

FCC TEST REPORT

Product Name: Mobile Phone

Trade Mark: BLU

Model No.: C5

Report Number: 180621011RFM-3

Test Standards: FCC 47 CFR Part 27 FCC 47 CFR Part 2

FCC ID: YHLBLUC518

Test Result: PASS

Date of Issue: July 17, 2018

Prepared for:

BLU Products, Inc. 10814 NW 33rd St#100 Doral, FL33172

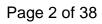
Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

> TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Tested by: Henry Lu Project Englineer Approved by:

> Billy Li **Technical Director**


Reviewed by:

Kevin Liang Assistant Manager

Date:

มใง 17, 2018

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Version

Version No.	Date	Description
V1.0	July 17, 2018	Original

CONTENTS

1.	GEN	ERAL INFORMATION	4
	1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	CLIENT INFORMATION	4
2.	TES1	SUMMARY	7
3.		IPMENT LIST	
4.		CONFIGURATION	
	4.1	ENVIRONMENTAL CONDITIONS FOR TESTING	c
	4.1	4.1.1 NORMAL OR EXTREME TEST CONDITIONS	
	4.2	TEST SETUP	_
	4.2	4.2.1 FOR RADIATED EMISSIONS TEST SETUP	
		4.2.2 FOR CONDUCTED RF TEST SETUP	
	4.3	TEST CHANNELS	
	4.4	SYSTEM TEST CONFIGURATION	
	4.5	Pre-scan	
5.	RADI	IO TECHNICAL REQUIREMENTS SPECIFICATION	15
	5.1	REFERENCE DOCUMENTS FOR TESTING	
	5.2	ERP OR EIRP	15
	5.3	CONDUCTED OUTPUT POWER	17
	5.4	PEAK-TO-AVERAGE RATIO	
	5.5	99%&26dB Bandwidth	
	5.6	BAND EDGE AT ANTENNA TERMINALS	
	5.7	SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
	5.8	FIELD STRENGTH OF SPURIOUS RADIATION	
	5.9	FREQUENCY STABILITY	
ΑP	PEND	IX 1 PHOTOS OF TEST SETUP	38
۸D	DENID	IV 2 DUOTOS OF EUT CONSTRUCTIONAL DETAILS	20

Page 4 of 38 Report No.: 180621011RFM-3

1. GENERAL INFORMATION

1.1 CLIENT INFORMATION

Applicant: BLU Products, Inc.	
Address of Applicant:	10814 NW 33rd St#100 Doral, FL33172
Manufacturer:	BLU Products, Inc.
Address of Manufacturer:	10814 NW 33rd St#100 Doral, FL33172

1.2 EUT INFORMATION

1.2.1 General Description of EUT

2.1 Ocheral Description of E01				
Product Name:	Mobile Phone			
Model No.:	C5			
Add. Model No.:	N/A			
Trade Mark:	BLU			
DUT Stage:	Identical Prototype			
	GSM Bands:	GSM850/1900		
EUT Supports Function:	UTRA Bands:	Band II/ Band IV/ Band V		
EOT Supports Function.	2.4 GHz ISM Band:	IEEE 802.11b/g/n		
		Bluetooth V4.2		
Software Version:	7731E_fs286_0021275	5_64x8_V01_64X8_GPS_PLS_2SIM_20180615_1124		
Hardware Version:	FS286-MB-V6.0			
IMEI Code:	863911029822743, 8639110298227450			
Sample Received Date:	June 22, 2018			
Sample Tested Date:	June 22, 2018 to June 28, 2018			

1.2.2 Description of Accessories

Adapter				
Input:	100-240 V~50/60 Hz 0.2 A			
Output:	5.0 V == 1000 mA			
AC Cable:	N/A			
DC Cable:	N/A			

Battery			
Battery Type:	Lithium-ion Rechargeable Battery		
Rated Voltage:	3.8 Vdc		
Rated Capacity:	2000 mAh		

Cable			
Description:	USB Micro-B Plug Cable		
Cable Type: Unshielded without ferrite			
Length:	1.1 Meter		

Page 5 of 38 Report No.: 180621011RFM-3

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Support Networks:	WCDMA, HSDPA, HSUPA		
	WCDMA Band IV		BPSK
Type of Modulation:	HSDPA Band IV:		QPSK
	HSUPA Band IV:		QPSK
Frequency Range:	WCDMA Band IV:		1712.4-1752.6 MHz
Max RF Output Power:	WCDMA Band IV:		22.45dBm
Max EIRP:	WCDMA Band IV:		18.82dBm
Type of Emission:	WCDMA Band IV:		4M16F9W
Antenna Type:	PIFA Antenna		
Antenna Gain:	WCDMA Band IV:	-1.2 d	Bi
Normal Test Voltage:	3.8 Vdc		
Extreme Test Voltage:	3.5 to 4.35Vdc		
Extreme Test Temperature:	-30 °C to +50 °C		

1.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No. Serial Number		Supplied by
N/A	N/A	N/A	N/A	N/A

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
1	Antenna Cable	SMA	0.30 Meter	UnionTrust

1.5 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua

New District, Shenzhen, China 518109 Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

1.6 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

IC-Registration No.: 21600-1

The 3m Semi-anechoic chamber of Shenzhen UnionTrust Quality and Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.:

Page 6 of 38 Report No.: 180621011RFM-3

21600-1.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC Accredited Lab.

Designation Number: CN1194

Test Firm Registration Number: 259480

1.7 DEVIATION FROM STANDARDS

None.

1.8 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.10 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty
1	Conducted emission 9KHz-150KHz	±3.8 dB
2	Conducted emission 150KHz-30MHz	±3.4 dB
3	Radiated emission 9KHz-30MHz	±4.9 dB
4	Radiated emission 30MHz-1GHz	±4.7 dB
5	Radiated emission 1GHz-18GHz	±5.1 dB
6	Radiated emission 18GHz-26GHz	±5.2 dB
7	Radiated emission 26GHz-40GHz	±5.2 dB

