TEST REPORT

Reference No	WTX22X08156486W006
FCC ID	YHLBLUF92E
Applicant	BLU Products, Inc.
Address	10814 NW 33rd St # 100 Doral, FL 33172,USA
Manufacturer	The same as Applicant
Address	The same as Applicant
Product Name	Smart Phone
Model No	F92e 5G
Standards	FCC Part 15E
Date of Receipt sample :	2022-08-01
Date of Test	2022-08-01 to 2022-10-19
Date of Issue	2022-10-19
Test Report Form No :	WTX_Part 15EW
Test Result	Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of approver.

Prepared By:

Waltek Testing Group (Shenzhen) Co., Ltd.

Address: 1/F., Room 101, Building 1, Hongwei Industrial Park, Liuxian 2nd Road, Block 70 Bao'an District, Shenzhen, Guangdong, China Tel.: +86-755-33663308 Fax.: +86-755-33663309 Email: sem@waltek.com.cn

Tested by:

Jason Su

Approved by:

Silin Chen

Silin Chen

TABLE OF CONTENTS

1. GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
1.2 TEST STANDARDS	5
1.3 Test Methodology	
1.4 EUT OPERATING DURING TEST	
1.5 TEST FACILITY	
1.6 EUT SETUP AND TEST MODE	6
1.7 TEST EQUIPMENT LIST AND DETAILS	7
2. SUMMARY OF TEST RESULTS	9
3.DYNAMIC FREQUENCY SELECTION (DFS)	10
3.1 REQUIREMENT	
3.2 RADAR TEST WAVEFORMS	12
3.3 CALIBRATION OF RADAR WAVEFORM	
3.4 TEST PROCEDURE	18
3.5 TEST RESULTS	

Report version

Version No.	Date of issue	Description
Rev.00	2022-10-19	Original
/	/	/

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

General Description of EUT		
Product Name:	Smart Phone	
Trade Name:	BLU	
Model No.:	F92e 5G	
Adding Model:	1	
Rated Voltage:	DC3.87V	
Battery Capacity:	4900mAh(C886550500P)	
	US-CR-2000	
Power Adapter:	INPUT:AC100-240V 50/60Hz 0.3A	
	Output:DC5V2000mA	
The EUT is only support slave without radar Detection function.		
Note: The test data is gathered from a production sample provided by the manufacturer.		

Technical Characteristics of EUT				
Support Standards:	802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac-VH80			
Fraguency Bange:	5150-5250MHz, 5250-5350MHz,			
Frequency Range:	5470-5725MHz, 5725-5850MHz			
RF Output Power:	13.46dBm (Conducted)			
Type of Modulation:	QPSK, 16QAM, 64QAM			
Type of Antenna:	Integral Antenna			
Antenna Gain:	-1.2dBi			
Note: The Antenna Gain is provided by the customer and can affect the validity of results.				

1.2 Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.407: General technical requirements.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

<u>KDB905462 D02</u>: Compliance Measurement Procedures for Unlicensed-National Information Infrastructure Devices Operating in the 5250-5350MHz And 5470-5725MHz Bands Incorporating Dynamic Frequency Selection.

KDB905462 D03:U-Nii Client Devices Without Radar Detection Capability.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02.

1.4 EUT Operating during test

EUT was programmed to be in continuously transmitting mode. During the test, EUT operation to normal function and programs under WIN XP were executed.

1.5 Test Facility

Address of the test laboratory

Laboratory: Waltek Testing Group (Shenzhen) Co., Ltd. Address: 1/F., Room 101, Building 1, Hongwei Industrial Park, Liuxian 2nd Road, Block 70 Bao'an District, Shenzhen, Guangdong, China

FCC – Registration No.: 125990

Waltek Testing Group (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is mai ntained in our files. The Designation Number is CN5010, and Test Firm Registration Number is 125990.

Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Waltek Testing Group (Shenzhen) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

1.6 EUT Setup and Test Mode

The EUT in this application is a client device without radar detection capability and indicate the FCC identifier for the Master U-NII Device .During the test, the product works on the designated test channel and transmits normal data to the master.

