Page 1 of 48

FCC TEST REPORT

Product Name:	Mobile Phone
Trade Mark:	BLU
Model No.:	C5 PLUS
Add. Model No.:	J4
Report Number:	190806001RFC-1
	FCC 47 CFR Part 15 Subpart C
FCC ID:	YHLBLUC5PLUS
Test Result:	PASS
Date of Issue:	August 28, 2019

Prepared for:

BLU Products, Inc. 10814 NW 33rd St # 100 Doral, FL 33172, USA

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Prepared by:	Tony	Reviewed by:	
	Tony Kang	· · ·	Kevin Liang
	Project Engineer		Assistant Manager
Approved by:	Unier Unier	Date:	August 28, 2019
	Technical Director		

Shenzhen UnionTrust Quality and Technology Co., Ltd.

 Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

 Tel: +86-755-28230888
 Fax: +86-755-28230886

 E-mail: info@uttlab.com
 Http://www.uttlab.com

Version

Version No.	Date	Description
V1.0	August 28, 2019	Original

CONTENTS

1.	GEN	ERAL INFORMATION	4
	1.1	CLIENT INFORMATION	Δ
	1.2	EUT INFORMATION	
		1.2.1 GENERAL DESCRIPTION OF EUT	
		1.2.2 DESCRIPTION OF ACCESSORIES.	
	1.3	PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	5
	1.4	OTHER INFORMATION	
	1.5	DESCRIPTION OF SUPPORT UNITS	
	1.6	Test Location	
	1.7	TEST FACILITY	
	1.8	DEVIATION FROM STANDARDS	
	1.9	ABNORMALITIES FROM STANDARD CONDITIONS.	
	1.10	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	1.11	MEASUREMENT UNCERTAINTY	
_			
2.		SUMMARY	
3.		PMENT LIST	
4.	TEST	CONFIGURATION	
	4.1	ENVIRONMENTAL CONDITIONS FOR TESTING	10
		4.1.1 NORMAL OR EXTREME TEST CONDITIONS	10
		4.1.2 RECORD OF NORMAL ENVIRONMENT.	
	4.2	TEST CHANNELS	
	4.3	EUT TEST STATUS	
	4.4	PRE-SCAN	11
		4.4.1 WORST-CASE DATA PACKETS	11
		4.4.2 TESTED CHANNEL DETAIL	
	4.5	TEST SETUP	12
		4.5.1 FOR RADIATED EMISSIONS TEST SETUP	12
		4.5.2 FOR CONDUCTED EMISSIONS TEST SETUP	13
		4.5.3 FOR CONDUCTED RF TEST SETUP	14
	4.6	SYSTEM TEST CONFIGURATION	14
	4.7	DUTY CYCLE	15
5.	RADI	O TECHNICAL REQUIREMENTS SPECIFICATION	16
•••	5.1	REFERENCE DOCUMENTS FOR TESTING	
	5.2	ANTENNA REQUIREMENT	
	5.3	CONDUCTED PEAK OUTPUT POWER	
	5.4	20 DB BANDWIDTH	
	5.5	CARRIER FREQUENCIES SEPARATION	
	5.6	NUMBER OF HOPPING CHANNEL	
	5.7	DWELL TIME	-
	5.8	CONDUCTED OUT OF BAND EMISSION	
	5.9	RADIATED SPURIOUS EMISSION	
	5.10	BAND EDGE MEASUREMENTS (RADIATED)	
	5.11	CONDUCTED EMISSION	
	-		
	PENDI	X 1 PHOTOS OF TEST SETUP X 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS	48
AP	PENUI	λ 2 ΜΠU 1 US UF EU 1 UNS I KUU I I UNAL DE I AILS	48

1. GENERAL INFORMATION

1.1 CLIENT INFORMATION

Applicant:	BLU Products, Inc.	
Address of Applicant:	10814 NW 33rd St # 100 Doral, FL 33172, USA	
Manufacturer:	BLU Products, Inc.	
Address of Manufacturer:	10814 NW 33rd St # 100 Doral, FL 33172, USA	

1.2 EUT INFORMATION

1.2.1 General Description of EUT

Product Name:	Mobile Phone	
Model No.:	C5 PLUS	
Add. Model No.:	J4	
Trade Mark:	BLU	
DUT Stage:	Identical Prototype	
	GSM Bands:	GSM850/1900
	UTRA Bands:	Band II/ Band V
EUT Supports Function:		IEEE 802.11b/g/n
and the second sec	2.4 GHz ISM Band:	Bluetooth V2.1 + EDR + BLE Concurrent
Hardware Version:	FS275-MB-V0.2A	
Software Version:	7731E_FS275_0000477_128x8_V1_128X8_GPS_PLS_2SIM_20190808_194 4 CAM	
Sample Received Date:	August 7, 2019	
Sample Tested Date:	August 7, 2019 to August 26, 2019	
Note: The additional model J4 is identical with the test model C5 PLUS except the model number and ROM Capability.		

1.2.2 Description of Accessories

Adapter		
Model No.:	US-WW-1003	
Input:	100-240 V~50/60 Hz 0.2 A	
Output:	5.0 V== 1A	

Battery		
Model No.:	C835842220L	
Battery Type:	Lithium-ion Rechargeable Battery	
Rated Voltage:	3.7 Vdc	
Rated Capacity:	2200 mAh	

Cable		
Description:	USB Micro-B Plug Cable	
Cable Type:	Unshielded without ferrite	
Length:	1.00 Meter	

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Frequency Band:	2400 MHz to 2483.5 MHz		
Frequency Range:	2402 MHz to 2480 MHz		
Bluetooth Version:	Bluetooth BR + EDR		
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)		
Type of Modulation:	GFSK, π/4DQPSK, 8DPSK		
Number of Channels:	79		
Channel Separation:	1 MHz		
Hopping Channel Type:	Adaptive Frequency Hopping Systems		
Antenna Type:	FPC Antenna		
Antenna Gain:	1 dBi		
Maximum Peak Power:	5.36 dBm		
Normal Test Voltage:	3.7 Vdc		

1.4 OTHER INFORMATION

Operation Frequency Each of Channel

f = 2402 + k MHz, k = 0,...,78

Note:

f k is the operating frequency (MHz);

is the operating channel.

Modulation Configure			
Modulation	Packet	Packet Type	Packet Size
	1-DH1	4	27
GFSK	1-DH3	11	183
	1-DH5	15	339
	2-DH1	20	54
π/4 DQPSK	2-DH3	26	367
	2-DH5	30	679
	3-DH1	24	83
8DPSK	3-DH3	27	552
	3-DH5	31	1021

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested independently

1.6 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China 518109 Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

Page 7 of 48

1.7 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

ISED Wireless Device Testing Laboratories

CAB identifier: CN0032

FCC Accredited Lab.

