzer according to the following Settings:

1. For U-NII-1, U-NII-2A, U-NII-2C band:

Using method SA-2

a) Set span to encompass the entire emission bandwidth (EBW) of the signal.

b) Set RBW = 1 MHz, Set VBW ≥ 3 RBW, Detector = RMS

c) Sweep time = auto, trigger set to "free run".

d) Trace average at least 100 traces in power averaging mode.

- e) Record the max value and add 10 log (1/duty cycle)
- 2. For U-NII-3 band:

a) Set span to encompass the entire emission bandwidth (EBW) of the signal.

b) Set RBW = 500 kHz, Set VBW ≥ 3 RBW, Detector = RMS

c) Use the peak marker function to determine the maximum power level in any 500 kHz band segment within the fundamental EBW.

d) Sweep time = auto, trigger set to "free run".

e) Trace average at least 100 traces in power averaging mode.

f) Record the max value and add 10 log (1/duty cycle)

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup:	Refer to section 4.5.3 for details.				
Instruments Used:	Refer to section 3 for details				
Test Mode:	Transmitter mode				
Test Results:	Pass				
Test Data:					

Antenna gain and the maximum output power limit.

Frequency Band	Antenna Gain (dBi)	PSD Limits (dBm/MHz or dBm/500kHz)			
U-NII-1	1.17	11.0			
U-NII-2C	1.17	11.0			
U-NII-2A	1.17	11.0			
U-NII-3	1.17	30.0			

For U-NII-1 Band:

Mode	Channel/ Frequency	Power spec (dBm	tral density /MHz)	Limit	Result
	(MHz)	Meas PSD	Corr'd PSD		
	36 (5180)	2.446	2.615	11	Pass
IEEE 802.11a	44 (5220)	2.306	2.475	11	Pass
	48 (5240)	2.290	2.459	11	Pass
	36 (5180)	1.366	1.547	11	Pass
IEEE 802.11n-HT20	44 (5220)	0.868	1.049	11	Pass
	48 (5240)	0.897	1.078	11	Pass
	<mark>38 (</mark> 5190)	-1.795	-1.483	11	Pass
IEEE 002.1111-11140	46 (5230)	-1.440	-1.128	11	Pass
	36 (5180)	1.336	1.499	11	Pass
IEEE 802 11ac-V/HT20	44 (5220)	1.005	1.168	11	Pass
002.1140-011120	<mark>48 (</mark> 5240)	0.548	0.711	11	Pass
IEEE 802.11ac-VHT40	38 (5190)	-1.284	-0.974	11	Pass
	46 (5230)	-1.436	-1.126	11	Pass
IEEE 802.11ac-VHT80	42 (5210)	-5.304	-4.724	11	Pass

Remark:

2. Corr'd PSD = Meas PSD + Duty Cycle Factor

For U-NII-2A Band:

Mode	Channel/ Frequency	Power spectral density (dBm/MHz)		Limit	Result
	(MHz)	Meas PSD	Corr'd PSD		
IEEE 802.11a	52 (5260)	2.137	2.306	11	Pass
	60 (5300)	2.001	2.170	11	Pass
	64 (5320)	1.910	2.079	11	Pass
IEEE 802.11n-HT20	52 (5260)	0.881	1.062	11	Pass
	60 (5300)	0.483	0.664	11	Pass
	64 (5320)	0.478	0.659	11	Pass
IEEE 802.11n-HT40	54 (5270)	-1.715	-1.403	11	Pass
	62 (5310)	-2.511	-2.199	11	Pass
IEEE 802.11ac-VHT20	52 (5260)	0.603	0.766	11	Pass
	60 (5300)	0.552	0.715	11	Pass
	64 (5320)	0.372	0.535	11	Pass
IEEE 802.11ac-VHT40	54 (5270)	-2.001	-1.691	11	Pass
	62 (5310)	-2.341	-2.031	11	Pass
IEEE 802.11ac-VHT80	58 (5290)	-5.882	-5.302	11	Pass

Remark:

2. Corr'd PSD = Meas PSD + Duty Cycle Factor

For U-NII-2C Band:

Mode	Channel/ Power spect Frequency (dBm/l		tral density /MHz)	Limit	Result
	(MHz)	Meas PSD	Corr'd PSD		
IEEE 802.11a	100 (5500)	1.737	1.906	11	Pass
	120 (5600)	2.148	2.317	11	Pass
	140 (5700)	2.151	2.320	11	Pass
IEEE 802.11n-HT20	100 (5500)	0.386	0.567	11	Pass
	120 (5600)	0.565	0.746	11	Pass
	140 (5700)	0.857	1.038	11	Pass
IEEE 802.11n-HT40	102 (5510)	-3.435	-3.123	11	Pass
	118 (5590)	-2.716	-2.404	11	Pass
	134 (5670)	-3.124	-2.812	11	Pass
IEEE 802.11ac-VHT20	100 (5500)	-0.172	-0.009	11	Pass
	120 (5600)	0.518	0.681	11	Pass
	140 (5700)	0.890	1.053	11	Pass
IEEE 802.11ac-VHT40	102 (5510)	-3.399	-3.089	11	Pass
	118 (5590)	-3.045	-2.735	11	Pass
	134 (5670)	-2.629	-2.319	11	Pass
IEEE 802.11ac-VHT80	106 (5530)	-7.071	-6.491	11	Pass
	122 (5610)	-6.552	-5.972	11	Pass

Remark:

1. Corr'd PSD = Meas PSD + Duty Cycle Factor

For U-NII-3 Band:

Mode	Channel/ Frequency	Power spec (dBm	tral density /MHz)	Limit (dBm/	Result
	(MHz)	Meas PSD	Corr'd PSD	500kHz)	
IEEE 802.11a	149 (5745)	-2.235	-2.066	30	Pass
	157 (5785)	-2.611	-2.442	30	Pass
	165 (5825)	-2.641	-2.472	30	Pass
IEEE 802.11n-HT20	149 (5745)	-2.228	-2.047	30	Pass
	157 (5785)	-2.797	-2.616	30	Pass
	165 (5825)	-2.972	-2.791	30	Pass
IEEE 802.11n-HT40	151 (5755)	-5.137	-4.825	30	Pass
	159 (5795)	-5.326	-5.014	30	Pass
IEEE 802.11ac-VHT20	149 (5745)	-2.251	-2.088	30	Pass
	157 (5785)	-2.404	-2.241	30	Pass
	165 (5825)	-2.816	-2.653	30	Pass
IEEE 802.11ac-VHT40	151 (5755)	-5.420	-5.110	30	Pass
	159 (5795)	-5.219	-4.909	30	Pass
IEEE 802.11ac-VHT80	155 (5775)	-5.029	-4.449	30	Pass

Remark:

1. Corr'd PSD = Meas PSD + Duty Cycle Factor

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 48 of 109

Report No.: 2210112022RFC-4

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 49 of 109

Report No.: 2210112022RFC-4

Shenzhen UnionTrust Quality and Technology Co., Ltd.