Messages for communication between Master and Client Devices: 0101010101......(Continuous cycle.) The type of system architecture for the device in this application is IP based.,

more detailed description as follows:

Test Mode List

Test Mode	Description	Remark	
TM1	802.11ac-HT(80)	5290MHz,5610MHz,	

EUT Cable List and Details

Cable Description	Cable Description Length (m) Shielded/Uns		With / Without Core		
USB Cable	1.0	Shielded	Without Ferrite		
Headset Cable	1.2	Unshielded	Without Ferrite		

Special Cable List and Details						
Cable Description Length (m) Shielded/Unshielded With / Without Ferrite						
/	/	/	/			

Auxiliary Equipment List and Details				
Description	Manufacturer	Model	Serial Number	
Notebook	ASUS	FA5061C	M8NRCX057996349	

No.	Description	Manufacturer	Model	Serial No.	Cal Date	Due. Date	
SEMT-1075	Communication Tester	Rohde & Schwarz	CMW500	148650	2022-03-22	2023-03-21	
SEMT-1063	GSM Tester	Rohde & Schwarz	CMU200	114403	2022-03-22	2023-03-21	
SEMT-1072	Spectrum Analyzer	Agilent	E4407B	MY414404 00	2022-03-25	2023-03-24	
SEMT-1079	Spectrum Analyzer	Agilent	N9020A	US471401 02	2022-03-22	2023-03-21	
SMET-1313	Spectrum Analyzer	Agilent	N9020A	MY543205 48	2022-03-22	2023-03-21	
SEMT-1080	Signal Generator	Agilent	83752A	3610A014 53	2022-03-22	2023-03-21	
SEMT-1081	Vector Signal Generator	Agilent	N5182A	MY470702 02	2022-03-22	2023-03-21	
SEMT-1028	Power Divider	Weinschel	1506A	PM204	2022-03-22	2023-03-21	
SEMT-C001	Cable	Zheng DI	LL142-07-07-1 0M(A)	/	/	/	
SEMT-C002	Cable	Zheng DI	ZT40-2.92J-2.9 2J-6M	/	/	/	
SEMT-C003	Cable	Zheng DI	ZT40-2.92J-2.9 2J-2.5M	/	/	/	
SEMT-C004	Cable	Zheng DI	2M0RFC	/	/	/	
SEMT-C005	Cable	Zheng DI	1M0RFC	/	/	/	
SEMT-C006	Cable	Zheng DI	1M0RFC	/	/	/	
Chamber A:	Below 1GHz						
SEMT-1031	Spectrum Analyzer	Rohde & Schwarz	FSP30	836079/03 5	2022-03-22	2023-03-21	
SEMT-1007	EMI Test Receiver	Rohde & Schwarz	ESVB	825471/00 5	2022-03-22	2023-03-21	
SEMT-1008	Amplifier	Agilent	8447F	3113A067 17	2022-01-07	2023-01-06	
SEMT-1069	Loop Antenna	Schwarz beck	FMZB 1516	9773	2021-03-20	2023-03-19	
SEMT-1068	Broadband Antenna	Schwarz beck	VULB9163	9163-333	2021-03-20	2023-03-19	
Chamber A: Above 1GHz							
SEMT-1031	Spectrum Analyzer	Rohde & Schwarz	FSP30	2022-03-2 2	2022-03-22	2023-03-21	
SEMT-1007	EMI Test Receiver	Rohde & Schwarz	ESVB	2022-03-2 1	2022-03-22	2023-03-21	

1.7 Test Equipment L	_ist and Details
----------------------	------------------

Waltek Testing Group (Shenzhen) Co., Ltd. Http://www.waltek.com.cn

SEMT-1043	Amplifier	C&D	PAP-1G18	2022-03-2 1	2022-03-22	2023-03-21
SEMT-1042	Horn Antenna	ETS	3117	2021-03-1 9	2023-03-18	2021-03-19
SEMT-1121	Horn Antenna	Schwarzbeck	BBHA 9170	2021-04-2 7	2023-04-26	2021-04-27
SEMT-1169	Pre-amplifier	Direction Systems Inc.	PAP-2640	2021-04-2 7	2022-04-26	2021-04-27
SEMT-1216	Pre-amplifier	Schwarzbeck	BBV 9721	9721-031	2022-03-25	2023-03-24
Chamber B	Below 1GHz			• •		
	Trilog					
SEMT-1068	Broadband	Schwarz beck	VULB9163(B)	9163-635	2021-04-09	2023-04-08
	Antenna					
SEMT-1067	Amplifier	Agilent	8447D	2944A101 79	2022-03-22	2023-03-21
	EMI Test	Rohde &		101001	2022 02 22	2022 02 24
SEMT-1066	Receiver	Schwarz	ESPI	101391	2022-03-22	2023-03-21
Chamber C	Below 1GHz					
OFMT 4040	EMI Test	Rohde &		400404	0000 04 07	0000.04.00
SEMT-1319	Receiver	Schwarz	ESIB 26	100401	2022-01-07	2023-01-06
	Trilog					
SEMT-1343	Broadband	Schwarz beck	VULB 9168	1194	2021-05-28	2023-05-27
	Antenna					
SEMT-1333	Amplifier	HP	8447F	2944A038 69	2022-03-22	2023-03-21

Software List						
Description Manufacturer Model Version						
EMI Test Software	Fored	EZ-EMC	DA 02A1			
(Radiated Emission)*	Farad	EZ-EIVIC	RA-03A1			

*Remark: indicates software version used in the compliance certification testing.