Designation Number: CN1194 Test Firm Registration Number: 259480

1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty
1	Conducted emission 9KHz-150KHz	±3.8 dB
2	Conducted emission 150KHz-30MHz	±3.4 dB
3	Radiated emission 9KHz-30MHz	±4.9 dB
4	Radiated emission 30MHz-1GHz	±4.7 dB
5	Radiated emission 1GHz-18GHz	±5.1 dB
6	Radiated emission 18GHz-26GHz	±5.2 dB
7	Radiated emission 26GHz-40GHz	±5.2 dB

2. TEST SUMMARY

FCC 47 CFR Part 15 Subpart C Test Cases								
Test Item	Test Requirement	Test Method	Result					
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	N/A	PASS					
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013 Section 6.2	PASS					
Conducted Peak Output Power	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013 Section 7.8.5	PASS					
20 dB Bandwidth	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)	PASS						
Carrier Frequencies Separation	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013 Section 7.8.2	PASS					
Number of Hopping Channel	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013 Section 7.8.3	PASS					
Dwell Time	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013 Section 7.8.4	PASS					
Conducted Out of Band Emission	Conducted Out of FCC 47 CFR Part 15 Subpart C Section Section		PASS					
Radiated Emissions	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013 Section 6.3 & 6.5 & 6.6	PASS					
Band Edge Measurement	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209	7 CFR Part 15 Subpart C Section ANSI C63.10-2013						

3. EQUIPMENT LIST

	Radiated Emission Test Equipment List											
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)						
\boxtimes	3M Chamber & Accessory Equipment	ETS-LINDGREN	3M	N/A	Dec. 03, 2018	Dec. 03, 2021						
\boxtimes	Receiver	R&S	ESIB26	100114	Nov. 24, 2018	Nov. 24, 2019						
\boxtimes	Loop Antenna ETS-LINDGREN		6502	00202525	Dec. 03, 2018	Dec. 03, 2019						
\boxtimes	Broadband Antenna	ETS-LINDGREN	3142E	00201566	Dec. 08, 2018	Dec. 08, 2019						
\boxtimes	6dB Attenuator	Talent	RA6A5-N- 18	18103001	Dec. 08, 2018	Dec. 08, 2019						
\boxtimes	Preamplifier	HP	8447F	2805A02960	Nov. 24, 2018	Nov. 24, 2019						
\boxtimes	Horn Antenna	ETS-LINDGREN	3117	00164202	Dec. 08, 2018	Dec. 08, 2019						
\boxtimes	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652 Jan. 05, 20		Jan. 05, 2020						
	Multi device Controller	ETS-LINDGREN	7006-001	00160105 N/A		N/A						
	Test Software	Audix	e3	Sof	tware Version: 9.16	0333						
		3	12000									

	Conducted Emission Test Equipment List											
Used	Equipment	Equipment Manufacturer		Manufacturer Model No. Serial Number		Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)					
\boxtimes	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Nov. 24, 2018	Nov. 24, 2019						
\boxtimes	Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	Nov. 24, 2018	Nov. 24, 2019						
\boxtimes	LISN	R&S	ESH2-Z5	860014/024	Nov. 24, 2018	Nov. 24, 2019						
	LISN	ETS-Lindgren	3816/2SH	00201088 Nov. 24, 2018		Nov. 24, 2019						
\boxtimes	Test Software	Audix	e3	Sof	ware Version: 9.160323							

	Conducted RF test Equipment List												
Used	Equipment Manufacturer		Equipment Manufacturer Model No. Serial Number		Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)							
\boxtimes	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Nov. 24, 2018	Nov. 24, 2019							
	EXA Spectrum Analyzer	KEYSIGHT	N9010B	MY57471561	Nov. 24, 2018	Nov. 24, 2019							
\boxtimes	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	Nov. 24, 2018	Nov. 24, 2019							
	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430023	Nov. 24, 2018	Nov. 24, 2019							

4. TEST CONFIGURATION 4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Environment Parameter	Selected Values During Tests							
Test Condition	Ambient							
Test Condition	Temperature (°C)	Voltage (V)	Relative Humidity (%)					
NT/NV	+15 to +35	3.7	20 to 75					
Remark: 1) NV: Normal Voltage; NT: Normal Temperature								

4.1.2 Record of Normal Environment

Test Item	Temperature (°C)	Relative Humidity (%)	Pressure (kPa)	Tested by
AC Power Line Conducted Emission	24.8	50	99.80	Bert Xiong
Conducted Peak Output Power				
20 dB Bandwidth				
Carrier Frequencies Separation	23.4	51	99.97	Cage Ouyang
Number of Hopping Channel				
Dwell Time				
Conducted Out of Band Emission				
Radiated Emissions	25.2	50	100.02	Andychin
Band Edge Measurement	23.2	52	100.02	Andy Lin

4.2TEST CHANNELS

Mode	Tx/Rx Frequency	Test RF Channel Lists				
WOde	TARXTTEQUENCY	Lowest(L)	Middle(M)	Highest(H)		
GFSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78		
(DH1, DH3, DH5)		2402 MHz	2441 MHz	2480 MHz		
π/4DQPSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78		
(2DH1, 2DH3, 2DH5)		2402 MHz	2441 MHz	2480 MHz		
8DPSK	2402 MHz to 2480 MHz	Channel 0	Channel 39	Channel 78		
(3DH1, 3DH3, 3DH5)		2402 MHz	2441 MHz	2480 MHz		

4.3EUT TEST STATUS

Type of Modulation	Tx Function	Description					
GFSK/π/4DQPSK/ 8DPSK	1Tx	 Keep the EUT in continuously transmitting with Modulation test single Keep the EUT in continuously transmitting with Modulation test Hopping Frequency. 					

Power Setting

Power Setting: not applicable, test used software default power level.

Test Software

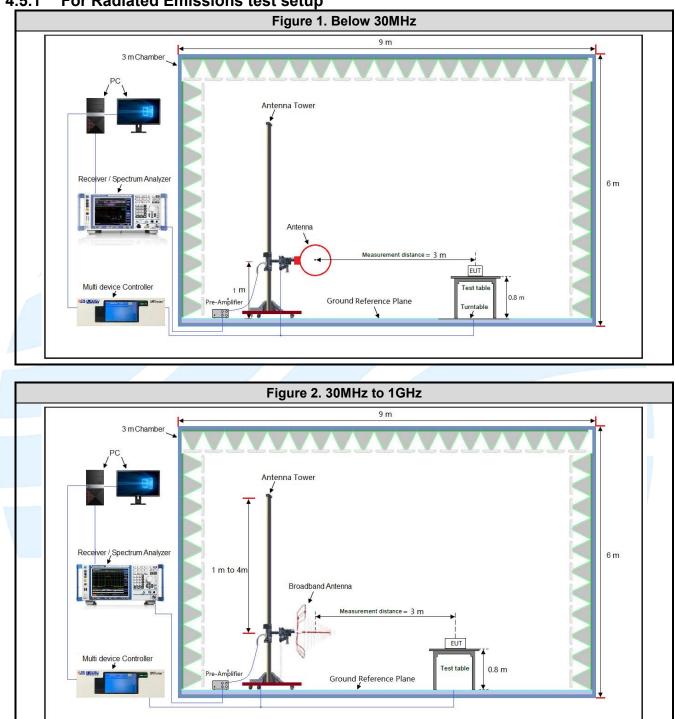
Test software name: Engineer Mode*#*#83781#*#*;

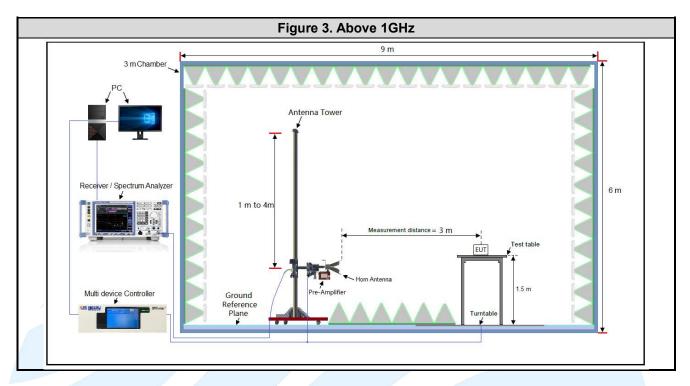
4.4 PRE-SCAN

4.4.1 Worst-case data packets

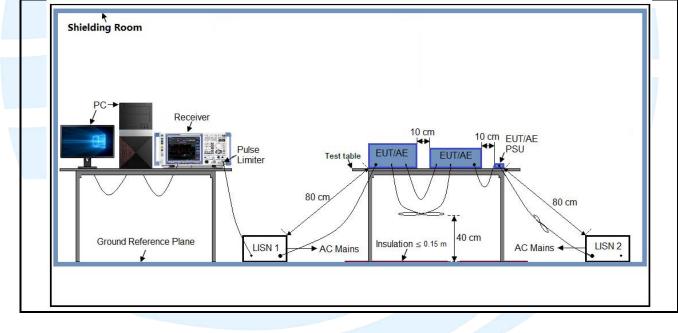
Type of Modulation	Worst-case data rates
GFSK	1-DH5
π/4DQPSK	2-DH5
8DPSK	3-DH5

4.4.2 Tested channel detail

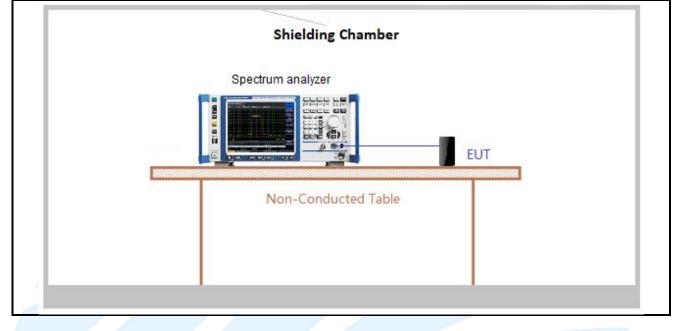

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data packets and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below.


Type of Modulation		GFSK		Π	/4DQPS	K	8DPSK		
Data Packets	1-	1-	1-	2-	2-	2-	3-	3-	3-
	DH1	DH3	DH5	DH1	DH3	DH5	DH1	DH3	DH5
Available Channel		and the second sec	1 Contraction of the second se		0 to 78				
Test Item			Test cha	nnel and	d choose	of data	packets		
AC Power Line Conducted	and the second se		Frequ	uency Ho	opping Ch	nannel 0	to 78		
Emission					Link				
Conducted Peak Output				Chanr	nel 0 & 39	9 & 78			
Power			\boxtimes			\square			\boxtimes
20 dD Dandwidth			<i></i>	Chanr	nel 0 & 39	9 & 78			
20 dB Bandwidth		D	\boxtimes			\boxtimes			\boxtimes
Carrier Frequencies	Frequency Hopping Channel 0 to 78								
Separation						\boxtimes			\boxtimes
Number of Hopping Channel	Frequency Hopping Channel 0 to 78								
Number of Hopping Channel			\boxtimes		Ó	\boxtimes			\boxtimes
Dwell Time	Channel 39								
Dweir Time	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes
Conducted Out of Band	Channel 0 & 39 & 78								
Emission			\square			\boxtimes			\boxtimes
Radiated Emissions		and the second se		Chanr	nel 0 & 39	9 & 78			J
Radiated Emissions									\boxtimes
Band Edge Measurements	and the second second			Cha	annel 0 &	78			
(Radiated)									\boxtimes
Remark: 1. The mark "⊠" means is chosen for testing;									

2. The mark " \square " means is not chosen for testing.


4.5 TEST SETUP

4.5.1 For Radiated Emissions test setup



4.5.2 For Conducted Emissions test setup

4.5.3 For Conducted RF test setup

4.6 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.8V battery. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

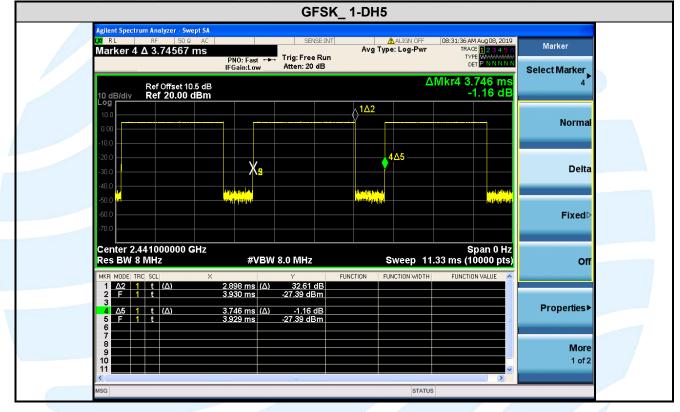
Frequency	Mode	Antenna Port	Worst-case axis positioning
Above 1GHz	1TX	Chain 0	Y axis

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.7 DUTY CYCLE

Test Procedure: ANSI C63.10-2013 Clause 11.6.


Test Results

Type of Modulation	Packets	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)	Average Factor (dB)
GFSK	1-DH5	2.898	3.746	0.77	77.36	1.11	0.35	-2.23

Remark:

- 1) Duty cycle= On Time/ Period;
- 2) Duty Cycle factor = 10 * log(1/ Duty cycle);
- 3) Average factor = $20 \log_{10}$ Duty Cycle.

The test plots as follows

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations
2	FCC 47 CFR Part 15	Radio Frequency Devices
3	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
4	KDB 558074 D01 15.247 Meas Guidance v05r02	Guidance for compliance measurements on Digital Transmission Systems, Frequency Hopping Spread Spectrum system, and Hybrid system devices operating under Section 15.247 of the FCC rules

5.2 ANTENNA REQUIREMENT

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

Antenna in the interior of the equipment and no consideration of replacement. The gain of the antenna is 1 dBi.

π/4 DQPSK

8DPSK

Page 17 of 48

5.3 CONDUCTED PEAK OUTPUT POWER

Test Requireme Test Method: Limit: Test Procedure	ANSI C63 For frequileast 75 in 5725-585 Alternativ have hop the 20 dB operate v Remove	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(1) ANSI C63.10-2013 Section 7.8.5 For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.					
 a) Use the following spectrum analyzer settings: 1) Span: Approximately 5 x 20 dB bandwidth, centered 2) RBW > 20 dB bandwidth of the emission being meas 3) VBW ≥ RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. 						g channel.	
 b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. 						or external	
Test Setup:	e) A plot of the test results and setup description shall be included in the test report. Test Setup: Refer to section 4.5.3 for details.						
Instruments Us		section 3 for det					
Test Results:	Pass						
Type of	Peak	Output Power (dBm)	Peak	Output Power (mW)	
Modulation	Channel 0	Channel 39	Channel 78	Channel 0	Channel 39	Channel 78	
GFSK	4.495	4.798	3.221	2.82	3.02	2.10	

Note: The antenna gain of 1 dBi less than 6dBi maximum permission antenna gain value based on 125 mW peak output power limit.

3.723

3.910

2.88

2.95

3.33

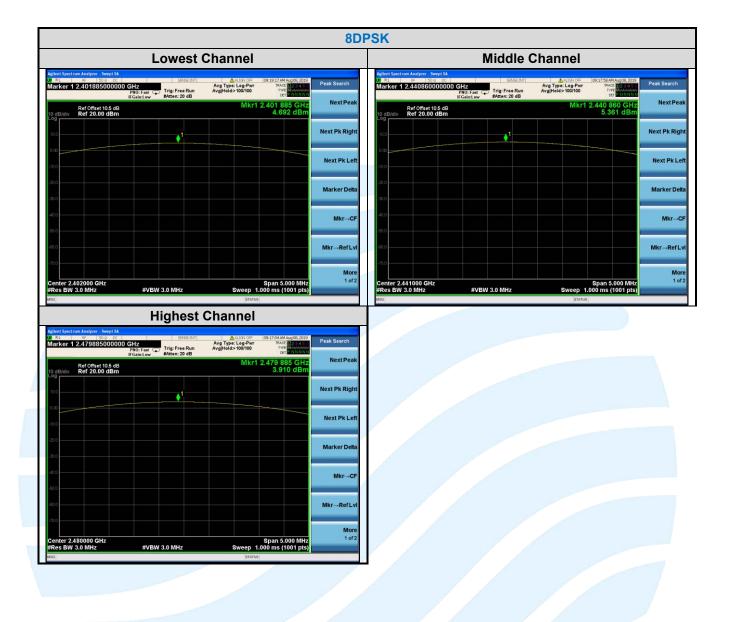
3.44

2.36

2.46

Shenzhen UnionTrust Quality and Technology Co., Ltd.


