Zeughausstrasse 43, 8004 Zunch, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com ### IMPORTANT NOTICE #### **USAGE OF THE DAE 4** The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points: Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out. Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside. E-Stop Failures. Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements. Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect. DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file. #### Important Note: Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer. #### Important Note: Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure. #### Important Note: To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE. Schmid & Partner Engineering #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Accreditation No.: SCS 0108 Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Auden Certificate No: DAE4-1490 Sep15 ## **CALIBRATION CERTIFICATE** Object DAE4 - SD 000 D04 BM - SN: 1490 Calibration procedure(s) QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE) Calibration date: September 14, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 09-Sep-15 (No:17153) | Sep-16 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 06-Jan-15 (in house check) | In house check: Jan-16 | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 06-Jan-15 (in house check) | In house check: Jan-16 | Name Function Signature Calibrated by: Dominique Steffen Technician Approved by: Fin Bomholt Deputy Technical Manager Issued: September 21, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-1490_Sep15 Page 1 of 5 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-1490_Sep15 Page 2 of 5 ## **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1......+3 mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.123 ± 0.02% (k=2) | 404.341 ± 0.02% (k=2) | 403.904 ± 0.02% (k=2) | | Low Range | 3.98657 ± 1.50% (k=2) | 3.98065 ± 1.50% (k=2) | 3.98672 ± 1.50% (k=2) | #### **Connector Angle** | Connector Angle to be used in DASY system 19.5 ° ± 1 ° | |--| |--| Certificate No: DAE4-1490_Sep15 ## Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 200038.47 | 5.05 | 0.00 | | Channel X + Input | 20006.49 | 2.63 | 0.01 | | Channel X - Input | -20004.88 | 0.99 | -0.00 | | Channel Y + Input | 200033.39 | 0.18 | 0.00 | | Channel Y + Input | 20002.82 | -0.97 | -0.00 | | Channel Y - Input | -20006.94 | -0.91 | 0.00 | | Channel Z + Input | 200039.87 | 6.47 | 0.00 | | Channel Z + Input | 20002.08 | -1.68 | -0.01 | | Channel Z - Input | -20008.40 | -2.42 | 0.01 | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 1999.76 | -0.58 | -0.03 | | Channel X + Input | 200.81 | 0.50 | 0.25 | | Channel X - Input | -199.50 | 0.09 | -0.04 | | Channel Y + Input | 1998.73 | -1.56 | -0.08 | | Channel Y + Input | 199.28 | -1.02 | -0.51 | | Channel Y - Input | -201.19 | -1.48 | 0.74 | | Channel Z + Input | 2000.30 | 0.10 | 0.00 | | Channel Z + Input | 198.95 | -1.23 | -0.62 | | Channel Z - Input | -201.49 | -1.77 | 0.89 | 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -0.30 | -2.27 | | | - 200 | 3.59 | 2.06 | | Channel Y | 200 | 11.80 | 11.09 | | | - 200 | -12.78 | -13.25 | | Channel Z | 200 | 10.63 | 10.65 | | | - 200 | -13.34 | -13.20 | #### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (µV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | | -0.66 | 0.14 | | Channel Y | 200 | 2.55 | _ ~~ | 0.23 | | Channel Z | 200 | 10.04 | -0.14 | _ + _ | ## 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15739 | 16628 |
| Channel Y | 15827 | 17029 | | Channel Z | 15857 | 16684 | #### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 0.54 | -1.72 | 2.31 | 0.57 | | Channel Y | -0.08 | -1.47 | 1.32 | 0.57 | | Channel Z | -0.84 | -2.05 | 0.42 | 0.57 | #### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) +7.9 | | |----------------|------------------------|--| | Supply (+ Vcc) | | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 Tel: +86-10-62304633-2218 E-mail: cttl@chinattl.com Auden Certificate No: Z15-97054 #### **CALIBRATION CERTIFICATE** Object Client : DAE4 - SN: 679 Calibration Procedure(s) FD-Z11-2-002-01 Http://www.chinattl.cn Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: April 13, 2015 