EMC TEST REPORT

Report No.: 18070333-FCC-E
Supersede Report No: N/A

Applicant	BLU Products,Inc		
Product Name	Feature Phone		
Model No.	FLASH		
Serial No.	N/A		
Test Standard	FCC Part 15 Subpart B Class B:2017, ANSI C63.4: 2014		
Test Date	April 10 to April 24, 2018		
Issue Date	April 25, 2018		
Test Result	\checkmark Pass $\square_{\text {Fail }}$		
Equipment complied with the specification $\quad \mathrm{V}$			
Equipment did not comply with the specification \quad -			
hwas He		David Huang	
Evans He Test Engineer		David Huang Checked By	
This test report may be reproduced in full only			

Issued by:
SIEMIC (SHENZHEN-CHINA) LABORATORIES
Zone A, Floor 1, Building 2 Wan Ye Long Technology Park
South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108
Phone: +86 075526014629801 Email: China@siemic.com.cn

Test Report	18070333-FCC-E
Page	2 of 36

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

This page has been left blank intentionally.

Test Report	18070333-FCC-E
Page	4 of 36

CONTENTS

1. REPORT REVISION HISTORY. 5
2. CUSTOMER INFORMATION 5
3. TEST SITE INFORMATION 5
4. EQUIPMENT UNDER TEST (EUT) INFORMATION 6
5. TEST SUMMARY 8
6. MEASUREMENTS, EXAMINATION AND DERIVED RESULTS 9
6.1 AC POWER LINE CONDUCTED EMISSIONS 9
6.2 RADIATED EMISSIONS 15
ANNEX A. TEST INSTRUMENT 20
ANNEX B. EUT AND TEST SETUP PHOTOGRAPHS 21
ANNEX C. TEST SETUP AND SUPPORTING EQUIPMENT. 32
ANNEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST 35
ANNEX E. DECLARATION OF SIMILARITY 36

Test Report	18070333-FCC-E
Page	5 of 36

1. Report Revision History

Report No.	Report Version	Description	Issue Date
18070333-FCC-E	NONE	Original	April 25, 2018

2. Customer information

Applicant Name	BLU Products,Inc
Applicant Add	10814 NW 33rd St \# 100 Doral, FL 33172, USA
Manufacturer	BLU Products,Inc
Manufacturer Add	10814 NW 33rd St \# 100 Doral, FL 33172,USA

3. Test site information

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES
Lab Address	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108
FCC Test Site No.	535293
IC Test Site No.	$4842 \mathrm{E}-1$
Test Software of Radiated Emission	Radiated Emission Program-To Shenzhen v2.0
Test Software of Conducted Emission	EZ-EMC(ver.Icp-03A1)

Test Report	$18070333-$ FCC-E
Page	6 of 36

4. Equipment under Test (EUT) Information

Description of EUT:

Main Model:

Serial Model:

Antenna Gain:

Antenna Type:

Input Power:

Equipment Category :

Type of Modulation:

RF Operating Frequency (ies):

Number of Channels

Feature Phone

FLASH

N/A

GSM850: -0.5dBi
PCS1900: -0.8dBi
Bluetooth: -0.4 dBi

GSM: PIFA antenna
BT: Monopole antenna

Adapter

Model: US-NB-0550
Input: AC100-240V~50/60Hz,0.15A
Output: DC 5.0V, 550mA
Battery:
Model: C41664160170L
Spec: 3.7V, 1700mAh, 6.29Wh

JBP

GSM / GPRS: GMSK
EGPRS: GMSK
Bluetooth: GFSK, п /4DQPSK, 8DPSK

GSM850 TX: 824.2 ~ 848.8 MHz; RX: 869.2 ~ 893.8 MHz
PCS1900 TX: 1850.2 ~ 1909.8 MHz; RX: 1930.2 ~ 1989.8 MHz
Bluetooth: 2402-2480 MHz

