RF TEST REPORT

A Bureau Veritas Group Company

Report No.: 18070333-FCC-R1
Supersede Report No.: N/A

Issued by:
SIEMIC (SHENZHEN-CHINA) LABORATORIES
Zone A, Floor 1, Building 2 Wan Ye Long Technology Park
South Side of Zhoushi Road, Bao’ an District, Shenzhen, Guangdong China 518108
Phone: +86 075526014629801 Email: China@siemic.com.cn

Test Report	18070333-FCC-R1
Page	2 of 55

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report	$18070333-F C C-R 1$
Page	3 of 55

This page has been left blank intentionally.

Test Report	$18070333-$ FCC-R1
Page	4 of 55

CONTENTS

1. REPORT REVISION HISTORY 5
2. CUSTOMER INFORMATION 5
3. TEST SITE INFORMATION5
4. EQUIPMENT UNDER TEST (EUT) INFORMATION 6
5. TEST SUMMARY 8
6. MEASUREMENTS, EXAMINATION AND DERIVED RESULTS 9
6.1 RF EXPOSURE (SAR) 9
6.2 RF OUTPUT POWER 10
6.3 PEAK-AVERAGE RATIO. 15
6.4 OCCUPIED BANDWIDTH18
6.5 SPURIOUS EMISSIONS AT ANTENNA TERMINALS 22
6.6 SPURIOUS RADIATED EMISSIONS 27
6.7 BAND EDGE 31
6.8 FREQUENCY STABILITY 35
ANNEX A. TEST INSTRUMENT 38
ANNEX B. EUT AND TEST SETUP PHOTOGRAPHS 40
ANNEX C. TEST SETUP AND SUPPORTING EQUIPMENT.51
ANNEX C.II. EUT OPERATING CONKITIONS 53
ANNEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST 54
ANNEX E. DECLARATION OF SIMILARITY 55

Test Report	18070333-FCC-R1
Page	5 of 55

1. Report Revision History

Report No.	Report Version	Description	Issue Date
18070333-FCC-R1	NONE	Original	April 25, 2018

2. Customer information

Applicant Name	BLU Products,Inc
Applicant Add	10814 NW 33rd St \# 100 Doral, FL 33172, USA
Manufacturer	BLU Products,Inc
Manufacturer Add	10814 NW 33rd St \# 100 Doral, FL 33172,USA

3. Test site information

Test Lab A:

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES
Lab Address	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108 FCC Test Site No. 5535293
	$4842 \mathrm{E}-1$
	Radiated Emission Program-To Shenzhen v2.0

Test Lab B:

Lab performing tests	SIEMIC (Nanjing-China) Laboratories
Lab Address	2-1 Longcang Avenue Yuhua Economic and Technology Development Park, Nanjing, China
FCC Test Site No.	694825
IC Test Site No.	$4842 B-1$
Test Software	EZ_EMC(ver.Icp-03A1)

Note: We just perform Radiated Spurious Emission above 18 GHz in the test Lab. B.

Test Report	$18070333-$ FCC-R1
Page	6 of 55

4. Equipment under Test (EUT) Information

Description of EUT:
Feature Phone

Main Model:

Serial Model:

Date EUT received:

Test Date(s):

Equipment Category :

Antenna Gain:

Antenna Type:

Type of Modulation:

Maximum Conducted
AV Power to Antenna:
RF Operating Frequency (ies):

FLASH

N/A

April 09, 2018

April 10 to April 24, 2018

PCE

GSM850: -0.5dBi
PCS1900: -0.8dBi
Bluetooth: -0.4 dBi

GSM: PIFA antenna
BT: Monopole antenna

GSM / GPRS: GMSK
EGPRS: GMSK
Bluetooth: GFSK, п /4DQPSK, 8DPSK

GSM850 TX: 824.2 ~ 848.8 MHz; RX: 869.2 ~ 893.8 MHz

GSM Vioce:GSM850: 30.61dBm / ERP
PCS1900: 29.91dBm / EIRP
GPRS:GSM850: 30.57dBm / ERP
PCS1900: 29.93dBm / EIRP