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | |------------------------|---------|--|-----------------------|--| | Process Calibrator 753 | 1971018 | 01-July-14 (CTTL, No:J14X02147) | July-15 | | Calibrated by: Name Function Signature Yu Zongying SAR Test Engineer Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Lu Bingsong Deputy Director of the laboratory This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z15-97054 Page 1 of 3 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters: DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn DC Voltage Measurement A/D - Converter Resolution nominal High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mV Low Range: 1LSB = 61 n V, full range = -1......+3 n V DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | х | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.360 ± 0.15% (k=2) | 404.845 ± 0.15% (k=2) | 404.916 ± 0.15% (k=2) | | Low Range | 3.96888 ± 0.7% (k=2) | 3.95561 ± 0.7% (k=2) | 3.96029 ± 0.7% (k=2) | #### **Connector Angle** | Connector Angle to be used in DASY system | 293° ± 1 ° | |---|------------| #### Acceptable Conditions for SAR Measurements Using Probes and Dipoles Calibrated under the SPEAG-CTTL Dual-Logo Calibration Program to Support FCC Equipment Certification The acceptable conditions for SAR measurements using probes, dipoles and DAEs calibrated by CTTL (China Telecommunication Technology Labs), under the Dual-Logo Calibration Certificate program and quality assurance (QA) protocols established between SPEAG (Schmid & Partner Engineering AG, Switzerland) and CTTL, to support FCC (U.S. Federal Communications Commission) equipment certification are defined and described in the following. The conditions in this KDB are valid until December 31, 2015. - The agreement established between SPEAG and CTTL is only applicable to calibration services performed by CTTL where its clients (companies and divisions of such companies) are headquartered in the Greater China Region, including Taiwan and Hong Kong. CTTL shall inform the FCC of any changes or early termination to the agreement. - 2) Only a subset of the calibration services specified in the SPEAG-CTTL agreement, while it remains valid, are applicable to SAR measurements performed using such equipment for supporting FCC equipment certification. These are identified in the following. - a) Calibration of dosimetric (SAR) probes EX3DVx, ET3DVx and ES3DVx. - Free-space E-field and H-field probes, including those used for HAC (hearing aid compatibility) evaluation, temperature probes, other probes or equipment not identified in this document, when calibrated by CTTL, are excluded and cannot be used for measurements to support FCC equipment certification. - ii) Signal specific and bundled probe calibrations based on PMR (probe modulation response) characteristics or probe sensor model based linearization methods that are not fully described in SAR standards are excluded and cannot be used for measurements to support FCC equipment certification. - b) Calibration of SAR system validation dipoles, excluding HAC dipoles. - c) Calibration of data acquisition electronics DAE3Vx, DAE4Vx and DAEasyVx. - d) For FCC equipment certification purposes, the frequency range of SAR probe and dipole calibrations is limited to 700 MHz - 6 GHz and provided it is supported by the equipment identified in the CTTL QA protocol (a separate attachment to this document). - e) The identical system and equipment setup, measurement configurations, hardware, evaluation algorithms, calibration and QA protocols, including the format of calibration certificates and reports used by SPEAG shall be applied by CTTL. Equivalent test equipment and measurement configurations may be considered only when agreed by both SPEAG and the FCC. - f) The calibrated items are only applicable to SPEAG DASY 4 and DASY 5 systems or higher version systems that satisfy the requirements of this KDB. - The SPEAG-CTTL agreement includes specific protocols identified in the following to ensure the quality of calibration services provided by CTTL under this SPEAG- CTTL Dual-Logo calibration agreement are equivalent to the calibration services provided by SPEAG. CTTL shall apply the required protocols without modification and, upon request, provide copies of documentation to the FCC to substantiate program implementation. a) The