2. TEST SUMMARY

FCC 47 CFR Part 27 Test Cases (WCDMA Band IV)					
Test Item	Test Requirement	Test Method	Result		
Equivalent Isotropic	FCC 47 CFR Part 2.1046(a) &	ANSI/TIA-603-E-2016 &	PASS		
Radiated Power (EIRP)	FCC 47 CFR Part 27.50(d)(4)	KDB 971168 D01v03	FA33		
Conducted Output	FCC 47 CFR Part 2.1046(a) &	ANSI/TIA-603-E-2016 &	PASS		
Power	FCC 47 CFR Part 27.50(d)(4)	KDB 971168 D01v03	rass		
Peak-to-average ratio	FCC 47 CFR Part 27.50(d)(5)	KDB 971168 D01v03	PASS		
99%&26dB Bandwidth	FCC 47 CFR Part 2.1049(h)	ANSI/TIA-603-E-2016 &	PASS		
99%&26dB Bandwidth	FCC 47 CFR Part 27.53(h)	KDB 971168 D01v03			
Band Edge at antenna	FCC 47 CFR Part 27.53(h)(1)	ANSI/TIA-603-E-2016 &	PASS		
terminals	FCC 47 CFR Pait 27.55(II)(1)	KDB 971168 D01v03			
Spurious emissions at	FCC 47 CFR Part 2.1051 &	ANSI/TIA-603-E-2016 &	PASS		
antenna terminals	FCC 47 CFR Part 27.53(h)	KDB 971168 D01v03	7		
Field strength of	FCC 47 CFR Part 2.1053 &	ANSI/TIA-603-E-2016 &	PASS		
spurious radiation	FCC 47 CFR Part 27.53(h)	KDB 971168 D01v03	FASS		
Frequency stability	FCC 47 CFR Part 2.1055 &	ANSI/TIA-603-E-2016 &	PASS		
Frequency Stability	FCC 47 CFR Part 27.54	KDB 971168 D01v03	FASS		

3. EQUIPMENT LIST

	Radiated Emission Test Equipment List							
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)		
>	3M Chamber & Accessory Equipment	ETS-LINDGREN	3M	N/A	Dec. 20, 2015	Dec. 19, 2018		
~	Receiver	R&S	ESIB26	100114	Dec. 10, 2017	Dec. 10, 2018		
	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec.10, 2017	Dec. 10, 2018		
	Loop Antenna	ETS-LINDGREN	6502	00202525	Dec. 22, 2017	Dec. 22, 2018		
~	Broadband Antenna	ETS-LINDGREN	3142E	00201566	Dec. 17, 2017	Dec. 17, 2018		
~	Preamplifier	HP	8447F	2805A02960	Dec. 10, 2017	Dec. 10, 2018		
~	Broadband Antenna (Pre-amplifier)	ETS-LINDGREN	3142E-PA	00201891	May 19, 2018	May 19, 2019		
~	Horn Antenna	ETS-LINDGREN	3117	00164202	Dec. 17, 2017	Dec. 17, 2018		
•	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	May 22, 2018	May 22, 2019		
	Horn Antenna	ETS-LINDGREN	3116C	00200180	May 20, 2018	May 20, 2019		
	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	Dec. 17, 2017	Dec. 17, 2018		
>	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A		
>	Wideband Radio Communication Tester	R&S	CMW500	116254	June 07, 2018	June 07, 2019		
>	Test Software	Audix	e3	Sof	tware Version: 9.16	0323		

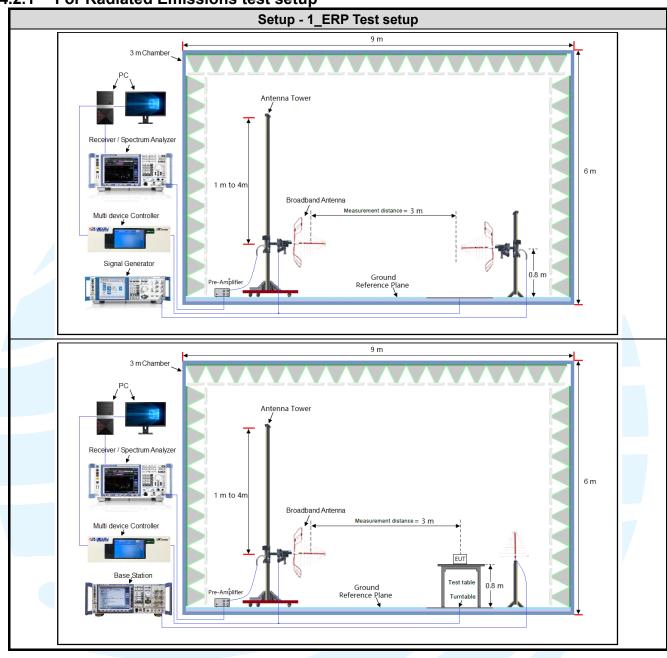
		2/3/4G F	RF Test System E	quipment List		
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
	Spectrum Analyzer	R&S	FSP 13	1164.4391.13	June 06, 2018	June 06, 2019
V	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Dec. 10, 2017	Dec. 10, 2018
>	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Dec.10, 2017	Dec. 10, 2018
✓	Wideband Radio Communication Tester	R&S	CMW500	116254	June 07, 2018	June 07, 2019
V	Universal Radio Communication Tester	R&S	CMU200	114713	Dec. 10, 2017	Dec. 10, 2018
>	DC Source	KIKUSUI	PWR400L	LK003024	Sep. 14, 2017	Sep. 13, 2018
	Temp & Humidity chamber	Espec	GL(U)04KA(W)	16921H201P3	Sep. 14, 2017	Sep. 13, 2018
•	Temp & Humidity chamber	Votisch	VT4002	58566133290 020	June 05, 2018	June 05, 2019
>	Test Software	ECIT	Automation	TestSystem	Software Vers	ion: 2.170530

4. TEST CONFIGURATION

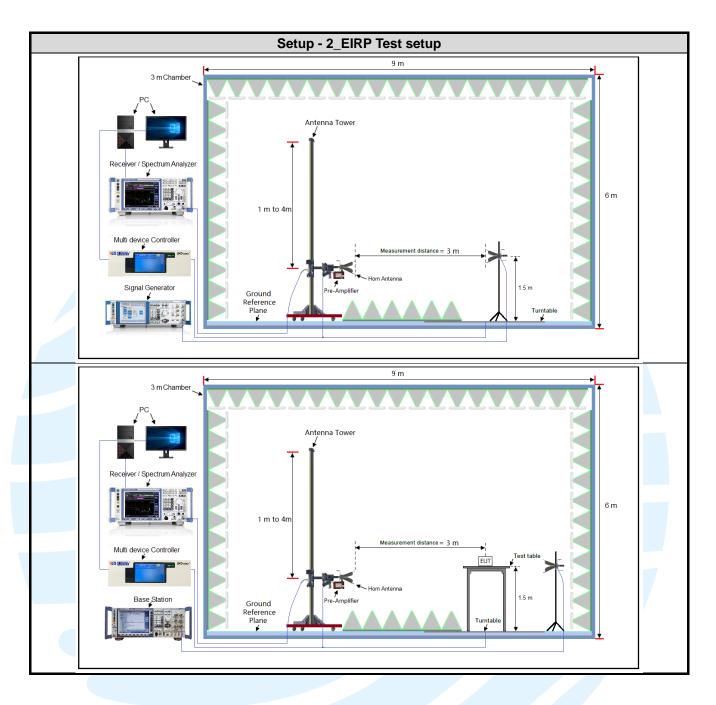
4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