GSM 850: 124CH
PCS1900: 299CH
Bluetooth: 79CH

Test Report	$18070333-$ FCC-E
Page	8 of 36

5. Test Summary

The product was tested in accordance with the following specifications.
All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
$\S 15.107$; ANSI C63.4: 2014	AC Power Line Conducted Emissions	Compliance
$\S 15.109 ;$ ANSI C63.4: 2014	Radiated Emissions	Compliance

Measurement Uncertainty

Parameter	Uncertainty
AC Power Line Conducted Emissions	
$(150 \mathrm{kHz} \sim 30 \mathrm{MHz})$	$\pm 3.11 \mathrm{~dB}$
Radiated Emission $(30 \mathrm{MHz} \sim 1 \mathrm{GHz})$	$\pm 5.12 \mathrm{~dB}$
Radiated Emission $(1 \mathrm{GHz} \sim 6 \mathrm{GHz})$	$\pm 5.34 \mathrm{~dB}$

Test Report	$18070333-$ FCC-E
Page	9 of 36

6. Measurements, Examination And Derived Results

6.1 AC Power Line Conducted Emissions

Temperature	$27^{\circ} \mathrm{C}$
Relative Humidity	58%
Atmospheric Pressure	1010 mbar
Test date :	April 10, 2018
Tested By:	Evans He

Requirement(s):

Spec	Item	Requirement			Applicable
47CFR§15.107	a)	For Low-power radio-frequency devices that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz , shall not exceed the limits in the following table, as measured using a 50 [mu] H/50 ohms line impedance stabilization network (LISN). The lower limit applies at the boundary between the frequencies ranges.			V
		Frequency ranges			
		(MHz)	QP	Average	
		$0.15 \sim 0.5$	66-56	56-46	
		$0.5 \sim 5$	56	46	
		5~30	60	50	
Test Setup			ound Plane 0 c (annected MN) are 80 cm and other m		
Procedure	1. $\begin{array}{r}\text { Th } \\ \text { 2. } \\ \text { th } \\ \hline\end{array}$	EUT and supporting e standard on top of a 1. power supply for the red mains.	nt were set $\mathrm{m} \times 0.8 \mathrm{~m}$ hi fed throug	rdance with the tallic table. OmH EUT LISN	quirements of nnected to

Test Report	18070333-FCC-E
Page	10 of 36

	3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable. 4. All other supporting equipment were powered separately from another main supply. 5. The EUT was switched on and allowed to warm up to its normal operating condition. 6. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver. 7. High peaks, relative to the limit line, The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 kHz . 8. Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power).
Remark	
Result	\checkmark Pass $\square_{\text {Fail }}$

Test Data

Test Plot
N/A
$\square_{\text {N/A }}$

Test Report	18070333-FCC-E
Page	11 of 36

Test Mode :	USB Mode

Test Data

Phase Line Plot at $120 \mathrm{Vac}, 60 \mathrm{~Hz}$

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	L1	0.1578	29.89	QP	10.03	39.92	65.58	-25.66
2	L1	0.1578	17.07	AVG	10.03	27.10	55.58	-28.48
3	L1	0.4191	36.78	QP	10.03	46.81	57.47	-10.66
4	L1	0.4191	28.64	AVG	10.03	38.67	47.47	-8.80
5	L1	0.6687	23.32	QP	10.03	33.35	56.00	-22.65
6	L1	0.6687	16.99	AVG	10.03	27.02	46.00	-18.98
7	L1	1.9011	25.55	QP	10.04	35.59	56.00	-20.41
8	L1	1.9011	11.79	AVG	10.04	21.83	46.00	-24.17
9	L1	4.9383	23.77	QP	10.08	33.85	56.00	-22.15
10	L1	4.9383	11.56	AVG	10.08	21.64	46.00	-24.36
11	L1	23.6973	14.28	QP	10.37	24.65	60.00	-35.35
12	L1	23.6973	8.03	AVG	10.37	18.40	50.00	-31.60