Test Report	$18070333-$ FCC-R1
Page	7 of 55

	GSM 850: 124CH
Number of Channels:	PCS1900: 299CH
	Bluetooth: 79 CH
Port:	USB Port, Earphone Port
	Adapter:
	Model: US-NB-0550
	Input: AC100-240V~50/60Hz,0.15A
Input Power:	Output: DC 5.0V, 550 mA
	Battery:
	Model: C41664160170L
	Spec: 3.7 V , 1700mAh, 6.29 Wh
Trade Name :	BLU
GPRS/ EGPRS Multi-slot class	8/10/11/12
FCC ID:	YHLBLUFLASH18

Test Report	18070333-FCC-R1
Page	8 of 55

5. Test Summary

The product was tested in accordance with the following specifications.
All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§ 1.1307; § 2.1093	RF Exposure (SAR)	Compliance
$\begin{aligned} & \text { §2.1046; § 22.913(a); § 24.232(c); } \\ & \text { § 27.50(c.10) ; } \end{aligned}$	RF Output Power	Compliance
§ 24.232 (d) ;	Peak-Average Ratio	Compliance
$\begin{aligned} & \text { § 2.1049; § 22.905; § 22.917; } \\ & \text { § 24.238; } \end{aligned}$	99\% \& -26 dB Occupied Bandwidth	Compliance
$\begin{aligned} & \text { § 2.1051; § 22.917(a); } \\ & \text { § 24.238(a); } \end{aligned}$	Spurious Emissions at Antenna Terminal	Compliance
$\begin{aligned} & \text { § 2.1053; § 22.917(a); } \\ & \text { § 24.238(a); } \end{aligned}$	Field Strength of Spurious Radiation	Compliance
§ 22.917(a); § 24.238(a);	Out of band emission, Band Edge	Compliance
§ 2.1055; § 22.355; § 24.235;	Frequency stability vs. temperature Frequency stability vs. voltage	Compliance

Note: Testing was performed by configuring EUT to maximum output power status, the declared output power class for different

Measurement Uncertainty

Emissions		
Test Item	Description	Uncertainty
Band Edge and Radiated Spurious Emissions	Confidence level of approximately 95\% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs $<0.5 \mathrm{~m} \times 0.5 \mathrm{~m} \times 0.5 \mathrm{~m})$	$+5.6 \mathrm{~dB} /-4.5 \mathrm{~dB}$
-	-	-

Test Report	$18070333-$ FCC-R1
Page	9 of 55

6. MEASUREMENTS, EXAMINATION AND DERIVED RESULTS

6.1 RF Exposure (SAR)

Test Result: Pass

The EUT is a portable device, thus requires SAR evaluation;
Please refer to RF Exposure Evaluation Report: 18070333-FCC-H.

Test Report	$18070333-$ FCC-R1
Page	10 of 55

6.2 RF Output Power

Temperature	$25^{\circ} \mathrm{C}$
Relative Humidity	53%
Atmospheric Pressure	1021 mbar
Test date :	April 12, 2018
Tested By:	Aaron Liang

Requirement(s):

Spec	Item	Requirement	Applicable
§22.913 (a)	a)	ERP:38.45dBm	\checkmark
§24.232 (c)	b)	EIRP:33dBm	\checkmark
Test Setup	For Conducted Power: - The transmitter output port was connected to base station. - Set EUT at maximum power through base station. - Select lowest, middle, and highest channels for each band and different test mode. For ERP/EIRP: According with KDB 971168 v02r02 - The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable. - The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis. - The frequency range up to tenth harmonic of the fundamental frequency was investigated.		
Test Procedure			

Test Report	18070333-FCC-R1
Page	11 of 55

- Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a nonradiating cable. The absolute levels of the spurious emissions were measured by the substitution.
- Spurious emissions in dB = 10 log (TX power in Watts/0.001) the absolute level
- Spurious attenuation limit in $\mathrm{dB}=43+10$ Log10 (power out in Watts.