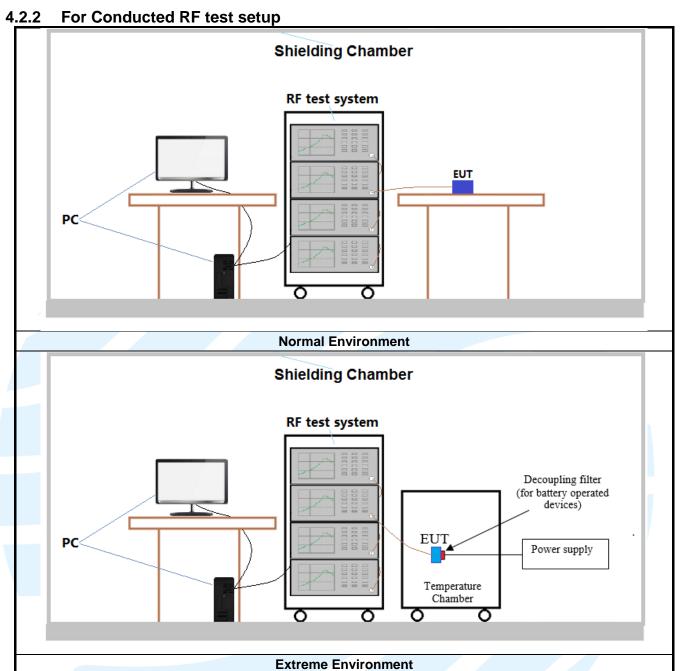
Test Environment	Selected Values During Tests				
Toot Condition	Ambient				
Test Condition	Temperature (°C)	Voltage (V)	Relative Humidity (%)		
TN/VN	+15 to +35	3.8	20 to 75		
TL/VL	-30	3.5	20 to 75		
TH/VL	+50	3.5	20 to 75		
TL/VH	-30	4.35	20 to 75		
TH/VH	+50	4.35	20 to 75		


Remark:

- 1) The EUT just work in such extreme temperature of -30 °C to +50 °C and the extreme voltage of 3.5 V to 4.35 V, so here the EUT is tested in the temperature of -30 °C to +50 °C and the voltage of 3.5 V to 4.35 V
- 2) VN: Normal Voltage; TN: Normal Temperature;
 - TL: Low Extreme Test Temperature; TH: High Extreme Test Temperature;
 - VL: Low Extreme Test Voltage; VH: High Extreme Test Voltage.



4.2 TEST SETUP


4.2.1 For Radiated Emissions test setup

Page 13 of 38 Report No.: 180621011RFM-3

4.3 TEST CHANNELS

Pand	Ty/Dy Eroguenov	RF Channel			
Band	Tx/Rx Frequency	Low(L)	Middle(M)	High(H)	
WCDMA Band IV	Tx (1710 MHz-1755 MHz)	Channel 1312	Channel 1412	Channel 1513	
WCDIVIA Ballu IV		1712.4 MHz	1732.4 MHz	1752.6 MHz	

4.4 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.85Vdc rechargeable Li-on battery. Only the worst case data were recorded in this test report.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, X/Y/Z axis, and antenna ports.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000MHz. The resolution is 1 MHz or greater for frequencies above 1000MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.5 PRE-SCAN

Pre-scan under all rate at lowest middle and highest channel, find the transmitter power as below.

WCDMA Band IV Maximum Average Power (dBm)						
Channel	1312	1412	1513			
Frequency(MHz)	1712.4 MHz	1732.4 MHz	1752.6 MHz			
RMC 12.2K	22.14	22.08	22.45			
HSDPA Subtest-1	21.55	22.41	22.43			
HSDPA Subtest-2	21.44	22.30	22.26			
HSDPA Subtest-3	21.42	22.12	22.08			
HSDPA Subtest-4	21.20	22.09	22.07			
HSUPA Subtest-1	21.10	22.02	22.01			
HSUPA Subtest-2	20.40	20.30	20.20			
HSUPA Subtest-3	20.38	21.22	21.34			
HSUPA Subtest-4	19.93	19.84	19.89			
HSUPA Subtest-5	21.30	22.19	22.02			

Pre-scan all bandwidth and RB, find worse case mode are chosen to the report, the worse mode applicability and tested channel detail as below:

Band	Radiated	Conducted	
WCDMA Band IV	RMC 12.2Kbps Link	RMC 12.2Kbps Link	

Page 15 of 38 Report No.: 180621011RFM-3

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title
1	FCC 47 CFR Part 2 Subpart J	Frequency allocations and radio treaty matters; general rules and regulations
2	FCC 47 CFR Part 27	Miscellaneous Wireless Communications Services
3	ANSI/TIA-603-E-2016	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
4	KDB 971168 D01	KDB 971168 D01 Power Meas License Digital Systems v03

5.2 ERP OR EIRP

Test Requirement: FCC 47 CFR Part 2.1046(a)

WCDMA Band IV & LTE Band 4: FCC 47 CFR Part 27.50(d)(4)

Test Method: KDB 971168 D01v03 & ANSI/TIA-603-E-2016

Limit:

FCC 47 CFR Part 27.50(d)(4): Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP.

Test Procedure:

Test procedure as below:

- 1) The EUT was powered ON and placed on a 0.8/1.5m high table at a 3 meter semi/fully Anechoic Chamber. The antenna of the transmitter was extended to its maximum length. Modulation mode and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3) The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made.
- 4) Steps 1) to 3) were performed with the EUT and the receive antenna in both vertical and horizontal polarization.
- 5) The transmitter was then removed and replaced with another antenna. The center of the antenna was approximately at the same location as the center of the transmitter.
- 6) A signal at the disturbance was fed to the substitution antenna by means of a non-radiating cable. With both the substitution and the receive antennas horizontally polarized, the receive antenna was raised and lowered to obtain a maximum reading at the test receiver. The level of the signal generator was adjusted until the measured field strength level in step 3) is obtained for this set of conditions.
- 7) The output power into the substitution antenna was then measured.
- 8) Steps 6) and 7) were repeated with both antennas polarized.
- 9) Calculate power in dBm by the following formula:

ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd)EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi)

EIRP=ERP+2.15dB

where:

Pg is the generator output power into the substitution antenna.