Test Report	18070333-FCC-E
Page	12 of 36

\square

Test Data

Phase Neutral Plot at 120Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	N	0.1582	34.01	QP	10.02	44.03	65.56	-21.53
2	N	0.1582	17.82	AVG	10.02	27.84	55.56	-27.72
3	N	0.4425	23.73	QP	10.02	33.75	57.01	-23.26
4	N	0.4425	14.41	AVG	10.02	24.43	47.01	-22.58
5	N	0.8091	19.22	QP	10.03	29.25	56.00	-26.75
6	N	0.8091	8.26	AVG	10.03	18.29	46.00	-27.71
7	N	1.9752	17.88	QP	10.04	27.92	56.00	-28.08
8	N	1.9752	8.51	AVG	10.04	18.55	46.00	-27.45
9	N	3.3315	21.16	QP	10.05	31.21	56.00	-24.79
10	N	3.3315	9.79	AVG	10.05	19.84	46.00	-26.16
11	N	24.0015	18.79	QP	10.32	29.11	60.00	-30.89
12	N	24.0015	9.92	AVG	10.32	20.24	50.00	-29.76

Test Report	$18070333-$ FCC-E
Page	13 of 36

Test Mode: USB Mode

Test Data

Phase Line Plot at 240Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	L1	0.4269	36.35	QP	10.03	46.38	57.31	-10.93
2	L1	0.4269	22.86	AVG	10.03	32.89	47.31	-14.42
3	L1	0.9417	25.78	QP	10.03	35.81	56.00	-20.19
4	L1	0.9417	18.81	AVG	10.03	28.84	46.00	-17.16
5	L1	1.2771	26.16	QP	10.03	36.19	56.00	-19.81
6	L1	1.2771	19.38	AVG	10.03	29.41	46.00	-16.59
7	L1	3.2145	25.47	QP	10.06	35.53	56.00	-20.47
8	L1	3.2145	19.37	AVG	10.06	29.43	46.00	-16.57
9	L1	5.3946	23.25	QP	10.09	33.34	60.00	-26.66
10	L1	5.3946	14.85	AVG	10.09	24.94	50.00	-25.06
11	L1	24.0678	12.94	QP	10.38	23.32	60.00	-36.68
12	L1	24.0678	7.34	AVG	10.38	17.72	50.00	-32.28

Test Report	18070333-FCC-E
Page	14 of 36

Test Mode : USB Mode

Test Data

Phase Neutral Plot at 240Vac, 60Hz

No.	P/L	Frequency	Reading	Detector	Corrected	Result	Limit	Margin
		(MHz)	(dBuV)		(dB)	(dBuV)	(dBuV)	(dB)
1	N	0.4308	38.64	QP	10.02	48.66	57.24	-8.58
2	N	0.4308	29.62	AVG	10.02	39.64	47.24	-7.60
3	N	0.8403	28.52	QP	10.03	38.55	56.00	-17.45
4	N	0.8403	18.40	AVG	10.03	28.43	46.00	-17.57
5	N	1.2537	30.07	QP	10.03	40.10	56.00	-15.90
6	N	1.2537	20.88	AVG	10.03	30.91	46.00	-15.09
7	N	2.0441	28.57	QP	10.04	38.61	56.00	-17.39
8	N	2.0441	19.73	AVG	10.04	29.77	46.00	-16.23
9	N	5.0904	26.36	QP	10.07	36.43	60.00	-23.57
10	N	5.0904	16.86	AVG	10.07	26.93	50.00	-23.07
11	N	23.8806	16.76	QP	10.32	27.08	60.00	-32.92
12	N	23.8806	7.84	AVG	10.32	18.16	50.00	-31.84

Test Report	$18070333-$ FCC-E
Page	15 of 36

6.2 Radiated Emissions

Temperature	$25^{\circ} \mathrm{C}$
Relative Humidity	53%
Atmospheric Pressure	1021 mbar
Test date :	April 12,2018
Tested By:	Evans He

Requirement(s):

Spec	Item	Requirement		Applicable
47CFR§15. 109(d)	a)	Except higher limit as specified elsewhere in other section, the emissions from the low-power radio-frequency devices shall not exceed the field strength levels specified in the following table and the level of any unwanted emissions shall not exceed the level of the fundamental emission. The tighter limit applies at the band edges		V
		Frequency range (MHz)	Field Strength ($\mu \mathrm{V} / \mathrm{m}$)	
		30-88	100	
		88-216	150	
		216-960	200	
		Above 960	500	
Test Setup				
Procedure		The EUT was switched on and a The test was carried out at the s characterization. Maximization o changing the antenna polarizatio manner: a. Vertical or horizontal pol	warm up to its normal oper quency points obtained fro sions, was carried out by ro justing the antenna height in whichever gave the higher	ng condition. the EUT ting the EUT, he following ission level

Test Report	18070333-FCC-E
Page	16 of 36

Test Data $\quad \nabla_{\text {Yes }}$

Test Plot

Test Report	$18070333-$ FCC-E
Page	17 of 36

Test Mode :
 USB Mode

Below 1GHz

Test Data
Horizontal Polarity Plot @3m

No.	P/L	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
		(MHz)	$(\mathrm{dBuV} / \mathrm{m})$		$(\mathrm{dB} / \mathrm{m})$	(dB)	(dB)	$(\mathrm{dBuV} / \mathrm{m})$	$(\mathrm{dBuV} /$ $\mathrm{m})$	(dB)	(cm)	$\left({ }^{\circ}\right)$
1	H	468.8762	42.68	QP	17.08	21.87	2.24	40.13	46.00	-5.87	100	265
2	H	234.1684	47.93	peak	11.62	22.32	1.65	38.88	46.00	-7.12	100	227
3	H	143.8295	42.77	peak	12.60	22.38	1.30	34.29	43.50	-9.21	100	26
4	H	99.5281	35.29	peak	10.29	22.32	1.11	24.37	43.50	-19.13	100	283
5	H	324.4561	39.81	peak	14.11	22.22	1.91	33.61	46.00	-12.39	100	44
6	H	71.8320	35.60	peak	7.76	22.39	0.97	21.94	40.00	-18.06	100	0

Test Report	$18070333-$ FCC-E
Page	18 of 36

Below 1GHz

Test Data

Vertical Polarity Plot @3m

No.	P/L	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit $(\mathrm{dBL} /$ (MHz)	Margin	Height	Degree
$(\mathrm{dBuV} / \mathrm{m})$		$(\mathrm{dB} / \mathrm{m})$	(dB)	(dB)	$(\mathrm{dBuV} / \mathrm{m})$	$\mathrm{dBu} /$ $\mathrm{m})$	(dB)	(cm)	$\left({ }^{\circ}\right)$			
1	V	234.1684	44.06	peak	11.62	22.32	1.65	35.01	46.00	-10.99	100	43
2	V	468.8762	36.81	peak	17.08	21.87	2.24	34.26	46.00	-11.74	100	157
3	V	131.7577	36.18	peak	13.14	22.39	1.21	28.14	43.50	-15.36	100	141
4	V	79.8003	35.68	peak	7.60	22.42	1.05	21.91	40.00	-18.09	200	131
5	V	51.3005	36.90	peak	8.26	22.38	0.79	23.57	40.00	-16.43	100	268
6	V	33.3279	38.16	QP	18.84	22.26	0.71	35.45	40.00	-4.55	100	48

Test Report	18070333-FCC-E
Page	19 of 36

Above 1 GHz

Frequency (MHz)	Read_level ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Azimuth	Height (cm)	Polarity (H/V)	Level $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Factors (dB)	$\begin{gathered} \text { Limit } \\ (\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}) \end{gathered}$	Margin (dB)	Detector (PK/AV)
1068.542	68.22	335	100	V	-20.3	47.92	74	-26.08	PK
1375.659	66.46	121	100	V	-19.14	47.32	74	-26.68	PK
2184.107	63.19	80	100	V	-14.49	48.7	74	-25.3	PK
1139.738	64.13	113	100	H	-20.01	44.12	74	-29.88	PK
1764.712	65.49	145	100	H	-16.76	48.73	74	-25.27	PK
3216.286	57.91	278	100	H	-12.83	45.08	74	-28.92	PK

Note1: The highest frequency of the EUT is 2480 MHz , so the testing has been conformed to $5 * 2480 \mathrm{MHz}=12,400 \mathrm{MHz}$.
Note2: The frequency that above $3 G H z$ is mainly from the environment noise.
Note3: The AV measurement performed, more than 20dB below limit so AV test data was not presented.