4.587


4.692

5.221

5.361

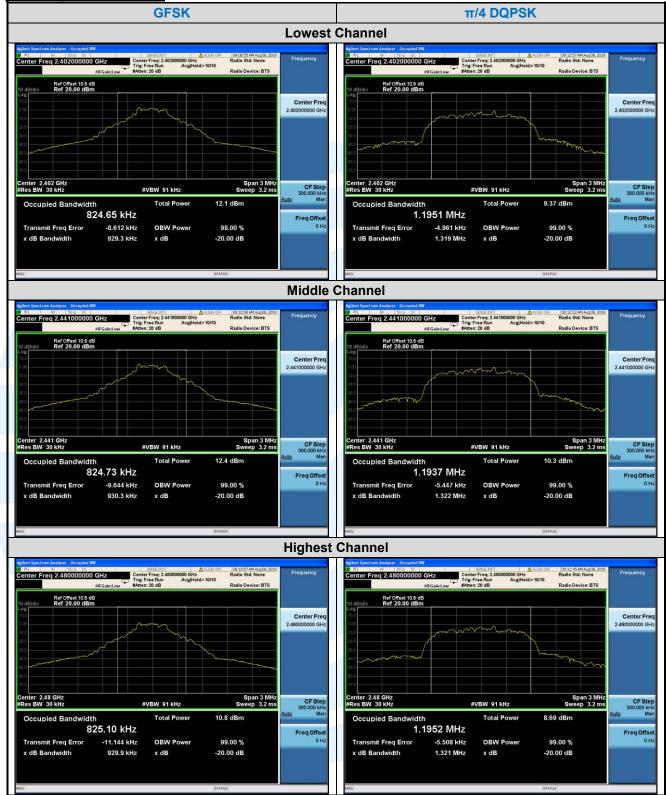
The test plots as follows:

Page 20 of 48

5.420 DB BANDWIDTH

Test Requirement:	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1)					
Test Method:	ANSI C63.10-2013 Section 6.9.2					
Limit: None; for reporting purposes only.						
Test Procedure:	Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings:					
	a) Span = approximately 2 to 5 times the OBW, centered on a hopping channel.					

- b) RBW = 1% to 5% of the OBW.
- c) VBW \ge 3 x RBW
- d) Sweep = auto;
- e) Detector function = peak
- f) Trace = max hold
- g) All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down bandwidth of the emission.


Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

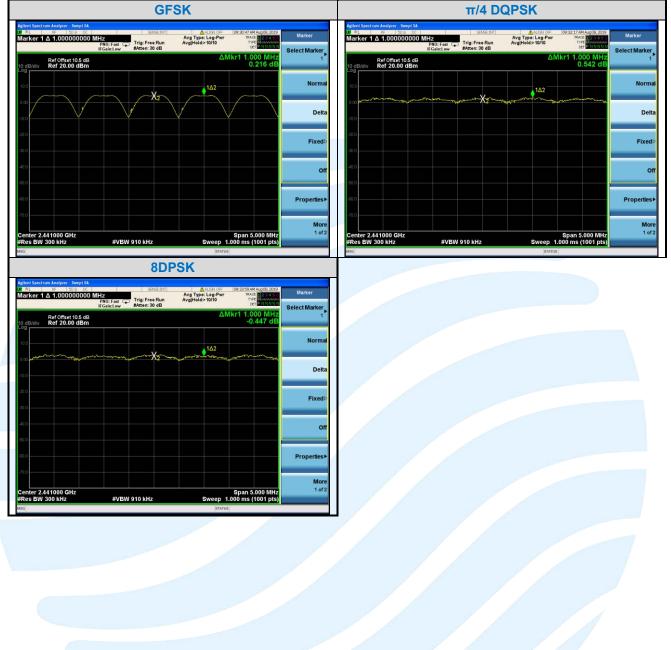
Test Setup: Instruments Used: Test Results: Refer to section 4.5.3 for details. Refer to section 3 for details

sults: Pass

ji.=	Type of	20 dB Bandwidth (MHz)			99% Bandwidth (MHz)		
	Modulation	Channel 0	Channel 39	Channel 78	Channel 0	Channel 39	Channel 78
	GFSK	0.929	0.930	0.930	0.8247	0.8247	0.8251
	π/4 DQPSK	1.319	1.322	1.321	1.1951	1.1937	1.1952
	8DPSK	1.307	1.308	1.307	1.1910	1.1925	1.1925

The test plots as follows:

Page 23 of 48

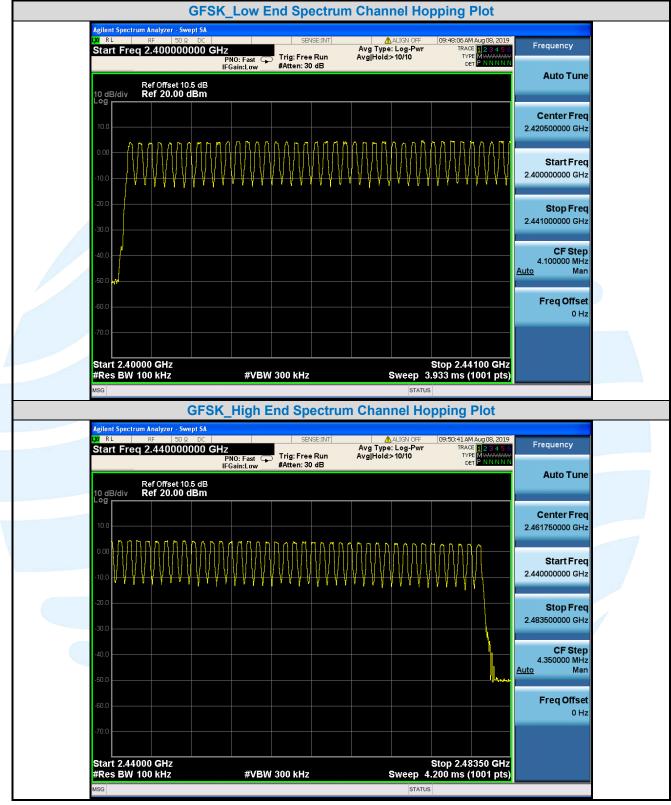

5.5 CARRIER FREQUENCIES SEPARATION

Test Requirement: Test Method: Limit:	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(1) ANSI C63.10-2013 Section 7.8.2 Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.					
Test Procedure:	 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. h) Use the marker-delta function to determine the separation between the peaks of the adjacent channels. 					
Test Setup:	amplitude offset. Refer to section 4.5.3 for details.					
Instruments Used:	Refer to s	ection 3 for details				
Test Results:	Pass					
Type of Modulation		Adjacent Channel Separation (MHz) Channel 39	Minimum Limit (MHz) Channel 39			

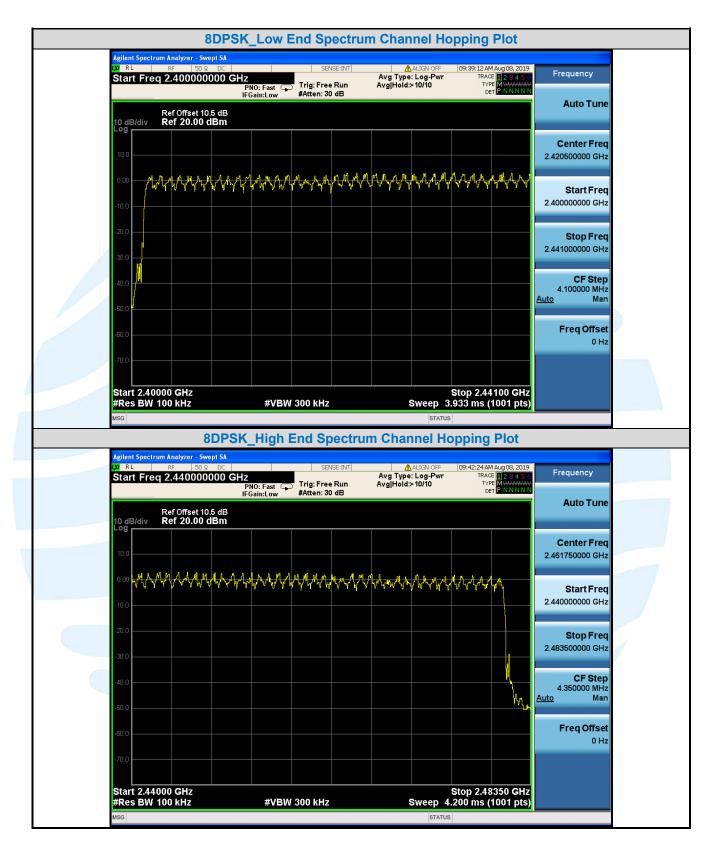
	Type of Modulation	Aujacent Channel Separation (IMITZ)					
		Channel 39	Channel 39				
	GFSK	1	0.6200				
5	π/4 DQPSK	1	0.8813				
	8DPSK	1	0.8720				
	Note: The minimum limit is two-third 20 dB bandwidth						

Note: The minimum limit is two-third 20 dB bandwidth.