Remark		
Result	$\bar{\nabla}$ Pass	$\Gamma_{\text {Fail }}$

Test Data

Test Plot
${ }^{\square}$ Yes
${ }^{\square}$ Yes (See below)

N/A
${ }^{\checkmark}$ N/A

Test Report	18070333-FCC-R1
Page	12 of 55

Conducted Power

GSM Mode:

Burst Average Power (dBm);								
Band	GSM850				PCS1900			
Channel	128	190	251	Tune up Power tolerant	512	661	810	Tune up Power tolerant
Frequency (MHz)	824.2	836.6	848.8	1	1850.2	1880	1909.8	1
GSM Voice (1 uplink),GMSK	32.12	32.21	32.26	32 ± 1	30.26	30.07	30.07	30 ± 1
GPRS Multi-Slot Class 8 (1 uplink),GMSK	32.22	32.1	32.16	32 ± 1	30.16	30.13	30.09	30 ± 1
GPRS Multi-Slot Class 10 (2 uplink) GMSK	30.19	30.22	30.25	30 ± 1	28.53	28.62	28.7	28 ± 1
GPRS Multi-Slot Class 11 (3 uplink) GMSK	28.26	28.45	28.52	28 ± 1	27.29	27.34	27.38	27 ± 1
GPRS Multi-Slot Class 12 (4 uplink) GMSK	26.28	26.46	26.5	26 ± 1	25.19	25.23	25.44	25 ± 1

Remark :
GPRS, CS1 coding scheme.
Multi-Slot Class 8 , Support Max 4 downlink, 1 uplink, 5 working link
Multi-Slot Class 10 , Support Max 4 downlink, 2 uplink, 5 working link
Multi-Slot Class 11, Support Max 4 downlink, 2 uplink, 5 working link
Multi-Slot Class 12 , Support Max 4 downlink, 4 uplink, 5 working link

Test Report	$18070333-$ FCC-R1
Page	13 of 55

ERP \& EIRP

GSM Voice

ERP for Cellular Band (Part 22H)

Frequency (MHz)	Antenna Polarization (H/V)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
824.2	V	30.47	38.45	-7.98
824.2	H	29.49	38.45	-8.96
836.6	V	30.56	38.45	-7.89
836.6	H	28.67	38.45	-9.78
848.8	V	30.61	38.45	-7.84
848.8	H	29.23	38.45	-9.22

EIRP for PCS Band (Part 24E)

Frequency $(\mathbf{M H z})$	Antenna Polarization $(\mathbf{H} / \mathrm{V})$	Absolute Level $(\mathbf{d B m})$	Limit $(\mathbf{d B m})$	Margin $(\mathbf{d B})$
1850.2	V	29.06	33	-3.94
1850.2	H	29.53	33	-3.47
1880	V	29.87	33	-3.13
1880	H	29.65	33	-3.35
1909.8	V	29.87	33	-3.13
1909.8	H	29.91	33	-3.09

Test Report	18070333-FCC-R1
Page	14 of 55

GPRS:
ERP for Cellular Band (Part 22H)

Frequency $(\mathbf{M H z})$	Antenna Polarization $(\mathbf{H} / \mathbf{V})$	Absolute Level $(\mathbf{d B m})$	Limit $(\mathbf{d B m})$	Margin $(\mathbf{d B})$
824.2	V	30.57	38.45	-7.88
824.2	H	29.04	38.45	-9.41
836.6	V	30.45	38.45	-8
836.6	H	28.62	38.45	-9.83
848.8	V	30.51	38.45	-7.94
848.8	H	29.63	38.45	-8.82

EIRP for PCS Band (Part 24E)

Frequency $(\mathbf{M H z})$	Antenna Polarization (\mathbf{H} / V)	Absolute Level $(\mathbf{d B m})$	Limit $(\mathbf{d B m})$	Margin $(\mathbf{d B})$
1850.2	V	28.96	33	-4.04
1850.2	H	28.48	33	-4.52
1880	V	29.93	33	-3.07
1880	H	29	33	-4
1909.8	V	29.89	33	-3.11
1909.8	H	28.63	33	-4.37