Inter-laboratory Calibration Evaluation (ILCE) stated in the CTTL QA protocol shall be performed between SPEAG and CTTL at least once every 12 months. The ILCE acceptance criteria defined in the CTTL QA protocol shall be satisfied for the CTTL, SPEAG and FCC agreements to remain valid. b) Check of Calibration Certificate (CCC) shall be performed by SPEAG for all calibrations performed by CTTL. Written confirmation from SPEAG is required for CTTL to issue calibration certificates under the SPEAG-CTTL Dual-Logo calibration program. Quarterly reports for all calibrations performed by CTTL under the program are also issued by SPEAG. c) The calibration equipment and measurement system used by CTTL shall be verified before each calibration service according to the specific reference SAR probes, dipoles, and DAE calibrated by SPEAG. The results shall be reproducible and within the defined acceptance criteria specified in the CTTL QA protocol before each actual calibration can commence. CTTL shall maintain records of the measurement and calibration system verification results for all calibrations. Quality Check of Calibration (QCC) certificates shall be performed by SPEAG at least once every 12 months. SPEAG shall visit CTTL facilities to verify the laboratory, equipment, applied procedures and plausibility of randomly selected certificates. 4) A copy of this document shall be provided to CTTL clients that accept calibration services according to the SPEAG-CTTL Dual-Logo calibration program, which should be presented to a TCB (Telecommunication Certification Body), to facilitate FCC equipment approval. 5) CTTL shall address any questions raised by its clients or TCBs relating to the SPEAG-CTTL Dual-Logo calibration program and inform the FCC and SPEAG of any critical issues. Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com #### IMPORTANT NOTICE #### **USAGE OF THE DAE 4** The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points: Battery Exchange: The battery cover of the DAE4 unit
is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out. **Shipping of the DAE**: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside. **E-Stop Failures:** Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements. Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect. **DASY Configuration Files:** Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file. #### Important Note: Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer. #### Important Note: Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure. #### Important Note: To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE. Schmid & Partner Engineering #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton (Auden) Certificate No: DAE4-1386 Feb15 ## **CALIBRATION CERTIFICATE** Object DAE4 - SD 000 D04 BM - SN: 1386 Calibration procedure(s) QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE) Calibration date: February 19, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 03-Oct-14 (No:15573) | Oct-15 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 06-Jan-15 (in house check) | In house check: Jan-16 | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 06-Jan-15 (in house check) | In house check: Jan-16 | Name Function Signature Calibrated by: Dominique Steffen Technician Approved by: Fin Bomholt Deputy Technical Manager Issued: February 19, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-1386 Feb15 Page 1 of 5 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Certificate No: DAE4-1386 Feb15 S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. #### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: $1LSB = 6.1\mu V$, full range = -100...+300 mVLow Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.492 ± 0.02% (k=2) | 404.583 ± 0.02% (k=2) | 404.103 ± 0.02% (k=2) | | Low Range | 4.02032 ± 1.50% (k=2) | 4.01255 ± 1.50% (k=2) | 4.01245 ± 1.50% (k=2) | #### **Connector Angle** | Connector Angle to be used in DASY system | 333.5 ° ± 1 ° | |---|---------------| Certificate No: DAE4-1386_Feb15 Page 3 of 5 ## Appendix (Additional assessments outside the scope of SCS108) 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 199993.40 | -0.18 | -0.00 | | Channel X + Input | 19998.88 | -0.94 | -0.00 | | Channel X - Input | -20000.84 | 1.02 | -0.01 | | Channel Y + Input | 199992.92 | -0.90 | -0.00 | | Channel Y + Input | 19998.42 | -1.44 | -0.01 | | Channel Y - Input | -20001.62 | 0.16 | -0.00 | | Channel Z + Input | 199994.01 | 0.09 | 0.00 | | Channel Z + Input | 19998.00 | -1.80 | -0.01 | | Channel Z - Input | -20003.26 | -1.43 | 0.01 | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 1999.68 | -0.04 | -0.00 | | Channel X + Input | 199.86 | -0.41 | -0.21 | | Channel X - Input | -199.98 | -0.38 | 0.19 | | Channel Y + Input | 1999.64 | -0.19 | -0.01 | | Channel Y + Input | 199.36 | -1.00 | -0.50 | | Channel Y - Input | -199.81 | -0.38 | 0.19 | | Channel Z + Input | 1998.03 | -1.80 | -0.09 | | Channel Z + Input | 199.31 | -1.00 | -0.50 | | Channel Z - Input | -200.91 | -1.37 | 0.69 | #### 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -15.50 | -17.87 | | | - 200 | 18.04 | 16.26 | | Channel Y | 200 | -8.92 | -9.36 | | | - 200 | 8.06 | 7.92 | | Channel Z | 200 | -6.39 | -6.16 | | | - 200 | 2.88 | 3.57 | #### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 4.97 | -2.78 | | Channel Y | 200 | 8.29 | • | 6.14 | | Channel Z | 200 | 7.22 | 6.38 | - | 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16010 | 14375 | | Channel Y | 16064 | 16153 | | Channel Z | 16058 | 12663 | 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | -0.34 | -1.32 | 0.47 | 0.33 | | Channel Y | -0.56 | -3.00 | 0.51 | 0.49 | | Channel Z | -0.79 | -1.73
 0.40 | 0.39 | 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | | |-----------|----------------|------------------|--| | Channel X | 200 | 200 | | | Channel Y | 200 | 200 | | | Channel Z | 200 | 200 | | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | | | |----------------|-------------------|--|--|--| | Supply (+ Vcc) | +7.9 | | | | | Supply (- Vcc) | -7.6 | | | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Auden Certificate No: EX3-3898 Aug15 Accreditation No.: SCS 0108 #### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3898 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: August 6, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 01-Apr-15 (No. 217-02128) | Mar-16 | | Power sensor E4412A | MY41498087 | 01-Apr-15 (No. 217-02128) | Mar-16 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 01-Apr-15 (No. 217-02129) | Mar-16 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 01-Apr-15 (No. 217-02132) | Mar-16 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 01-Apr-15 (No. 217-02133) | Mar-16 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-14 (No. ES3-3013_Dec14) | Dec-15 | | DAE4 | SN: 660 | 14-Jan-15 (No. DAE4-660_Jan15) | Jan-16 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | Name Function Calibrated by: Jeton Kastrati Laboratory Technician Katja Pokovic Issued: August 6, 2015 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3898_Aug15 Approved by: Technical Manager #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). # Probe EX3DV4 SN:3898 Manufactured: October 9, 2012 Repaired: July 27,2015 Calibrated: August 6, 2015 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | | |--|----------|----------|----------|-----------|--| | Norm (μV/(V/m) ²) ^A | 0.40 | 0.35 | 0.33 | ± 10.1 % | | | DCP (mV) ^B | 103.0 | 100.8 | 104.3 | | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | Α | В | С | D | VR | Unc ^E | |---|---------------------------|---|-----|-------|-----|------|-------|------------------| | | | | dB | dB√μV | | dB | mV | (k=2) | | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 139.1 | ±2.7 % | | *************************************** | | Y | 0.0 | 0.0 | 1.0 | | 133.2 | | | | | Z | 0.0 | 0.0 | 1.0 | | 145.1 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 10.20 | 10.20 | 10.20 | 0.25 | 1.30 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.81 | 9.81 | 9.81 | 0.28 | 1.17 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.50 | 9.50 | 9.50 | 0.19 | 1.67 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.23 | 8.23 | 8.23 | 0.19 | 1.42 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.27 | 8.27 | 8.27 | 0.37 | 0.80 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.01 | 8.01 | 8.01 | 0.39 | 0.80 | ± 12.0 % | | 2100 | 39.8 | 1.49 | 8.11 | 8.11 | 8.11 | 0.40 | 0.80 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.60 | 7.60 | 7.60 | 0.36 | 0.80 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.24 | 7.24 | 7.24 | 0.43 | 0.80 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.08 | 7.08 | 7.08 | 0.36 | 0.97 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 6.82 | 6.82 | 6.82 | 0.21 | 2.29 | ± 13.1 % | | 5200 | 36.0 | 4.66 | 5.43 | 5.43 | 5.43 | 0.30 | 1.80 | ±