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result	
§15.407(h)	Dynamic Frequency Selection (DFS)	Pass	

N/A: Not applicable.

3.Dynamic Frequency Selection (DFS)

3.1 Requirement

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

	Operational Mode			
Requirement	Master	Client Without	Client With Radar	
	Waster	Radar Detection	Detection	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

Table 2: Applicability of DFS requirements during normal operation

	Operational Mode			
Requirement	Master Device or Client with	Client Without Radar		
	Radar Detection	Detection		
DFS Detection Threshold	Yes	Not required		
Channel Closing Transmission	Yes	Yes		
Time				
Channel Move Time	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required		

Additional requirements for devices with multiple bandwidth	Master Device or Client with Radar Detection	Client Without Radar Detection			
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required			
Channel Move Time and Channel Closing Transmission	Test using widest BW mode available	Test using the widest BW mode available for the link			
All other tests	Any single BW mode	Not required			
Note: Frequencies selected for	Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several				

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20MHz channels and the channel center frequency.

<u>LIMIT</u>

1. DFS Detection Thresholds

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value (See Notes 1, 2, and 3)		
EIRP ≥ 200 milliwatt	-64dBm		
EIRP < 200 milliwatt and	-62dBm		
power spectral density < 10 dBm/MHz			
EIRP < 200 milliwatt that do not meet the power			
spectral density requirement -64dBm			
Note 1: This is the level at the input of the receiver assuming a 0dBi receive antenna.			

Note 2: Throughout these test procedures an additional 1dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that

the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

2. DFS Response Requirements

Table 4: DFS Response Requirement Values

Paramenter	Value		
Non-occupancy period	Minimum 30 minutes		
Channel Availability Check Time	60 seconds		
Channel Move Time	10 seconds See Note 1.		
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds		
	over remaining 10 second period. See Notes 1 and 2.		
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power		
	bandwidth. See Note 3.		
Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with			

Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required facilitating a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

3.2 RADAR TEST WAVEFORMS

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

	Pulse Width	PRI	PRI		Minimum	
Radar Type	be (μsec) (μsec) Number of Pulses		of Successful Detection	Number of Trials		
0	(µ300) 1	1428	18	See Note 1	See Note 1	
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	$\operatorname{Roundup} \left\{ \begin{pmatrix} \frac{1}{360} \end{pmatrix}, \\ \left(\frac{19 \cdot 10^6}{\operatorname{PRI}_{\mu \operatorname{sec}}} \right) \right\}$	60%	30	
2	1-5	150-230	23-29	60%	30	
3	6-10	200-500	16-18	60%	30	
4	11-20	200-500	12-16	60%	30	
Aggregate (Radar Types 1-4)				80%	120	
Note 1: Short	Pulse Rad	dar Type 0 should be us	sed for the detection bar	ndwidth test, channel m	ove time,	
and ch	and channel closing time tests.					

 Table 5 Short Pulse Radar Test Waveforms

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test

Waltek Testing Group (Shenzhen) Co., Ltd. Http://www.waltek.com.cn

Page 12 of 21

B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 µsec is selected, the number of pulses

$$\left\{ \left(\frac{1}{360}\right) \cdot \left(\frac{19 \cdot 10^6}{3066}\right) \right\}$$

would be Round up

= Round up {17.2} = 18.