- 10) Test the EUT in the lowest channel, the middle channel the Highest channel
- 11) The radiation measurements are performed in X, Y, Z axis positioning for EUT operation mode, and found the Y axis positioning which it is worse case.

12) Repeat above procedures until all frequencies measured was complete.

	Frequency	Detector	RBW	VBW	Remark
Receiver Setup:	30MHz-1GHz	Peak	100kHz	300kHz	Peak
	Above 1GHz	Peak	1MHz	3MHz	Peak

Test Setup: Refer to section 4.2.1 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Link mode
Test Results: Pass

Page 16 of 38 Report No.: 180621011RFM-3

Test Data: See table below

Channel	WCDMA RMC 12.2Kbps Maximum EIRP (dBm)	Limit (dBm)	Result
Lowest	18.82	30.00	Pass
Middle	17.07	30.00	Pass
Highest	15.20	30.00	Pass

Page 17 of 38 Report No.: 180621011RFM-3

5.3 CONDUCTED OUTPUT POWER

FCC 47 CFR Part 2.1046(a)

Test Requirement: WCDMA Band IV & LTE Band 4: FCC 47 CFR Part 27.50(d)(4)

Test Method: KDB 971168 D01v03 & ANSI/TIA-603-E-2016

Limit:

FCC 47 CFR Part 27.50(d)(4): Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP.

Test Procedure:

The EUT was set up for the maximum power with WCDMA and LTE link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.2.2 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Link mode
Test Results: Pass

Test Data: The full result refer to section 4.5 for details.

Page 18 of 38 Report No.: 180621011RFM-3

5.4 PEAK-TO-AVERAGE RATIO

Test Requirement: FCC 47 CFR Part 24.232(d)

Test Method: KDB 971168 D01v03

Limit: In measuring transmissions in this band using an average power technique, the peak-

to-average ratio (PAR) of the transmission may not exceed 13 dB

Test Procedure:

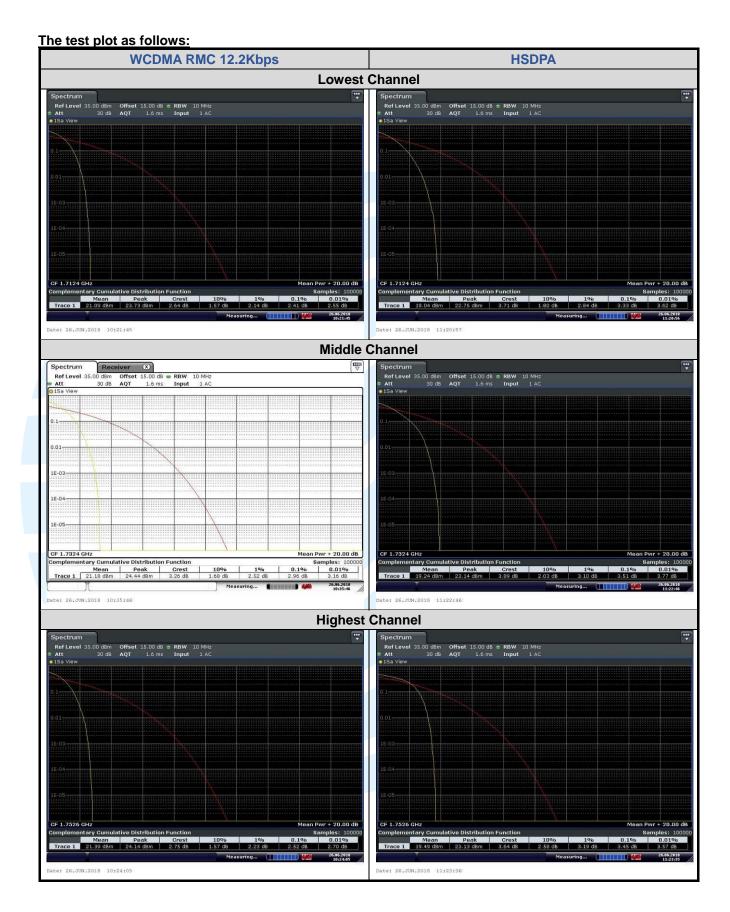
The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer.

a) Set resolution/measurement bandwidth ≥ signal's occupied bandwidth

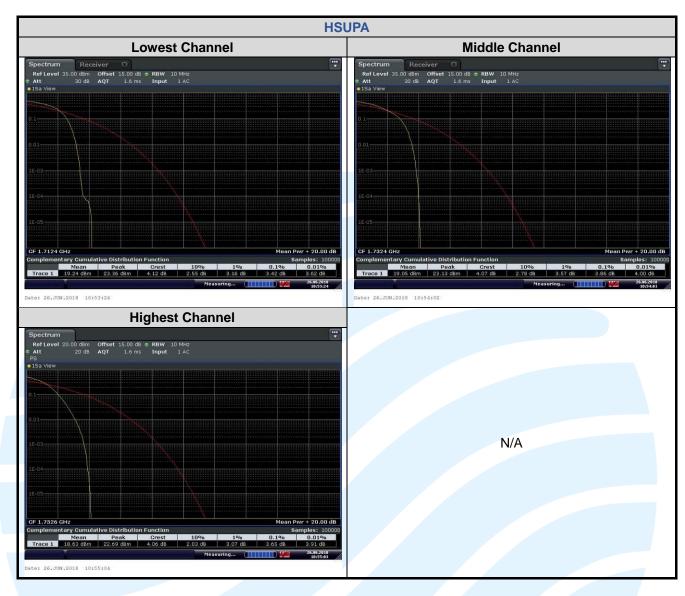
b) Set the number of counts to a value that stabilizes the measured CCDF curve

c) Record the maximum PAPR level associated with a probability of 0.1 %

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.


Test Setup: Refer to section 4.2.2 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Link mode
Test Results: Pass


Test Data: See table below

Channel	WCDMA RMC 12.2Kbps	HSDPA	HSUPA	Limit (dBm)	Result
Lowest	2.41	3.51	3.42	13	Pass
Middle	2.96	3.33	3.86	13	Pass
Highest	2.52	3.45	3.65	13	Pass

Page 21 of 38 Report No.: 180621011RFM-3

5.599%&26DB BANDWIDTH

Test Requirement: FCC 47 CFR Part 2.1049(h) & FCC 47 CFR Part 24.238(b)

Test Method: ANSI/TIA-603-E-2016 & KDB 971168 D01v03

Limit: No Limit

Test Procedure:

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the low, middle and high channel in each band. The 99% and -26dB bandwidths was also measured and recorded.