13.1 % | | 5300 | 35.9 | 4.76 | 5.24 | 5.24 | 5.24 | 0.30 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.90 | 4.90 | 4.90 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.72 | 4.72 | 4.72 | 0.40 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.65 | 4.65 | 4.65 | 0.40 | 1.80 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. At frequencies below 3 CHz, the call the first second of the convF assessments at 30 and 30 MHz is ± 10, 25 and 20 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 55.5 | 0.96 | 10.05 | 10.05 | 10.05 | 0.30 | 1.12 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.97 | 9.97 | 9.97 | 0.34 | 1.05 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.80 | 9.80 | 9.80 | 0.27 | 1.16 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 8.25 | 8.25 | 8.25 | 0.27 | 1.14 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.99 | 7.99 | 7.99 | 0.45 | 0.80 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.71 | 7.71 | 7.71 | 0.35 | 0.80 | ± 12.0 % | | 2100 | 53.2 | 1.62 | 8.04 | 8.04 | 8.04 | 0.21 | 1.40 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.58 | 7.58 | 7.58 | 0.40 | 0.83 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.35 | 7.35 | 7.35 | 0.40 | 0.80 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.16 | 7.16 | 7.16 | 0.25 | 1.05 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 6.46 | 6.46 | 6.46 | 0.25 | 1.94 | ± 13.1 % | | 5200 | 49.0 | 5.30 | 5.00 | 5.00 | 5.00 | 0.40 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.81 | 4.81 | 4.81 | 0.40 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 4.22 | 4.22 | 4.22 | 0.50 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 4.08 | 4.08 | 4.08 | 0.50 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4.22 | 4.22 | 4.22 | 0.50 | 1.90 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz the validity of the property F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ## **Conversion Factor Assessment** ## **Deviation from Isotropy in Liquid** Error (ϕ , 9), f = 900 MHz 0.0 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) 0.2 0.4 0.6 0.8 -0.4 -0.2 ## **Other Probe Parameters** | Sensor Arrangement | Triongular | |---|------------| | Connector Angle (°) | Triangular | | | 122.3 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | | | | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | | | | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | | | | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | | | and the mount outlands | 1.4 mm | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Auden Client Certificate No: EX3-7375_Sep15 #### IBRATION CERTIFICATE EX3DV4 - SN:7375 Object Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: September 16, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 01-Apr-15 (No. 217-02128) | Mar-16 | | Power sensor E4412A | MY41498087 | 01-Apr-15 (No. 217-02128) | Mar-16 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 01-Apr-15 (No. 217-02129) | Mar-16 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 01-Apr-15 (No. 217-02132) | Mar-16 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 01-Apr-15 (No. 217-02133) | Mar-16 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-14 (No. ES3-3013_Dec14) | Dec-15 | | DAE4 | SN: 660 | 14-Jan-15 (No. DAE4-660_Jan15) | Jan-16 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | Name Function Signature Calibrated by: Claudio Leubler Laboratory Technician Katja Pokovic Approved by: Technical Manager Issued: September 22, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see
below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-7375_Sep15 EX3DV4 - SN:7375 September 16, 2015 # Probe EX3DV4 SN:7375 Manufactured: April 13, 2015 Calibrated: September 16, 2015 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) EX3DV4- SN:7375 September 16, 2015 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7375 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.51 | 0.42 | 0.47 | ± 10.1 % | | DCP (mV) ^B | 97.1 | 96.9 | 100.4 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^b