Pulse Repetition Frequency	Pulse Repetition Frequency	Pulse Repetition Interval (Microseconds) 518	
Number	(Pulses Per Second)		
1	1930.5		
2	1858.7	538	
3	1792.1	558	
4	1730.1	578	
5	1672.2	598	
6	1618.1	618	
7	1567.4	638	
8	1519.8	658	
9	1474.9	678	
10	1432.7	698	
11	1392.8	718	
12	1355	738	
13	1319.3	758	
14	1285.3	778	
15	1253.1	798	
16	1222.5	818	
17	1193.3	838	
18	1165.6	858	
19	1139	878	
20	1113.6	898	
21	1089.3	918	
22	1066.1	938	
23	326.2	3066	

Table 5a - Pulse Re	epetition Intervals	Values for Test A
	spourion milervais	

Table 6 – Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

The parameters for this waveforms are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type wave forms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length	Minimum Percentage of Successful	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same Burst parameters are used for each wave form. The hopping sequence is different for each wave form and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

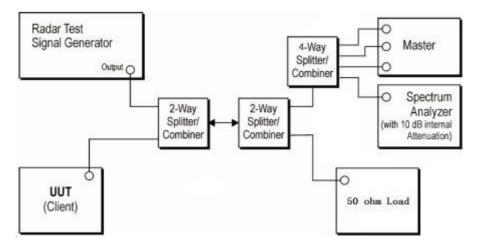
The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250–5724MHz.Next,the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

3.3 Calibration of Radar Waveform

Radar Waveform Calibration Procedure

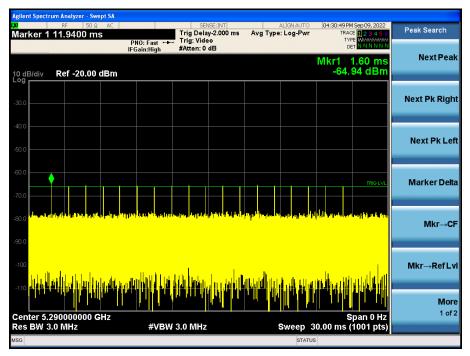
- 1) A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to place of the master
- The interference Radar Detection Threshold Level is -62dBm + 0dBi +1dB = -61dBm that had been taken into account the output power range and antenna gain.
- 3) The following equipment setup was used to calibrate the conducted radar waveform. A vector signal generator was utilized to establish the test signal level for radar type 0. During this process there were no transmissions by either the master or client device. The spectrum analyzer was switched to the zero spans (time domain) at the frequency of the radar waveform generator.

Peak detection was used. The spectrum analyzer resolution bandwidth (RBW) and video

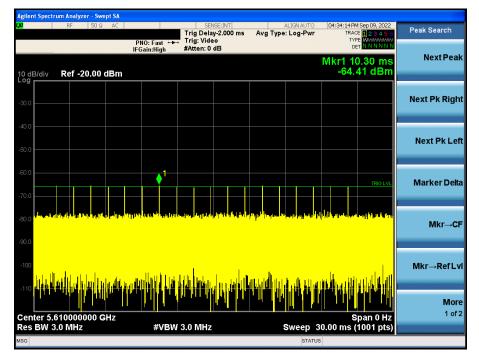

Waltek Testing Group (Shenzhen) Co., Ltd. Http://www.waltek.com.cn

bandwidth (VBW) were set to 3

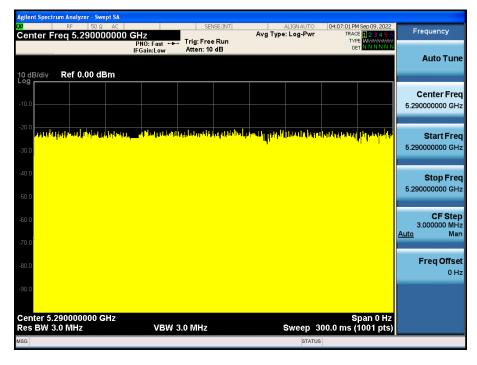
MHz. The spectrum analyzer had offset -1.0dB to compensate RF cable loss 1.0dB.


4) The vector signal generator amplitude was set so that the power level measured at the spectrum analyzer was - -62dBm + 0dBi +1dB = -61dBm. Capture the spectrum analyzer plots on short pulse radar waveform.

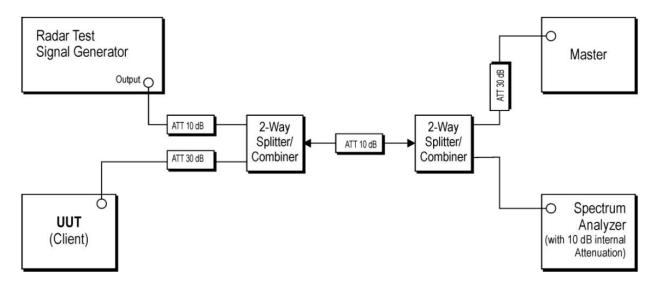
Conducted Calibration Setup



Radar Waveform Calibration Result


Radar Type 0 (80MHz / 5290Hz)