The test plots as follows:

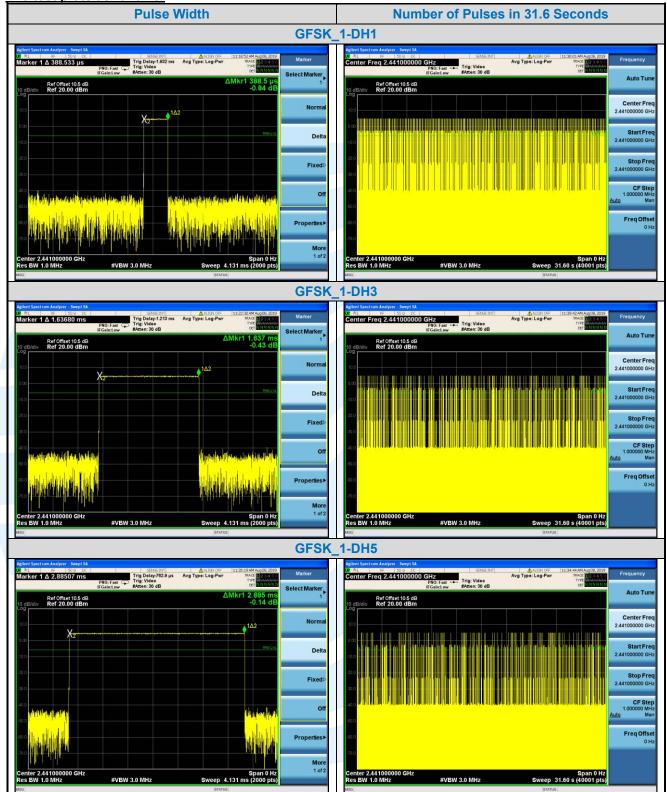


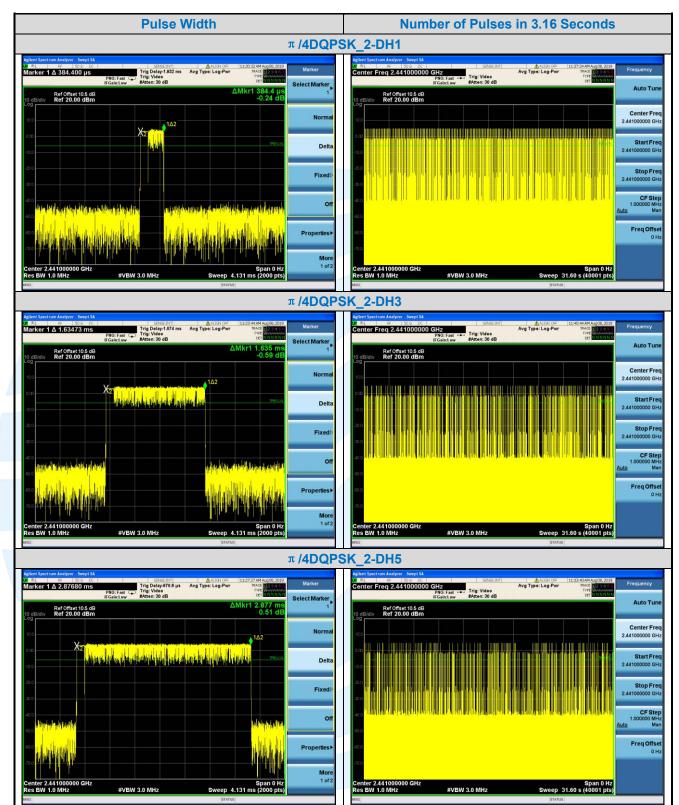
Page 25 of 48

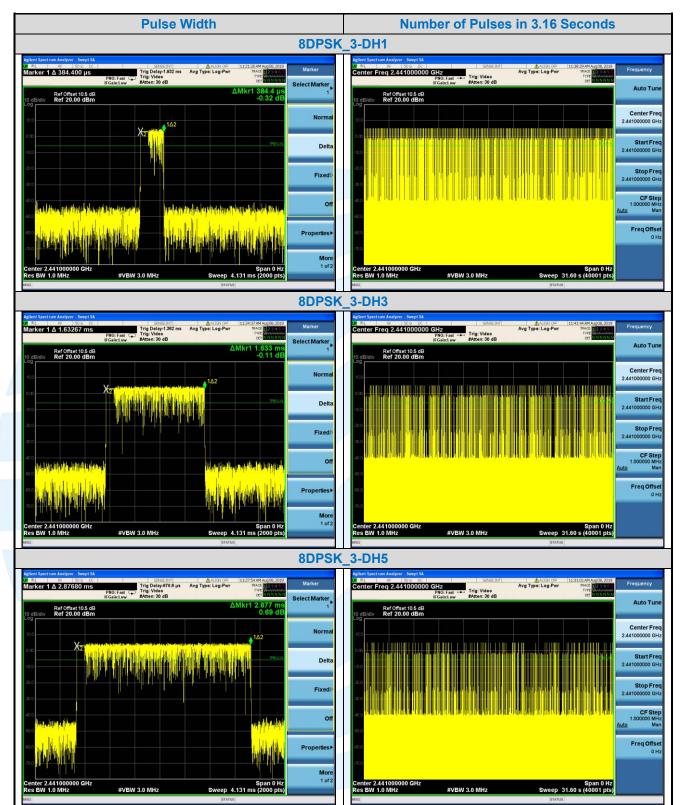

5.6 NUMBER OF HOPPING CHANNEL

		-			
Test Requirement:	FCC 47 CFR Part 15 Subpart	C Section 15.247(b)(1)			
Test Method:	ANSI C63.10-2013 Section 7.	.8.3			
Limit:	Frequency hopping systems i overlapping channels.	n the 2400 – 2483.5 MHz band shall use at least 15 non-			
Test Procedure:					
	device supports, it may	nd of operation. Depending on the number of channels the be necessary to divide the frequency range of operation allow the individual channels to be clearly seen.			
		nel spacing or the 20 dB bandwidth, whichever is smaller.			
	c) VBW \geq RBW.	to opaoning of the 20 ab ballathan, mileneter is entailen			
	d) Sweep: Auto.				
	 e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. 				
	Note: The cable loss and a amplitude offset.	attenuator loss were offset into measure device as an			
Test Setup:	Refer to section 4.5.3 for deta	pile			
Instruments Used:	Refer to section 3 for details	IIIS.			
Test Results:	Pass				
Type of Modulation		Number of Hopping Channel			
	GFSK	79			
π	/4 DQPSK	79			
	8DPSK	79			

The test plots as follows:

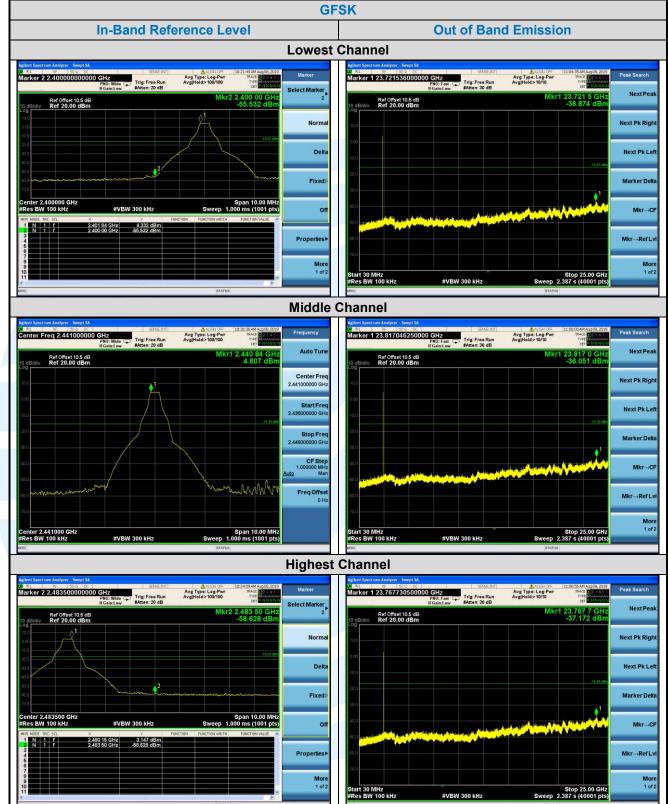


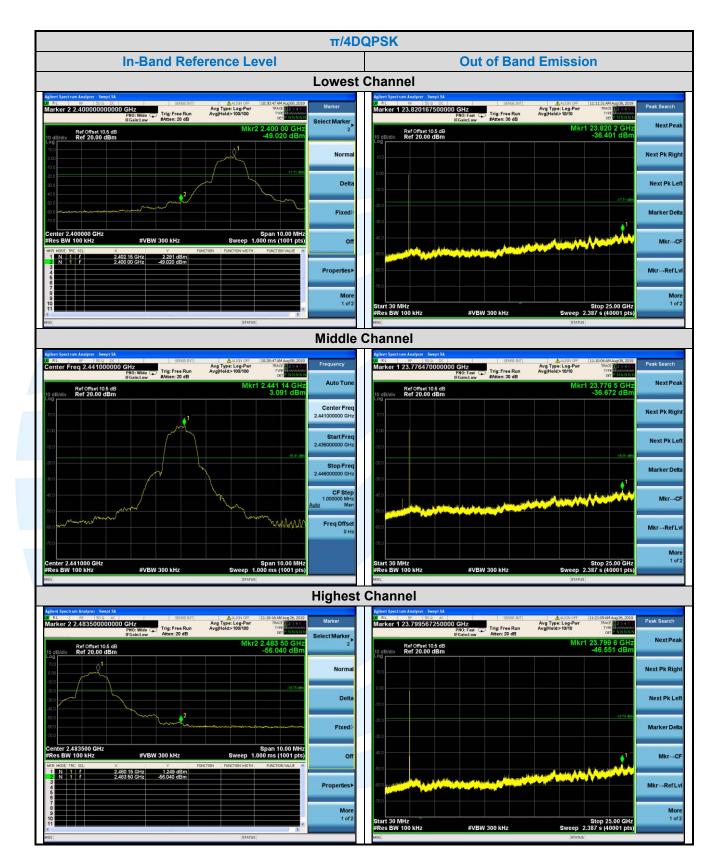


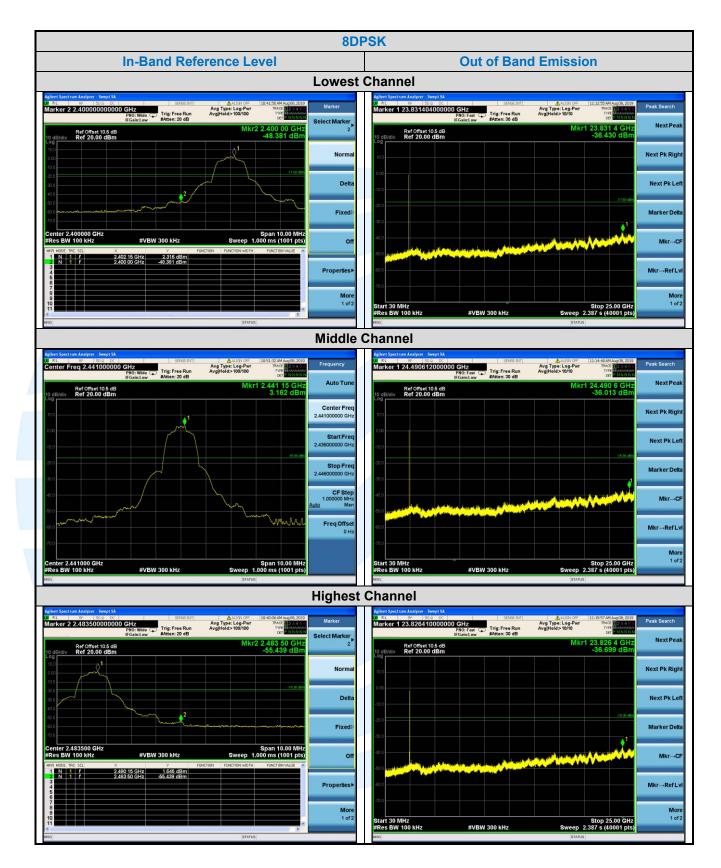

Page 29 of 48

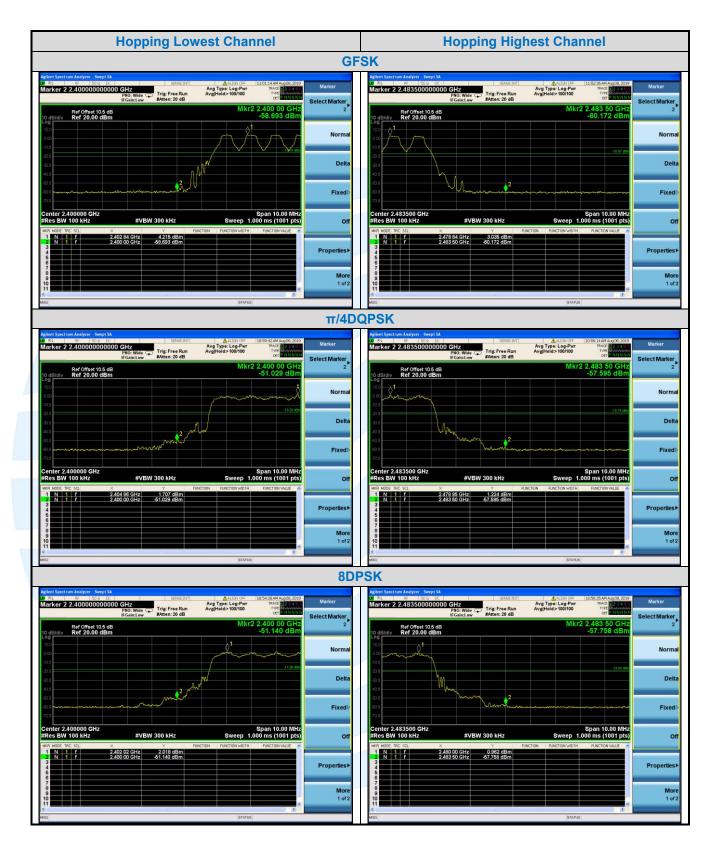
5.7 DWELL TIMETest Requirement: Test Method: Limit:FCC 47 CFR Part 15 Subpart C Section 15.247(a)(1)ANSI C63.10-2013 Section 7.8.4Frequency hopping systems in the 2400-2483.5 MHz band shall use at least channels. The average time of occupancy on any channel shall not be greater than 0 seconds within a period of 0.4 seconds multiplied by the number of hopping channel employed.Test Procedure:Remove the antenna from the EUT and then connect a low loss RF cable from antenna port to the spectrum analyzer. Use the following spectrum analyzer settings:						
Test Results:	Pass Test	la construction de la constructi	Pulse Width	Number of	Dwell Time	Limit
Modulation	Frequency	Packet	ms	Pulses in 31.6 seconds	ms	ms
		1-DH1	0.389	193	74.98	< 400
GFSK 2441MHz 1-DH3 1.637 124 202.99						< 400
		1-DH5	2.885	93	268.31	< 400
μ μ μ μ 2-DH1 0.384 194 π/4 DQPSK 2441MHz 2-DH3 1.635 124						< 400
						< 400
		2-DH5	2.877	92	202.74	< 400
		3-DH1	0.384	201	77.26	< 400
8DPSK	2441MHz	3-DH3	1.633	129	210.66	< 400
		3-DH5	2.877	90	258.93	< 400
3-013 2.011 30						100

The test plots as follows:




Page 33 of 48


5.8 CONDUCTED OUT OF BAND EMISSION


Test Results: Pass

The test plots as follows:

5.9 RADIATED SPURIOUS EMISSIONS

Test Requirement:	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209
Test Method:	ANSI C63.10-2013 Section 6.3 & 6.5 & 6.6
Receiver Setup:	

Frequency	RBW
0.009 MHz-0.150 MHz	200/300 kHz
0.150 MHz -30 MHz	9/10 kHz
30 MHz-1 GHz	100/120 kHz
Above 1 GHz	1 MHz

Limits:

Spurious Emissions

Spurious Linissions	for the second se	al and a second s		
Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009 MHz-0.490 MHz	2400/F(kHz)	I		300
0.490 MHz-1.705 MHz	24000/F(kHz)			30
1.705 MHz-30 MHz	30			30
30 MHz-88 MHz	100	40.0	Quasi-peak	3
88 MHz-216 MHz	150	43.5	Quasi-peak	3
216 MHz-960 MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1 GHz	500	54.0	Average	3

Remark:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.
- Test Setup:Refer to section 4.5.1 for details.

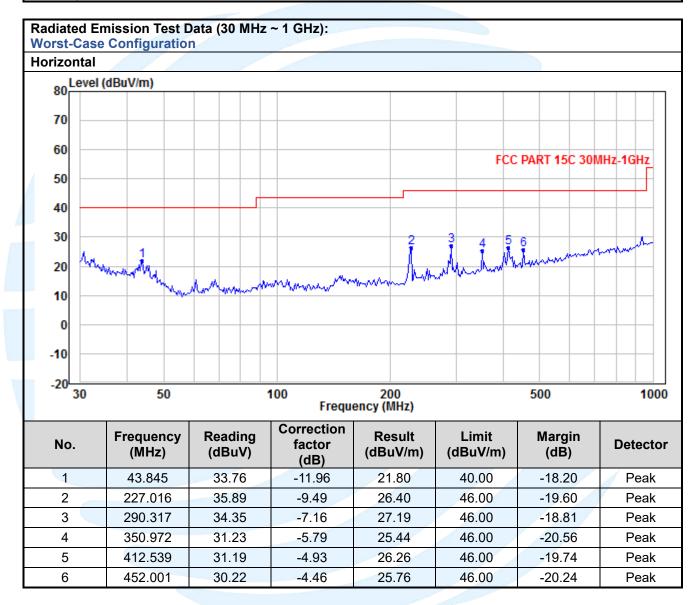
Test Procedures:

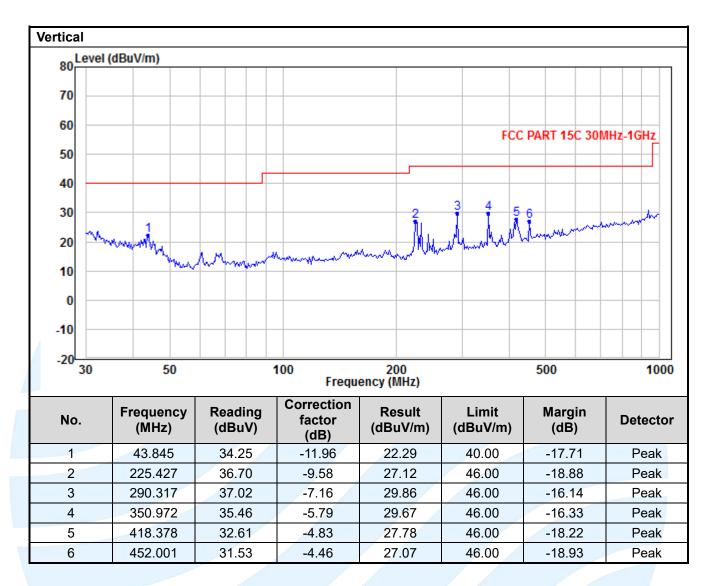
- 1. From 30 MHz to 1GHz test procedure as below:
- 1) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- 2. Above 1GHz test procedure as below:
- 1) Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- 2) Test the EUT in the lowest channel ,middle channel, the Highest channel
- 3) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found

Page 39 of 48

the Y axis positioning which it is worse case.

4) Repeat above procedures until all frequencies measured was complete.


Equipment Used: Refer to section 3 for details. Pass


Test Result:

The measurement data as follows:

Radiated Emission Test Data (9 KHz ~ 30 MHz):

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

Radiated Emission Test Data (Above 1GHz):

Lowest Channel:								
No.	Frequency (MHz)	Reading (dBuV/m)	Correction factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	4804.00	38.63	3.93	42.56	74.00	-31.44	Peak	Horizontal
2	4804.00	28.47	3.93	32.40	54.00	-21.60	Average	Horizontal
3	7206.00	41.75	6.76	48.51	74.00	-25.49	Peak	Horizontal
4	7206.00	29.74	6.76	36.50	54.00	-17.50	Average	Horizontal
5	4804.00	36.80	4.93	41.73	74.00	-32.27	Peak	Vertical
6	4804.00	25.88	4.93	30.81	54.00	-23.19	Average	Vertical
7	7206.00	38.92	6.34	45.26	74.00	-28.74	Peak	Vertical
8	7206.00	27.67	6.34	34.01	54.00	-19.99	Average	Vertical

Middle Channel:

No.	Frequency (MHz)	Reading (dBuV/m)	Correction factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	4882.00	37.64	3.99	41.63	74.00	-32.37	Peak	Horizontal
2	4882.00	25.96	3.99	29.95	54.00	-24.05	Average	Horizontal
3	7323.00	39.25	6.98	46.23	74.00	-27.77	Peak	Horizontal
4	7323.00	27.98	6.98	34.96	54.00	-19.04	Average	Horizontal
5	4882.00	37.43	4.99	42.42	74.00	-31.58	Peak	Vertical
6	4882.00	26.38	4.99	31.37	54.00	-22.63	Average	Vertical
7	7323.00	39.74	6.48	46.22	74.00	-27.78	Peak	Vertical
8	7323.00	28.21	6.48	34.69	54.00	-19.31	Average	Vertical

Highest Channel:

	righest C	nannei.					B	in the second second	
	No.	Frequency (MHz)	Reading (dBuV/m)	Correction factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
	1	4960.00	38.08	4.06	42.14	74.00	-31.86	Peak	Horizontal
(2	4960.00	26.08	4.06	30.14	54.00	-23.86	Average	Horizontal
	3	7440.00	39.85	7.19	47.04	74.00	-26.96	Peak	Horizontal
	4	7440.00	27.81	7.19	35.00	54.00	-19.00	Average	Horizontal
	5	4960.00	37.95	5.06	43.01	74.00	-30.99	Peak	Vertical
	6	4960.00	26.77	5.06	31.83	54.00	-22.17	Average	Vertical
	7	7440.00	39.56	6.63	46.19	74.00	-27.81	Peak	Vertical
	8 🧉	7440.00	28.10	6.63	34.73	54.00	-19.27	Average	Vertical

Remark:

1. Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain, the value was added to Original Receiver Reading by the software automatically.

2. Result = Reading + Correct Factor.

3. Margin = Result – Limit

5.10 BAND EDGE MEASUREMENTS (RADIATED)

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.205/15.209

Test Method:

ANSI C63.10-2013 Section 6.10.5

Limits:

Radiated emissions which fall in the restricted bands, as defined in section 15.205(a), must also comply with the radiated emission limits specified in section 15.209(a).

Frequency	Limit (dBµV/m @3m)	Remark
30 MHz-88 MHz	40.0	Quasi-peak Value
88 MHz-216 MHz	43.5	Quasi-peak Value
216 MHz-960 MHz	46.0	Quasi-peak Value
960 MHz-1 GHz	54.0	Quasi-peak Value
Above 1 GHz	54.0	Average Value
	74.0	Peak Value

Refer to section 4.5.1 for details. **Test Setup:**

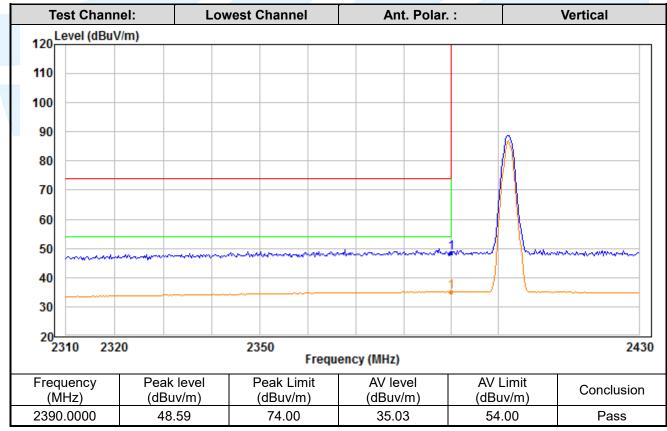
Test Procedures:

Radiated band edge measurements at 2390 MHz and 2483.5 MHz were made with the unit transmitting in the low end of the channel range and the high end closest to the restricted bands respectively. The emissions were made on the 966 Semi-Chamber. Use (resolution bandwidth (RBW) = 1 MHz, video bandwidth (VBW) = 3 MHz for peak levels and RBW = 1 MHz and VBW = 10 Hz or 1/T for average levels).

1. Use radiated spurious emission test procedure described in clause 5.10. The transmitter output (antenna port) was connected to the test receiver.

2. Set the PK and AV limit line.

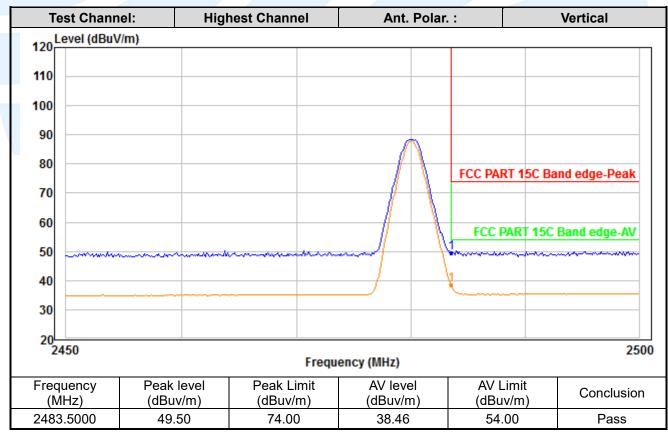

3. Record the fundamental emission and emissions out of the band-edge.


4. Determine band-edge compliance as required.

Equipment Used: Refer to section 3 for details. Pass

Test Result:


The measurement data as follows:



Page 44 of 48

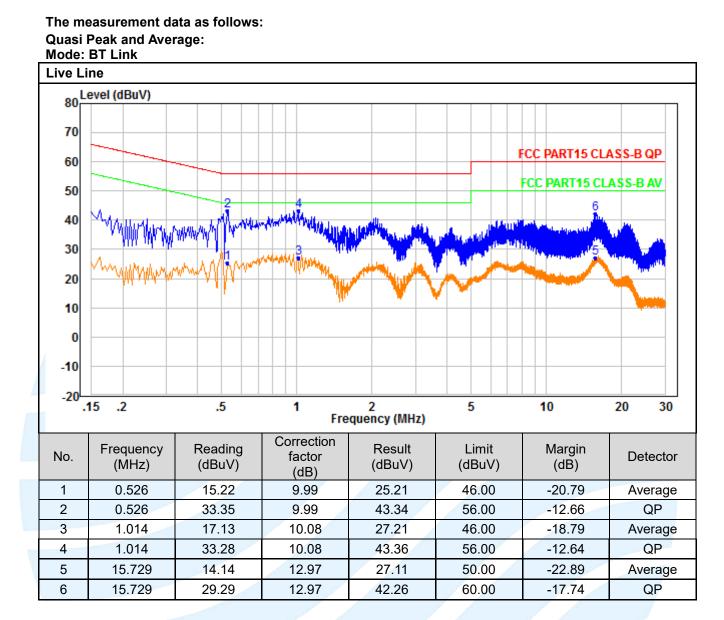
Report No.: 190806001RFC-1

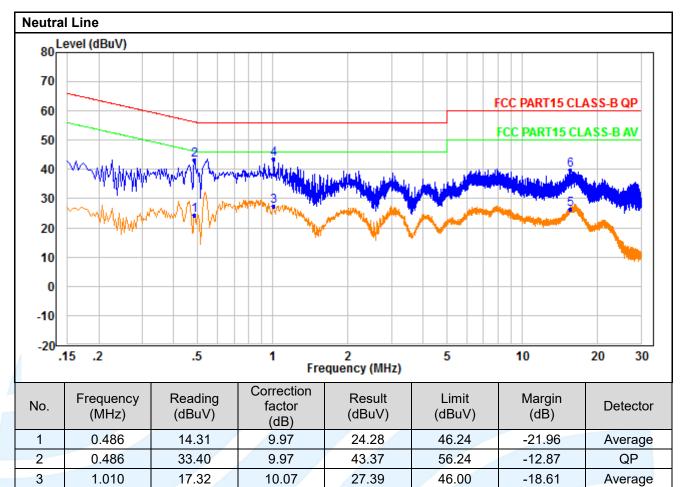
5.11 CONDUCTED EMISSION

Test Requirement:	47 CFR Part 15C Section 15.207
Test Method:	ANSI C63.10-2013 Section 6.2
Limits:	

Frequency range	Limits (dB(µV)				
(MHz)	Quasi-peak	Average			
0,15 to 0,50	66 to 56	56 to 46			
0,50 to 5	56	46			
5 to 30	60	50			

Remark:


- The lower limit shall apply at the transition frequencies. 1.
- The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz. 2.
- Test Setup: Refer to section 4.5.2 for details.


Test Procedures:

Test frequency range :150KHz-30MHz

- The mains terminal disturbance voltage test was conducted in a shielded room. 1)
- The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) 2) which provides a $50\Omega/50\mu$ H + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for 3) floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from 4) the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- In order to find the maximum emission, the relative positions of equipment and all of the interface cables 5) must be changed according to ANSI C63.10 on conducted measurement.

Equipment Used:	Refer to section 3 for details.
Test Result:	Pass

Remark:

4

5

6

1. Correct Factor = LISN Factor + Cable Loss + Pulse Limiter Factor, the value was added to Original Receiver Reading by the software automatically.

10.07

12.91

12.91

2. Result = Reading + Correct Factor.

33.47

13.64

26.77

3. Margin = Result - Limit

1.010

15.637

15.637

4. An initial pre-scan was performed on the Phase and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

43.54

26.55

39.68

56.00

50.00

60.00

-12.46

-23.45

-20.32

QP

Average

QP

5. All possible modes of operation were investigated, and testing at two nominal voltages of 240V/50Hz and 120V/60Hz, only the worst case emissions reported.

APPENDIX 1 PHOTOS OF TEST SETUP

See test photos attached in Appendix 1 for the actual connections between Product and support equipment.

APPENDIX 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS

Refer to Appendix 2 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of UnionTrust, this report can't be reproduced except in full.