(k=2) | |-----|---------------------------|-------|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X 0.0 | 0.0 | 0.0 | 1.0 | 0.00 | 141.2 | ±3.0 % | | | | Y | 0.0 | 0.0 | 1.0 | 1 11 | 142.2 | | | | | Z | 0.0 | 0.0 | 1.0 | | 150.4 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4-SN:7375 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7375 Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 10.17 | 10.17 | 10.17 | 0.43 | 0.84 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.87 | 9.87 | 9.87 | 0.44 | 0.80 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.60 | 9.60 | 9.60 | 0.28 | 1.05 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.47 | 8.47 | 8.47 | 0.42 | 0.81 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.35 | 8.35 | 8.35 | 0.32 | 0.80 | ± 12.0 % | | 1810 | 40.0 | 1.40 | 8.07 | 8.07 | 8.07 | 0.35 | 0.80 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.04 | 8.04 | 8.04 | 0.35 | 0.80 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.10 | 8.10 | 8.10 | 0.32 | 0.88 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.72 | 7.72 | 7.72 | 0.37 | 0.80 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.34 | 7.34 | 7.34 | 0.40 | 0.80 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.18 | 7.18 | 7.18 | 0.41 | 0.84 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 7.12 | 7.12 | 7.12 | 0.34 | 1.12 | ± 13.1 % | | 5200 | 36.0 | 4.66 | 5.39 | 5.39 | 5.39 | 0.35 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 5.17 | 5.17 | 5.17 | 0.35 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.99 | 4.99 | 4.99 | 0.35 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.62 | 4.62 | 4.62 | 0.40 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.77 | 4.77 | 4.77 | 0.40 | 1.80 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4- SN:7375 September 16, 2015 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7375 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 55.5 | 0.96 | 10.16 | 10.16 | 10.16 | 0.29 | 1.08 | ± 12.0 % | | 835 | 55.2 | 0.97 | 10.00 | 10.00 | 10.00 | 0.25 | 1.33 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.98 | 7.98 | 7.98 | 0.41 | 0.80 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.72 | 7.72 | 7.72 | 0.32 | 0.94 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.38 | 7.38 | 7.38 | 0.28 | 0.80 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.36 | 7.36 | 7.36 | 0.24 | 0.80 | ± 12.0 % | | 5200 | 49.0 | 5.30 | 4.83 | 4.83 | 4.83 | 0.40 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.64 | 4.64 | 4.64 | 0.40 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 4.20 | 4.20 | 4.20 | 0.45 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 4.11 | 4.11 | 4.11 | 0.45 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4.14 | 4.14 | 4.14 | 0.50 | 1.90 | ± 13.1 % | ^G Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) EX3DV4- SN:7375 September 16, 2015 ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) EX3DV4- SN:7375 September 16, 2015 ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4- SN:7375 September 16, 2015 ## **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz EX3DV4- SN:7375 September 16, 2015 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7375 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | | | | |---|------------|--|--|--| | Connector Angle (°) | 13 | | | | | Mechanical Surface Detection Mode | enabled | | | | | Optical Surface Detection Mode | disable | | | | | Probe Overall Length | 337 mm | | | | | Probe Body Diameter |
10 mn | | | | | Tip Length | 9 mm | | | | | Tip Diameter | 2.5 mm | | | | | Probe Tip to Sensor X Calibration Point | 1 mm | | | | | Probe Tip to Sensor Y Calibration Point | 1 mm | | | | | Probe Tip to Sensor Z Calibration Point | 1 mm | | | | | Recommended Measurement Distance from Surface | 1.4 mm | | | | | | | | | | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 C Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-SZ (Auden) Certificate No: EX3-3958_Jul15 #### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3958 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: July 23, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 01-Apr-15 (No. 217-02128) | Mar-16 | | Power sensor E4412A | MY41498087 | 01-Apr-15 (No. 217-02128) | Mar-16 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 01-Apr-15 (No. 217-02129) | Mar-16 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 01-Apr-15 (No. 217-02132) | Mar-16 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 01-Apr-15 (No. 217-02133) | Mar-16 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-14 (No. ES3-3013_Dec14) | Dec-15 | | DAE4 | SN: 660 | 14-Jan-15 (No. DAE4-660_Jan15) | Jan-16 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: July 24, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF). NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). # Probe EX3DV4 SN:3958 Manufactured: Calibrated: August 6, 2013 July 23, 2015 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) July 23, 2015 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3958 **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (μV/(V/m) ²) ^A | 0.51 | 0.46 | 0.55 | ± 10.1 % | | DCP (mV) ^B | 103.8 | 103.5 | 102.4 | | Modulation Calibration Parameters | UID | Communication System Name | | A dB | B
dB√μV | С | D dB 0.00 | VR
mV
190.8 | Unc ^E
(k=2)
±3.3 % | |-----|---------------------------|---|------|------------|-----|------------------|-------------------|-------------------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | | | | | | | Y | 0.0 | 0.0 | 1.0 | | 179.9 | | | | | Z | 0.0 | 0.0 | 1.0 | | 194.0 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). B Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. July 23, 2015 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3958 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|--------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 10.33 | 10.33 | 10.33 | 0.28 | 1.10 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.96 | 9,96 | 9.96 | 0.28 | 1.08 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.82 | 9.82 | 9.82 | 0.19 | 1.73 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.52 | 8.52 | 8.52 | 0.35 | 0.80 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.22 | 8.22 | 8.22 | 0.39 | 0.80 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.21 | 8.21 | 8.21 | 0.32 | 0.89 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.58 | 7.58 | 7.58 | 0.38 | 0.82 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.46 | 7.46 | 7.46 | 0.33 | 0.96 | ± 12.0 % | | 5250 | 35.9 | 4.71 | 5.77 | 5.77 | 5.77 | 0.30 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.95 | 4.95 | 4.95 | 0.40 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 5.15 | 5.15 | 5.15 | 0.40 | 1.80 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. validity can be extended to ± 110 MHz. At frequencies below 3 GHz, the validity of
tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. July 23, 2015 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3958 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | | | in the second of | | | \$ 4.54 | | | | | 750 | 55.5 | 0.96 | 10.05 | 10.05 | 10.05 | 0.36 | 0.93 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.99 | 9.99 | 9.99 | 0.27 | 1.15 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.82 | 9.82 | 9.82 | 0.32 | 1.07 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8.20 | 8.20 | 8.20 | 0.27 | 1.07 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.87 | 7.87 | 7.87 | 0.41 | 0.83 | ± 12.0 9 | | 2000 | 53.3 | 1.52 | 8.07 | 8.07 | 8.07 | 0.37 | 0.91 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.41 | 7.41 | 7.41 | 0.28 | 0.98 | ± 12.0 9 | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the CopyE uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: \pm 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ### **Conversion Factor Assessment** ## Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3958 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | | | | |---|------------|--|--|--| | Connector Angle (°) | 39 | | | | | Mechanical Surface Detection Mode | enabled | | | | | Optical Surface Detection Mode | disabled | | | | | Probe Overall Length | 337 mm | | | | | Probe Body Diameter | 10 mm | | | | | Tip Length | 9 mm | | | | | Tip Diameter | 2.5 mm | | | | | Probe Tip to Sensor X Calibration Point | 1 mm | | | | | Probe Tip to Sensor Y Calibration Point | 1 mm | | | | | Probe Tip to Sensor Z Calibration Point | 1 mm | | | | | Recommended Measurement Distance from Surface | 1.4 mm | | | |