Radar Type 0 (80MHz / 5610MHz)

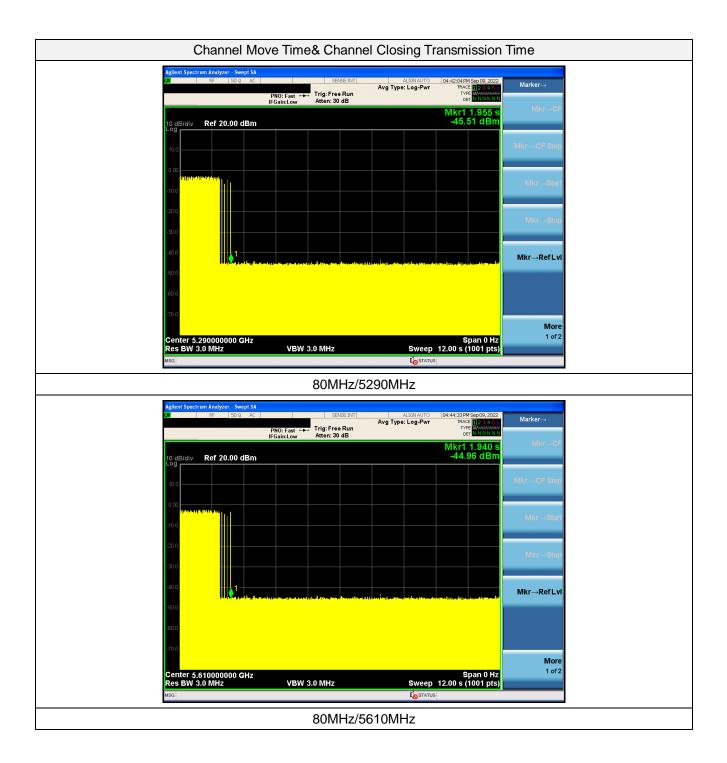


Data transmitting calibration

TEST CONFIGURATION

Setup for Client with injection at the Master

3.4 TEST PROCEDURE


- 1. The radar pulse generator is setup to provide a pulse at frequency that the master and client are operating. A type 0 radar pulse with a 1us pulse width and a 1428us PRI is used for the testing.
- 2. The vector signal generator is adjusted to provide the radar burst (18 pulses) at the level of approximately -61dBm at the antenna port of the master device
- 3. A trigger is provided from the pulse generator to the DFS monitoring system in order to capture the traffic and the occurrence of the radar pulse.
- 4. EUT will associate with the master at channel. The file "iperf.exe" specified by the FCC is streamed from the PC 2 through the master and the client device to the PC 1 and played in full motion video using Media Player Classic Ver. 6.4.8.6 in order to properly load the network for the entire period of the test.
- 5. When radar burst with a level equal to the DFS Detection Threshold +1dB is generated on the operating channel of the U-NII device. At time T0 the radar waveform generator sends a burst of pulse of the radar waveform at Detection Threshold +1dB.
- 6. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel Measure and record the transmissions from the UUT during the observation time (Channel Move Time). One 15 seconds plot is reported for the Short Pulse Radar Type 0. The plot for the Short Pulse Radar Types Waltek Testing Group (Shenzhen) Co., Ltd. Http://www.waltek.com.cn Page 18 of 21

start at the end of the radar burst. The Channel Move Time will be calculated based on the zoom in 600ms plot of the Short Pulse Radar Type

- 7. Measurement of the aggregate duration of the Channel Closed Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (0.3ms) =S (12000ms) / B (4000); where Dwell is the dwell time per spectrum analyzer sampling bin, S is sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C (ms)= N X Dwell (0.3ms); where C is the Closing Time, N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission and Dwell is the dwell time per bin.
- 8. Measurement the EUT for more than 30 minutes following the channel move time to verify that no transmission or beacons occur on this channel.

BW/Channel	Test Item	Test Result(s)	Limit	Result
	Channel Move Time	1.424	<10s	Pass
80MHz/5290MHz	Channel Closing Transmission Time	0.0987	<0.06s	Pass
	Channel Move Time	1.561	<10s	Pass
80MHz/5610MHz	Channel Closing Transmission Time	0.0815	<0.06s	Pass

3.5 TEST RESULTS

Non-occupancy Observer

***** END OF REPORT *****

Waltek Testing Group (Shenzhen) Co., Ltd. Http://www.waltek.com.cn P