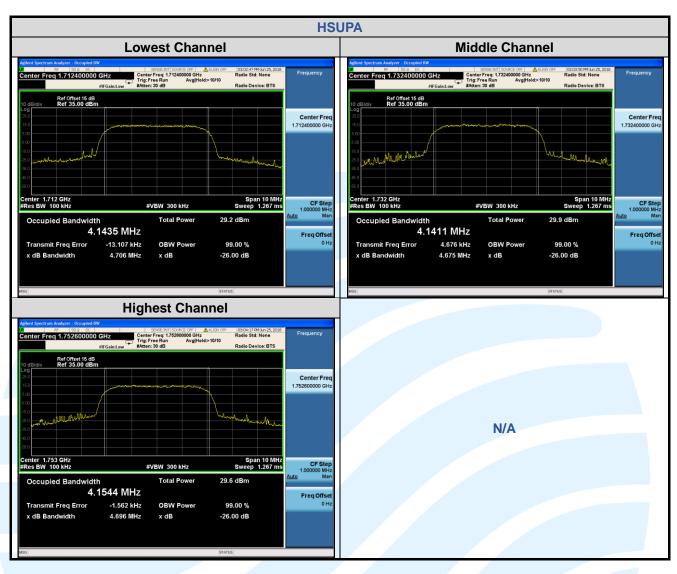
Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup: Refer to section 4.2.2 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Link mode
Test Results: Pass

Test Data: See table below

	99% & 26 dB Bandwidth					
Test Mode	Channel	Frequency (MHz)	26 dB BW (MHz)	99% BW (MHz)		
	1312	1712.4	4.678	4.1444		
WCDMA RMC 12.2Kbps	1412	1732.4	4.683	4.1382		
Tawe 12.21topo	1513	1752.6	4.683	4.1568		
	1312	1712.4	4.663	4.1369		
HSDPA	1412	1732.4	4.676	4.1473		
	1513	1752.6	4.678	4.1453		
HSUPA	1312	1712.4	4.706	4.1435		
	1412	1732.4	4.675	4.1411		
	1513	1752.6	4.696	4.1544		



The test plot as follows: **HSDPA WCDMA Lowest Channel** nter Freg 1.712400000 GH Ref Valu 35.00 dB Center Freq 1.712400000 GHz enter 1.712 GHz Res BW 100 kHz Span 10 MHz Sweep 1.267 ms enter 1.712 GHz Res BW 100 kHz Span 10 MH: reep 1.267 m CF St #VBW 300 kHz 31 2 dBn Occupied Bandwidt Occupied Bandw 4.1444 MHz 4.1369 MHz -11.394 kHz -12.525 kHz Transmit Freg Error **OBW Power** 99.00 % Transmit Freq Error **OBW Power** 99.00 % 4.678 MHz -26.00 dB x dB Bandwidth 4.663 MHz -26.00 dB x dB Bandwidth x dB x dB **Middle Channel** Ref Offset 15 dB Ref 35.00 dBn Ref Offset 15 dB Ref 35.00 dBm Center Free [30 dB] Total Power 30.9 dBm Total Power 4.1382 MHz 4.1473 MHz 8.360 kHz 9.162 kHz 99.00 % OBW Power 99.00 % **OBW Power** Transmit Freq Error Transmit Freq Error x dB -26.00 dB 4.676 MHz x dB -26.00 dB **Highest Channel** SENSE:INT SOURCE OFF ▲ ALIGN OFF

Center Freq: 1.732400000 GHz

Trig: Free Run Avg|Hold>10/10 Ref Offset 15 dB Ref 35.00 dBn Ref Offset 15 dB Ref 35.00 dBn Center Fre 1.752600000 GH enter 1.753 GHz enter 1.732 GHz CF Ste 1.000000 M #VBW 300 kHz #VBW 300 kHz 31.3 dBm 29.5 dBm 4.1453 MHz 4.1568 MHz Freq Offs nit Freq Erro 5.040 kHz 99.00 % 8.114 kHz OBW Po 99.00 % 4 683 MHz x dB -26.00 dB y dB Bandwidth 4.678 MHz x dB -26.00 dB

Page 24 of 38 Report No.: 180621011RFM-3

5.6 BAND EDGE AT ANTENNA TERMINALS

Test Requirement: WCDMA Band IV & LTE Band 4: FCC 47 CFR Part 27.53(h)(1)

Test Method: ANSI/TIA-603-E-2016 & KDB 971168 D01v03

Limit:

FCC 47 CFR Part 27.53(h)(1): Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB. The emission limit equal to -13 dBm.

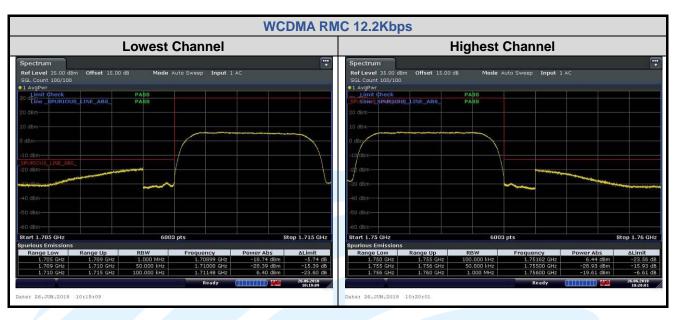
FCC 47 CFR Part 27.53(h)(3): Measurement procedure. (i) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

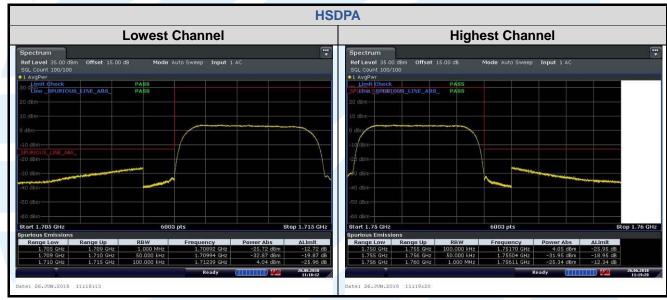
- (ii) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- (iii) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

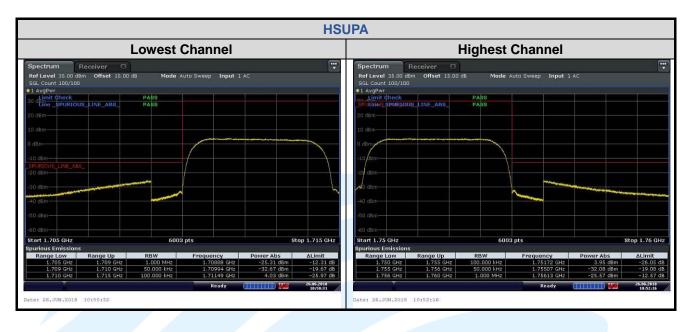
Test Procedure:

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer.