Test Report	18070333-FCC-R1
Page	15 of 55

6.3 Peak-Average Ratio

Temperature	$24^{\circ} \mathrm{C}$
Relative Humidity	55%
Atmospheric Pressure	1017 mbar
Test date :	April 13, 2018
Tested By:	Aaron Liang

Requirement(s):

Spec	tem	Requirement	Applicable
§24.232(d)	a)	The peak-to-average ratio (PAR) of the transmission may n exceed 13dB.	\checkmark
Test Setup	According with KDB 971168 v02r02 5.7.2 Alternate procedure for PAPR 5.1.2 Peak power measurements with a peak power meter The total peak output power may be measured using a broadband peak RF power meter. The power meter must have a video bandwidth that is greater than or equal to the emission bandwidth and utilize a fast-responding diode detector. 5.2.3 Average power measurement with average power meter As an alternative to the use of a spectrum/signal analyzer or EMI receiver to perform a measurement of the total in-band average output power, a wideband RF average power meter with a thermocouple detector or equivalent can be used under certain conditions If the EUT can be configured to transmit continuously (i.e., the burst duty cycle $\geq 98 \%$) and at all times the EUT is transmitting at is maximum output		

Test Report	$18070333-$ FCC-R1
Page	16 of 55

	power level, then a conventional wide-band RF power meter can be used. If the EUT cannot be configured to transmit continuously (i.e., the burst duty cycle < 98\%), then there are two options for the use of an average power meter. First, a gated average power meter can be used to perform the measurement if the gating parameters can be adjusted such that the power is measured only over active transmission bursts at maximum output power levels. A conventional average power meter can also be used if the measured burst duty cycle is constant (i.e., duty cycle variations are less than ± 2 percent) by performing the measurement over the on/off burst cycles and then correcting (increasing) the measured level by a factor equal to $10 l o g(1 /$ duty cycle)
Remark	Result

Test Data

${ }^{\square} \mathrm{N} / \mathrm{A}$

Test Plot
$\square_{\text {Yes (See below) }}$
${ }^{\nabla}$ N/A

Test Report	$18070333-$ FCC-R1
Page	17 of 55

GSM : GSM 1900 PK-AV POWER (PART 24E)

Frequency (MHz)	Conducted power (dBm)		Peak-Average Ratio(PAR)
	Peak	Average	
1850.2	31.11	30.26	0.85
1880	31.11	30.07	1.04
1909.8	31.16	30.07	1.09

GPRS 1900 PK-AV POWER (PART 24E)

| Frequency
 (MHz) | Conducted power(dBm) | | Peak |
:---:	:---:	:---:	:---:	Average \quad	Peak-Average	
Ratio(PAR)	$	$	1850.2	31.26	30.16	1.09
:---:	:---:	:---:	:---:			
1880	31.22	30.13	1.1			
1909.8	31.19	30.09				

Test Report	$18070333-$ FCC-R1
Page	18 of 55

6.4 Occupied Bandwidth

Temperature	$24^{\circ} \mathrm{C}$
Relative Humidity	55%
Atmospheric Pressure	1017 mbar
Test date :	April 13, 2018
Tested By:	Aaron Liang

Requirement(s):

Spec	Item	Requirement	Applicable
$\begin{aligned} & \S 2.1049 \\ & \S 22.917 \end{aligned}$	a)	99\% Occupied Bandwidth(kHz)	V
§22.905 §24.238	b)	26 dB Bandwidth(kHz)	V
Test Setup			
Test Procedure	- The EUT was connected to Spectrum Analyzer and Base Station via power divider. - The 99% and 26 dB occupied bandwidth (BW) of the middle channel for the highest RF powers.		
Remark			
Result	\sqrt{V} Pass $\quad \Gamma_{\text {Fail }}$		

Test Data

Test Plot

$$
\Gamma_{\mathrm{N} / \mathrm{A}}
$$

Test Report	18070333-FCC-R1
Page	19 of 55

GSM Voice:

Cellular Band (Part 22H) result

Channel	Frequency (MHz)	99% Occupied Bandwidth (kHz)	26 dB Bandwidth (kHz)
128	824.2	241.8466	315.960
190	836.6	247.4378	321.352
251	848.8	239.6157	317.242

PCS Band (Part 24E) result

Channel	Frequency (MHz)	99% Occupied Bandwidth (kHz)	26 dB Bandwidth (kHz)
512	1850	244.8835	312.650
661	1880	241.6210	320.392
810	1910	249.7906	317.575

GPRS:

Cellular Band (Part 22H) result

Channel	Frequency (MHz)	99% Occupied Bandwidth (kHz)	26 dB Bandwidth (kHz)
128	824.2	241.3806	315.960
190	836.6	246.3461	327.128
251	848.8	341.5567	317.217

PCS Band (Part 24E) result

Channel	Frequency (MHz)	99\% Occupied Bandwidth (kHz)	26 dB Bandwidth (kHz)
512	1850	242.2027	313.131
661	1880	243.1143	319.902
810	1910	248.1944	313.992

Test Report	$18070333-$ FCC-R1
Page	20 of 55

Test Plots

GSM Voice:

Test Report	$18070333-$ FCC-R1
Page	21 of 55

GPRS:

Test Report	$18070333-$ FCC-R1
Page	22 of 55

6.5 Spurious Emissions at Antenna Terminals

Temperature	$24^{\circ} \mathrm{C}$
Relative Humidity	55%
Atmospheric Pressure	1017 mbar
Test date :	April 13, 2018
Tested By:	Aaron Liang

Requirement(s):

Spec	Item	Requirement	Applicable
$\begin{aligned} & \S 2.1051, \\ & \S 22.917(\mathrm{a}) \& \\ & \S 24.238(\mathrm{a}) \end{aligned}$	a)	The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43+10 \log$ (P) dB	∇
Test Setup			
Test Procedure	- The EUT was connected to Spectrum Analyzer and Base Station via power divider. - The Band Edges of low and high channels for the highest RF powers were measured. - Setting RBW as roughly BW/100.		
Remark			
Result	∇ Pass $\quad \square_{\text {Fail }}$		

Test Data	$\nabla{ }_{\text {Yes }}$	$\square_{\text {N/A }}$
Test Plot	$\square{ }_{\text {Yes (See below) }}$	$\Gamma_{\text {N/A }}$

Test Report	18070333-FCC-R1
Page	23 of 55

Test Plots

GSM Voice:
Cellular Band (Part 22H) result

Test Report	18070333-FCC-R1
Page	24 of 55

PCS Band (Part24E) result

Test Report	18070333-FCC-R1
Page	25 of 55

GPRS:
Cellular Band (Part 22H) result

Test Report	18070333-FCC-R1
Page	26 of 55

PCS Band (Part24E) result

Test Report	18070333-FCC-R1
Page	27 of 55

6.6 Spurious Radiated Emissions

Temperature	$24^{\circ} \mathrm{C}$
Relative Humidity	54%
Atmospheric Pressure	1017 mbar
Test date :	April 14, 2018
Tested By:	Aaron Liang

Requirement(s):

Spec	Item	Requirement	Applicable
$\begin{aligned} & \S 2.1053, \\ & \S 22.917 \text { \& } \\ & \S 24.238 \end{aligned}$	a)	The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least $43+10 \log (P)$ dB . The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.	\checkmark
Test setup			
	1. The transmitter was placed on a wooden turntable, and it was transmitting into a nonradiating load which was also placed on the turntable. 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis. 3. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution. Sample Calculation: EUT Field Strength $=$ Raw Amplitude ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$) - Amplifier Gain (dB) + Antenna Factor (dB) + Cable Loss (dB) + Filter Attenuation (dB, if used)		

Test Report	$18070333-$ FCC-R1
Page	29 of 55

Cellular Band (Part 22H) result
Low channel

Frequency	Antenna Polarization $(\mathbf{M H z})$	Corrected Reading $(\mathbf{d B m})$	Limit	Margin
$(\mathbf{d B m})$	$(\mathbf{d B})$			
1648.4	V	-26.92	-13	-13.92
1648.4	H	-26.18	-13	-13.18
574.09	V	-34.51	-13	-21.51
422.84	H	-36.81	-13	-23.81