Test Report	$18070333-$ FCC-E
Page	20 of 36

Annex A. TEST INSTRUMENT

Instrument	Model	Serial \#	Cal Date	Cal Due	In use
AC Line Conducted Emissions					
EMI test receiver	ESCS30	8471241027	09/15/2017	09/14/2018	V
Line Impedance Stabilization Network	LI-125A	191106	09/23/2017	09/22/2018	V
Line Impedance Stabilization Network	LI-125A	191107	09/23/2017	09/22/2018	V
ISN	ISN T800	34373	09/23/2017	09/22/2018	Γ
Transient Limiter	LIT-153	531118	08/30/2017	08/29/2018	V
Radiated Emissions					
EMI test receiver	E SL6	100262	09/15/2017	09/14/2018	V
OPT 010 AMPLIFIER (0.1-1300MHz)	8447E	2727A02430	08/30/2017	08/29/2018	V
Microwave Preamplifier (1~26.5GHz)	8449B	3008A02402	03/22/2018	03/21/2019	V
Bilog Antenna (30MHz~6GHz)	JB6	A110712	09/19/2017	09/18/2018	V
Double Ridge Horn Antenna	AH-118	71259	09/22/2017	09/21/2018	V

Test Report	18070333-FCC-E
Page	21 of 36

Annex B. EUT And Test Setup Photographs

Annex B.i. Photograph: EUT External Photo

Adapter - Lable View

Test Report	18070333 -FCC-E
Page	22 of 36

EUT - Left View

Test Report	$18070333-$ FCC-E
Page	25 of 36

Annex B.ii. Photograph: EUT Internal Photo

Cover Off - Top View 1

Cover Off - Top View 2

Test Report	$18070333-$ FCC-E
Page	26 of 36

Battery - Front View

Battery - Rear View

Test Report	$18070333-$ FCC-E
Page	27 of 36

Mainboard with Shielding - Front View

Mainboard with Shielding - Rear View

Mainboard without Shielding - Front View

LCD - Front View

Test Report	18070333-FCC-E
Page	29 of 36

LCD - Rear View

GSM/PCS - Antenna View

FM - Antenna View

Test Report	18070333-FCC-E
Page	31 of 36

Annex B.iii. Photograph: Test Setup Photo

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.ii. TEST SET UP BLOCK

LISN 2

LISN 1
$\mathrm{V}=120 \mathrm{~V} / 240 \mathrm{~V}$ AC $\mathrm{F}=60 \mathrm{~Hz}$

Test Report	$18070333-$ FCC-E
Page	33 of 36

Block Configuration Diagram for Radiated Emissions

Receiving Antenna

Test Report	18070333-FCC-E
Page	34 of 36

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Description	Model	Serial No
Lenovo	Laptop	E40	LR-1EHRX
GOLDWEB	Router	R102	1202032094
Lenovo	AC Adapter	42 T4416	21D9JU
HP	Printer	VCVRA-1003	CN36M19JWX
DELL	Mouse	E100	912NMTUT41481
BULL	Socket	GN-403	GN201203
SAMSUNG	headset	HS330	N/A

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
USB Cable	Un-shielding	No	$2 m$	JX120051274
USB Cable	Un-shielding	No	$2 m$	CBA3000AH0C1
RJ45 Cable	Un-shielding	No	$2 m$	KX156327541
Router Power cable	Un-shielding	No	$2 m$	$13274630 Z$
Printer Power cable	Un-shielding	No	$0.8 m$	GT211032
Power Cable	Un-shielding			

Annex D. User Manual / Block Diagram / Schematics / Partlist

Please see the attachment