For each band edge measurement:


- 1) Set the spectrum analyzer span to include the block edge frequency.
- 2) Set a marker to point the corresponding band edge frequency in each test case.
- 3) Set display line at -13 dBm
- 4) Set resolution bandwidth to at least 1% of emission bandwidth.
- 5) Set spectrum analyzer with RMS detector.
- 6) Record the max trace plot into the test report


Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.


Test Setup: Refer to section 4.2.2 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Link mode
Test Results: Pass

Page 27 of 38 Report No.: 180621011RFM-3

5.7 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Test Requirement: WCDMA Band IV & LTE Band 4: FCC 47 CFR Part 27.53(h)(1)

Test Method: ANSI/TIA-603-E-2016 & KDB 971168 D01v03

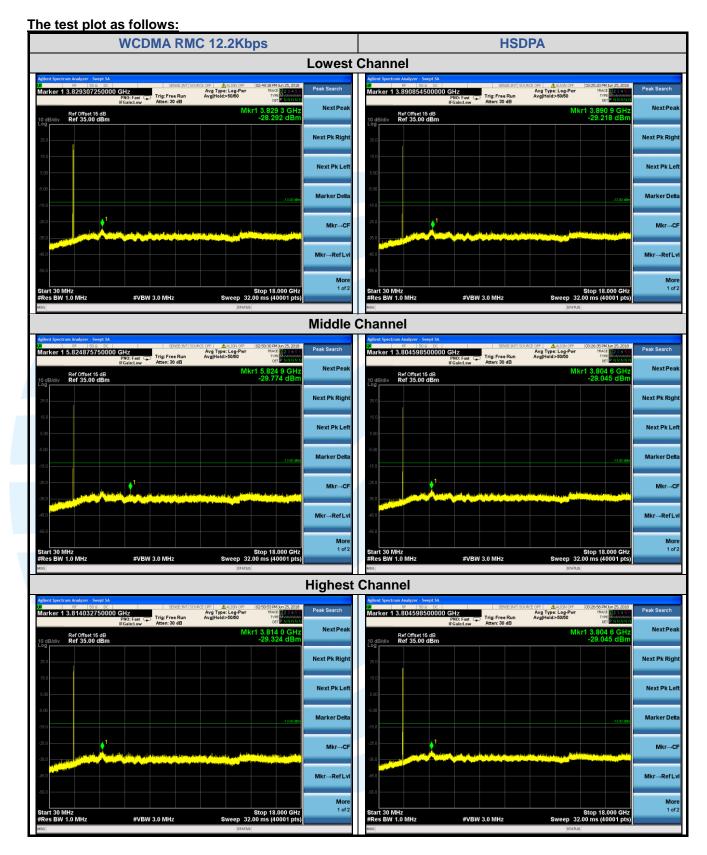
Limit:

FCC 47 CFR Part 27.53(h)(1): Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB. The emission limit equal to -13 dBm.

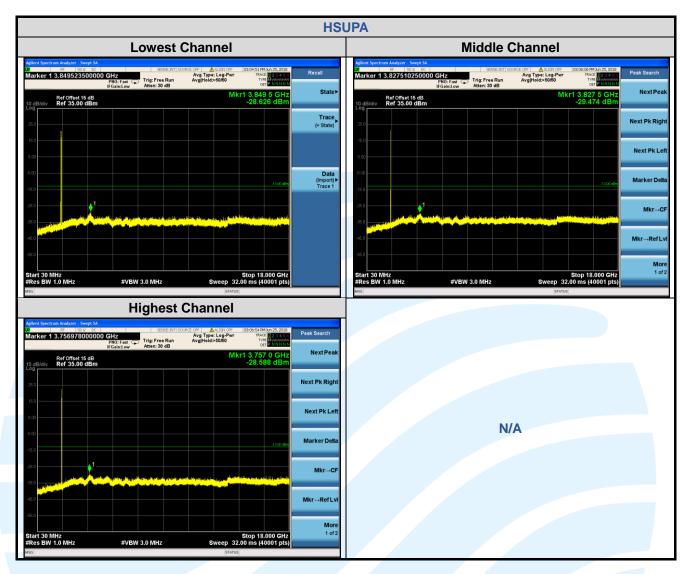
FCC 47 CFR Part 27.53(h)(3): Measurement procedure. (i) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

- (ii) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- (iii) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

Test Procedure:


The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range. b. Measuring frequency range is from 30 MHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower. Set RBW & VBW to 100 kHz for the measurement below 1 GHz, and 1 MHz for the measurement above 1 GHz.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.


Test Setup: Refer to section 4.2.2 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Link mode
Test Results: Pass

Page 30 of 38 Report No.: 180621011RFM-3

5.8 FIELD STRENGTH OF SPURIOUS RADIATION

Test Requirement: WCDMA Band IV & LTE Band 4: FCC 47 CFR Part 27.53(h)(1)

Test Method: ANSI/TIA-603-E-2016 & KDB 971168 D01v03

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009 MHz-30 MHz	Peak	10 kHz	30 KHz	Peak
30 MHz-1 GHz	Quasi-peak	100 kHz	300 KHz	Peak
Above 1 GHz	Peak	1 MHz	3 MHz	Peak

Limits:

FCC 47 CFR Part 27.53(h)(1): Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB. The emission limit equal to -13 dBm.

FCC 47 CFR Part 27.53(h)(3): Measurement procedure. (i) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

- (ii) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- (iii) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

Test Setup: Refer to section 4.2.1 for details.

Test Procedures:

- 1. Scan up to 10th harmonic, find the maximum radiation frequency to measure.
- 2. The technique used to find the Spurious Emissions of the transmitter was the antenna substitution method. Substitution method was performed to determine the actual ERP/EIRP emission levels of the EUT.