Middle channel

Frequency $(\mathbf{M H z})$	Antenna Polarization $(\mathbf{H} / \mathbf{V})$	Corrected Reading $(\mathbf{d B m})$	Limit $(\mathbf{d B m})$	Margin
$(\mathbf{d B})$				

High channel

Frequency								
$(\mathbf{M H z})$	Antenna Polarization $(\mathbf{H} / \mathbf{V})$	Corrected Reading $(\mathbf{d B m})$	Limit $(\mathbf{d B m})$	Margin				
$(\mathbf{d B})$					$⿻$	1697.6	V	-24.71
:---:	:---:	:---:						
-13	-11.71							
1697.6	H	-27.65						
610.92	V	-40.33						
-13	-14.65							
730.8	H	-42.25						
-13	-27.33							

Note:

1, The testing has been conformed to $10 * 848.8 \mathrm{MHz}=8,488 \mathrm{MHz}$
2, All other emissions more than 30 dB below the limit
3,GSM voice and GPRS mode were investigated. The results above show only the worse cases
4, X-Axis, Y-Axis and Z-Axis were investigated. The results above show only the worst case.

Test Report	$18070333-$ FCC-R1
Page	30 of 55

PCS Band (Part24E) result
Low channel

Frequency	Antenna Polarization $(\mathbf{M H z})$	Corrected Reading $(\mathbf{d B m})$	Limit	Margin
$(\mathbf{(d B})$				

Middle channel

Frequency	Antenna Polarization $(\mathbf{M H z})$	Corrected Reading $(\mathbf{d B m})$	Limit	Margin
$(\mathbf{d B})$	$(\mathbf{d B m})$	-22.65		
3760	V	-35.65	-13	-21.17
3760	H	-34.17	-13	-23.34
366.7	V	-36.34	-13	-29.71
265.25	H	-42.71	-13	-13

High channel

Frequency $(\mathbf{M H z})$	Antenna Polarization $(\mathbf{H} / \mathbf{V})$	Corrected Reading $(\mathbf{d B m})$	Limit	Margin
$(\mathbf{d B m})$	$(\mathbf{d B})$			
3819.6	V	-30.55	-13	-17.55
3819.6	H	-30.99	-13	-17.99
409.37	V	-39.06	-13	-26.06
230.59	H	-41.66	-13	-28.66

Note:

1, The testing has been conformed to $10 * 1909.8 \mathrm{MHz}=19,098 \mathrm{MHz}$
2, All other emissions more than 30 dB below the limit
3,GSM voice and GPRS mode were investigated. The results above show only the worse cases
4, X-Axis, Y-Axis and Z-Axis were investigated. The results above show only the worst case.
5, The radiated spurious test above $18 G H z$ is subcontracted to SIEMIC (Nanjing-China) Laboratories. and found 30dB below the limit at least.

Test Report	18070333-FCC-R1
Page	31 of 55

6.7 Band Edge

Temperature	$24^{\circ} \mathrm{C}$
Relative Humidity	54%
Atmospheric Pressure	1017 mbar
Test date :	April 14, 2018
Tested By :	Aaron Liang

Requirement(s):

Spec	Item	Requirement	Applicable
$\begin{aligned} & \S 22.917(a) \\ & \S 24.238(a) \end{aligned}$	a)	The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43+10 \log (P)$ dB.	V
Test setup			
Procedure	- The EUT was connected to Spectrum Analyzer and Base Station via power divider. - The Band Edges of low and high channels for the highest RF powers were measured. Setting RBW as roughly BW/100.		
Remark			
Result	\checkmark Pass $\quad \square{ }_{\text {Fail }}$		

Test Report	18070333-FCC-R1
Page	32 of 55

GSM Voice:
Cellular Band (Part 22H) result

Frequency (MHz)	Emission (dBm)	Limit (dBm)
823.997	-19.68	-13
849.005	-15.41	-13

PCS Band (Part24E) result

Frequency (MHz)	Emission (dBm)	Limit (dBm)
1849.997	-20.99	-13
1910.003	-20.56	-13

GPRS:

Cellular Band (Part 22H) result

Frequency (MHz)	Emission (dBm)	Limit (dBm)
823.992	-18.39	-13
849.012	-15.90	-13

PCS Band (Part24E) result

Frequency (MHz)	Emission (dBm)	Limit (dBm)
1849.997	-20.03	-13
1910.008	-20.67	-13

Test Report	$18070333-$ FCC-R1
Page	33 of 55

GSM Voice:

Test Plots

Test Report	18070333-FCC-R1
Page	34 of 55

GPRS:

Test Plots

Test Report	18070333-FCC-R1
Page	35 of 55

6.8 Frequency Stability

Temperature	$24^{\circ} \mathrm{C}$
Relative Humidity	54%
Atmospheric Pressure	1017 mbar
Test date :	April 14, 2018
Tested By:	Aaron Liang

Requirement(s):

Spec	Item	Requirement				Applicable
$\begin{gathered} \S 2.1055 \\ \S 22.355 \text { \& } \\ \S 24.235 \end{gathered}$	a)	According to $\S 22.355$, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table below: Frequency Tolerance for Transmitters in the Public Mobile Services				V
		Frequency Range (MHz)	Base, fixed (ppm)	$\begin{gathered} \text { Mobile } \geq 3 \\ \text { watts } \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \text { Mobile } \leq 3 \\ \text { watts } \\ (\mathrm{ppm}) \end{gathered}$	
		25 to 50	20.0	20.0	50.0	
		50 to 450	5.0	5.0	50.0	
		45 to 512	2.5	5.0	5.0	
		821 to 896	1.5	2.5	2.5	
		928 to 929	5.0	N/A	N/A	
		929 to 960.	1.5	N/A	N/A	
		2110 to 2220	10.0	N/A	N/A	
		According to §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized frequency block.				
Test setup						

Test Report	$18070333-$ FCC-R1
Page	36 of 55

Procedure	A communication link was established between EUT and base station. The frequency error was monitored and measured by base station under variation of ambient temperature and variation of primary supply voltage. Limit: The frequency stability of the transmitter shall be maintained within $\pm 0.00025 \%(\pm 2.5 \mathrm{ppm})$ of the center frequency.
Remark	
Result	∇ Pass $\quad \square_{\text {Fail }}$

Test Data

Test Plot
${ }^{\square}$ Yes (See below)
\checkmark
N/A

Test Report	18070333-FCC-R1
Page	37 of 55

GSM Voice:
Cellular Band (Part 22H) result

Middle Channel, $\mathrm{f}_{\mathrm{o}}=836.6 \mathrm{MHz}$				
Temperature ($\left.{ }^{\circ} \mathrm{C}\right)$	Power Supplied (VDc)	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)
-10	3.7	20	0.0106	2.5
0		16	0.0085	2.5
10		18	0.0096	2.5
20		16	0.0085	2.5
30		14	0.0074	2.5
40		14	0.0074	2.5
50		20	0.0106	2.5
55		19	0.0101	2.5
25	4.2	19	0.0101	2.5
	3.5	20	0.0106	2.5

PCS Band (Part 24E) result

Middle Channel, $\mathrm{fo}_{\mathrm{o}}=1880 \mathrm{MHz}$				
Temperature ($\left.{ }^{\circ} \mathrm{C}\right)$	Power Supplied (VDC)	Frequency Error (Hz)	Frequency Error (ppm)	$\begin{aligned} & \text { Limit } \\ & \text { (ppm) } \end{aligned}$
-10	3.7	21	0.0251	2.5
0		18	0.0215	2.5
10		14	0.0167	2.5
20		14	0.0167	2.5
30		14	0.0167	2.5
40		14	0.0167	2.5
50		20	0.0239	2.5
55		21	0.0251	2.5
25	4.2	18	0.0215	2.5
	3.5	18	0.0215	2.5

Test Report	$18070333-$ FCC-R1
Page	38 of 55

Annex A. TEST INSTRUMENT

Instrument	Model	Serial \#	Cal Date	Cal Due	In use
RF Conducted Test					
Agilent ESA-E SERIES SPECTRUM ANALYZER	E4407B	MY45108319	09/14/2017	09/13/2018	V
Power Splitter	1\#	1\#	08/30/2017	08/29/2018	V
Universal Radio Communication Tester	CMU200	121393	09/23/2017	09/22/2018	V
Temperature/Humidity Chamber	UHL-270	001	10/07/2017	10/06/2018	V
DC Power Supply	E3640A	MY40004013	09/15/2017	09/14/2018	V
RF Power Sensor	Dare RPR3006C/P/W	AY554013	09/15/2017	09/14/2018	V
Radiated Emissions					
EMI test receiver	ESL6	100262	09/15/2017	09/14/2018	V
$\begin{gathered} \text { OPT } 010 \text { AMPLIFIER } \\ (0.1-1300 \mathrm{MHz}) \end{gathered}$	8447E	2727A02430	08/30/2017	08/29/2018	V
Microwave Preamplifier $(1 \sim 26.5 \mathrm{GHz})$	8449B	3008A02402	03/22/2018	03/21/2019	V
Bilog Antenna (30MHz~6GHz)	JB6	A110712	09/19/2017	09/18/2018	V
Bilog Antenna (30MHz~2GHz)	JB1	A112017	09/19/2017	09/18/2018	V
Double Ridge Horn Antenna (1~18GHz)	AH-118	71259	09/22/2017	09/21/2018	V
Double Ridge Horn Antenna (1~18GHz)	AH-118	71283	09/22/2017	09/21/2018	V
SYNTHESIZED SIGNAL GENERATOR	8665B	3744A01293	09/15/2017	09/14/2018	V
Power Amplifier	SMC150D	R1553-0313	03/07/2018	03/06/2019	V
Power Amplifier	S41-25D	R1553-0314	05/26/2017	05/25/2018	V
Tunable Notch Filter	$\begin{gathered} 3 N F-800 / 1000- \\ S \end{gathered}$	AA4	08/30/2017	08/29/2018	V

Test Report	18070333-FCC-R1
Page	40 of 55

Annex B. EUT And Test Setup Photographs

Annex B.i. Photograph: EUT External Photo

Adapter - Lable View

Test Report	18070333-FCC-R1
Page	41 of 55

Test Report	18070333-FCC-R1
Page	42 of 55

Page 42 of 55

Page 8070333-FCC-R1 43 of 55

Test Report	18070333-FCC-R1
Page	44 of 55

Annex B.ii. Photograph: EUT Internal Photo

Cover Off - Top View 1

Cover Off - Top View 2

Test Report	18070333-FCC-R1
Page	45 of 55

Battery - Front View

Battery - Rear View

Test Report	18070333-FCC-R1
Page	46 of 55

Mainboard with Shielding - Front View

Mainboard with Shielding - Rear View

Test Report	18070333-FCC-R1
Page	47 of 55

Mainboard without Shielding - Front View

LCD - Front View

Test Report	18070333-FCC-R1
Page	48 of 55

LCD - Rear View

GSM/PCS/UMTS-FDD - Antenna View

Test Report \quad 18070333-FCC-R1

Page

FM - Antenna View

Test Report	$18070333-F C C-R 1$
Page	50 of 55

Annex B.iii. Photograph: Test Setup Photo

Radiated Spurious Emissions Test Setup Above 1 GHz

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.ii. TEST SET UP BLOCK

Block Configuration Diagram for Radiated Emissions

Test Report	18070333-FCC-R1
Page	52 of 55

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Description	Model	Serial No
BLU Products, Inc	Adapter	US-NB-0550	N/A
SAMSUNG	headset	HS330	N/A
Agilent	Wireless Connectivity Test Set	N4010A	N/A
OEM	omnidirectional antenna	AntSuck	N/A

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
USB Cable	Un-shielding	No	0.8 m	N/A

Annex C.ii. EUT OPERATING CONKITIONS

N/A

Test Report	18070333-FCC-R1
Page	54 of 55

Annex D. User Manual / Block Diagram / Schematics / Partlist

Please see the attachment

Annex E. DECLARATION OF SIMILARITY

N/A