Test procedure as below:

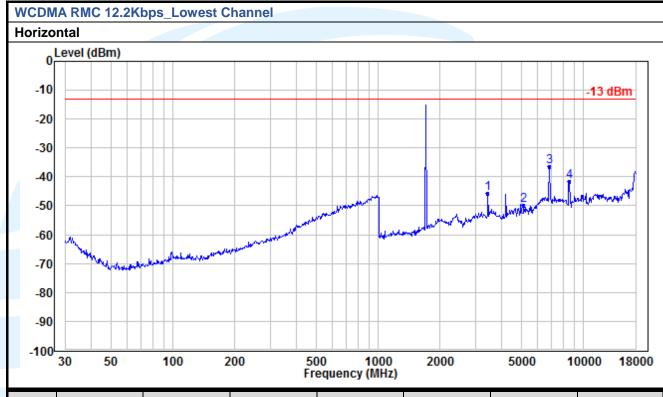
- 1) The EUT was powered ON and placed on a 0.8/1.5m high table at a 3 meter semi/fully Anechoic Chamber. The antenna of the transmitter was extended to its maximum length. Modulation mode and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3) The disturbance of the transmitter was maximized on the test receiver display by raising and lowering from 1m to 4m the receive antenna and by rotating through 360° the turntable. After the fundamental emission was maximized, a field strength measurement was made.
- 4) Steps 1) to 3) were performed with the EUT and the receive antenna in both vertical and horizontal polarization.
- 5) The transmitter was then removed and replaced with another antenna. The center of the antenna was approximately at the same location as the center of the transmitter.
- 6) A signal at the disturbance was fed to the substitution antenna by means of a non-radiating cable. With both the substitution and the receive antennas horizontally polarized, the receive antenna was raised and lowered to obtain a maximum reading at the test receiver. The level of the signal generator was adjusted until the measured field strength level in step 3) is obtained for this set of conditions.
- 7) The output power into the substitution antenna was then measured.
- 8) Steps 6) and 7) were repeated with both antennas polarized.
- 9) Calculate power in dBm by the following formula:

ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd) EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi) EIRP=ERP+2.15dB

where:

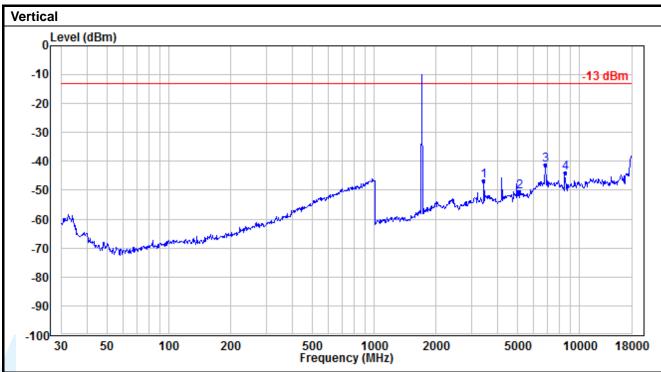
Pg is the generator output power into the substitution antenna.

Page 31 of 38 Report No.: 180621011RFM-3

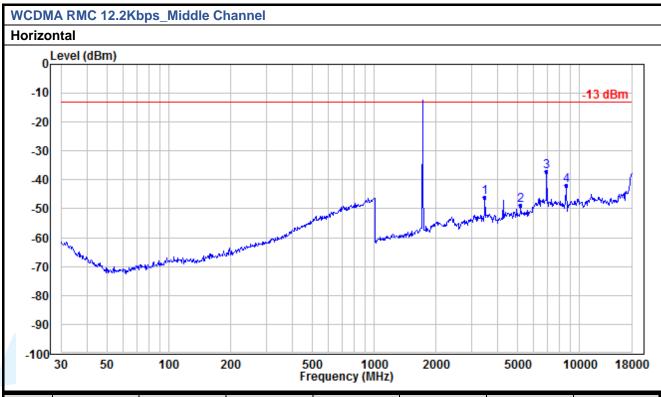

- 10) Test the EUT in the lowest channel, the middle channel the Highest channel
- 11) The radiation measurements are performed in X, Y, Z axis positioning for EUT operation mode, and found the Y axis positioning which it is worse case.
- 12) Repeat above procedures until all frequencies measured was complete.

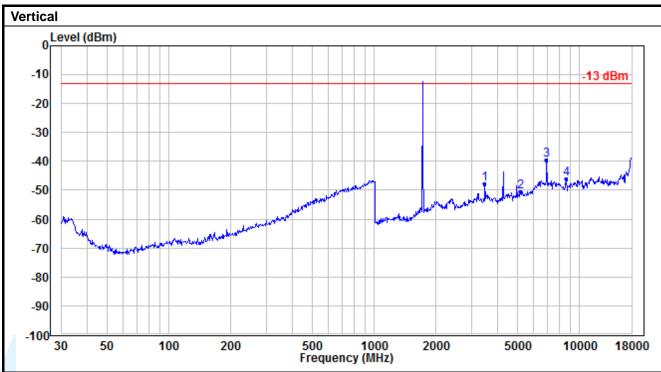
Equipment Used: Refer to section 3 for details.

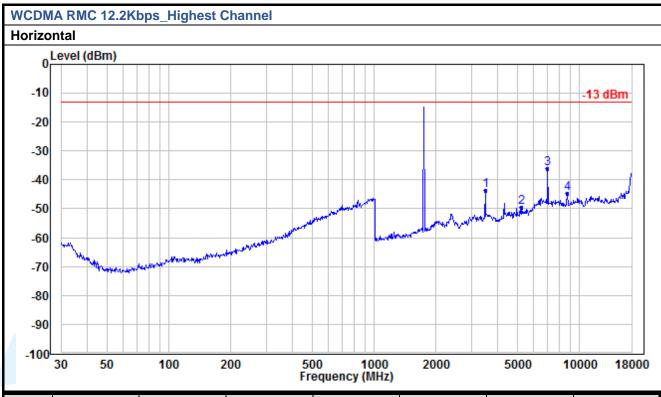
Test Result: Pass

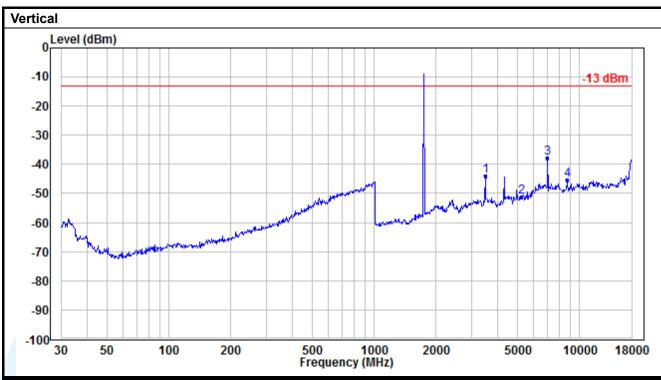

The measurement data as follows:

Radiated Emission Test Data


No.	Frequency (MHz)	Reading (dBm)	Correction factor (dB)	Result (dBm)	Limit (dBm)	Margin (dB)	Remark
1	3424.800	-58.87	13.30	-45.57	-13.00	-32.57	Peak
2	5137.200	-64.97	15.02	-49.95	-13.00	-36.95	Peak
3	6849.600	-55.28	18.73	-36.55	-13.00	-23.55	Peak
4	8562.000	-59.91	18.35	-41.56	-13.00	-28.56	Peak


No.	Frequency (MHz)	Reading (dBm)	Correction factor (dB)	Result (dBm)	Limit (dBm)	Margin (dB)	Remark
1	3424.800	-60.00	13.30	-46.70	-13.00	-33.70	Peak
2	5137.200	-65.49	15.02	-50.47	-13.00	-37.47	Peak
3	6849.600	-60.12	18.73	-41.39	-13.00	-28.39	Peak
4	8562.000	-62.35	18.35	-44.00	-13.00	-31.00	Peak


No.	Frequency (MHz)	Reading (dBm)	Correction factor (dB)	Result (dBm)	Limit (dBm)	Margin (dB)	Remark
1	3464.800	-59.67	13.57	-46.10	-13.00	-33.10	Peak
2	5197.200	-64.18	15.30	-48.88	-13.00	-35.88	Peak
3	6929.600	-55.84	18.60	-37.24	-13.00	-24.24	Peak
4	8662.000	-60.26	18.51	-41.75	-13.00	-28.75	Peak


No.	Frequency (MHz)	Reading (dBm)	Correction factor (dB)	Result (dBm)	Limit (dBm)	Margin (dB)	Remark
1	3464.800	-61.33	13.57	-47.76	-13.00	-34.76	Peak
2	5197.200	-65.72	15.30	-50.42	-13.00	-37.42	Peak
3	6929.600	-57.95	18.60	-39.35	-13.00	-26.35	Peak
4	8662.000	-64.44	18.51	-45.93	-13.00	-32.93	Peak

No.	Frequency (MHz)	Reading (dBm)	Correction factor (dB)	Result (dBm)	Limit (dBm)	Margin (dB)	Remark
1	3505.200	-57.35	13.81	-43.54	-13.00	-30.54	Peak
2	5257.800	-64.91	15.48	-49.43	-13.00	-36.43	Peak
3	7010.400	-54.41	18.46	-35.95	-13.00	-22.95	Peak
4	8763.000	-63.18	18.56	-44.62	-13.00	-31.62	Peak

4	No.	Frequency (MHz)	Reading (dBm)	Correction factor (dB)	Result (dBm)	Limit (dBm)	Margin (dB)	Remark
	1	3505.200	-57.85	13.81	-44.04	-13.00	-31.04	Peak
	2	5257.800	-66.75	15.48	-51.27	-13.00	-38.27	Peak
	3	7010.400	-56.11	18.46	-37.65	-13.00	-24.65	Peak
	4	8763.000	-63.99	18.56	-45.43	-13.00	-32.43	Peak

Remark:

¹⁾ All tested is under the condition of the main wave is filtered out.

²⁾ All the above radiation data, the fundamental frequency is not marked, it may exceed the limit, please ignore it

Page 37 of 38 Report No.: 180621011RFM-3

5.9 FREQUENCY STABILITY

Test Requirement: FCC 47 CFR Part 2.1055 & FCC 47 CFR Part 24.235

Test Method: ANSI/TIA-603-E-2016 & KDB 971168 D01v03

Limits:

The frequency stability shall be sufficient to ensure that the fundamental emission stays

within the authorized frequency block.

Test Setup: Refer to section 4.2.2 for details.

Test Procedures:

1) Use CMW 500 or CMU 200 with Frequency Error measurement capability.

a) Temp. = -30° to $+50^{\circ}$ C

b) Voltage = low voltage, 3.5 Vdc, Normal, 3.8 Vdc and High voltage, 4.35 Vdc.

2) Frequency Stability vs Temperature:

The EUT is place inside a temperature chamber. The temperature is set to 20°C and allowed to stabilize. After sufficient soak time, the transmitting frequency error is measured. The temperature is increased by 10 degrees, allowed to stabilize and soak, and then the measurement is repeated. This is repeated until +50°C is reached.

3) Frequency Stability vs Voltage:

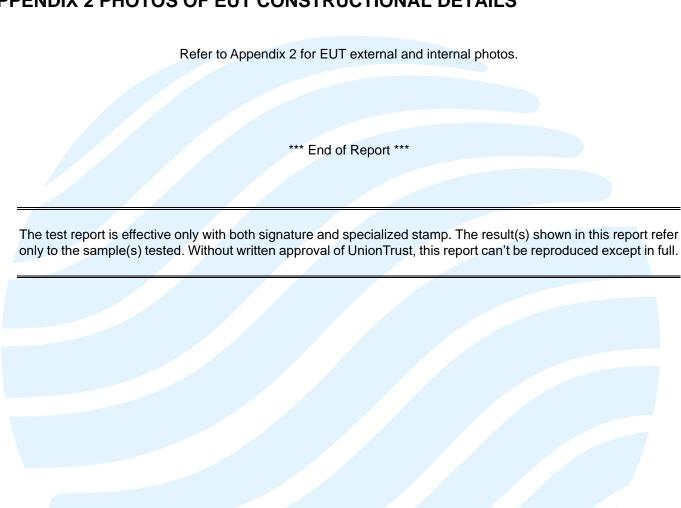
The peak frequency error is recorded (worst-case).

Equipment Used: Refer to section 3 for details.

Test Result: Pass

Modulation	Channel/ Frequency	Voltage	Temperature	Deviation	Deviation	Limit	Pass/ Fail
	(MHz)	(Vdc)	(℃)	(Hz)	(ppm)	(ppm)	
			WCDMA RM	C 12.2Kbps			
		VL		26	0.0150		Pass
		VN	TN	21	0.0121		Pass
		VH		24	0.0139		Pass
			50	21	0.0121		Pass
			40	27	0.0156		Pass
BPSK	1412 / 1732.4		30	21	0.0121	Note 1	Pass
BESK	1412 / 1732.4		20	19	0.0110		Pass
		VN	10	16	0.0092		Pass
			0	12	0.0069		Pass
			-10	21	0.0121		Pass
			-20	17	0.0098		Pass
			-30	29	0.0167		Pass

Note1: The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.



Page 38 of 38 Report No.: 180621011RFM-3

APPENDIX 1 PHOTOS OF TEST SETUP

See test photos attached in Appendix 1 for the actual connections between Product and support equipment.

APPENDIX 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS

