

TEST REPORT

No. I22N01500-BLE

BLU Products, Inc.

Smart Phone

Model Name: B1550VL

with

Hardware Version: V1.0

Software Version: BLU_B1550VL_V12.0.02.05.02.17_FSec

FCC ID: YHLBLUB1550VL

Issued Date: 2022-09-09

Designation Number: CN1210

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000.

Tel: +86(0)755-33322000, Fax: +86(0)755-33322001 Email: yewu@caict.ac.cn, website: www.cszit.com

CONTENTS

1. SU	UMMARY OF TEST REPORT	3
1.1.	TEST ITEMS	3
1.2.	TEST STANDARDS	3
1.3.	TEST RESULT	3
1.4.	TESTING LOCATION	3
1.5.	Project data	3
1.6.	SIGNATURE	3
2. C	LIENT INFORMATION	4
2.1.	APPLICANT INFORMATION	4
2.2.	Manufacturer Information	4
3. E	QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	5
3.1.	ABOUT EUT	
3.2.	INTERNAL IDENTIFICATION OF EUT	
3.3.	INTERNAL IDENTIFICATION OF AE	
3.4.	GENERAL DESCRIPTION	
4. R	EFERENCE DOCUMENTS	6
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	6
4.2.	REFERENCE DOCUMENTS FOR TESTING	
	EST RESULTS	
5. TI		
5.1.	TESTING ENVIRONMENT	
5.2.	TEST RESULTS	
5.3.	STATEMENTS	7
6. Tl	EST EQUIPMENTS UTILIZED	8
7. L	ABORATORY ENVIRONMENT	9
8. M	IEASUREMENT UNCERTAINTY	10
	X A: DETAILED TEST RESULTS	
	Antenna requirement	
	MAXIMUM PEAK OUTPUT POWER	
	PEAK POWER SPECTRAL DENSITY	
	6DB BANDWIDTH	
	BAND EDGES COMPLIANCE	
Α 🤈	TRANSMITTER SPURIOUS EMISSION - CONDUCTED	24

1. Summary of Test Report

1.1. Test Items

Description Smart Phone Model Name B1550VL

Applicant's name BLU Products, Inc.
Manufacturer's Name BLU Products, Inc.

1.2. Test Standards

FCC Part15-2019; ANSI C63.10-2013

1.3. Test Result

Pass

Please refer to 5.2 Test Results.

1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China

1.5. Project data

Testing Start Date: 2022-07-14
Testing End Date: 2022-08-19

1.6. Signature

Lin Kanfeng

林仆丰

(Prepared this test report)

An Ran

(Reviewed this test report)

Zhang Bojun

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: BLU Products, Inc.

Address: 10814 NW 33rd St # 100 Doral, FL 33172, USA

Contact Person: Zeng wei

E-Mail: zwei@ctasiasz.com

Telephone: 305.715.7171 FAX: 305.436.8819

2.2. Manufacturer Information

Company Name: BLU Products, Inc.

Address: 10814 NW 33rd St # 100 Doral, FL 33172, USA

Contact Person: Zeng wei

E-Mail: zwei@ctasiasz.com

Telephone: 305.715.7171 FAX: 305.436.8819

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description Smart Phone Model Name B1550VL

Frequency Range 2400MHz~2483.5MHz
Equipment type Bluetooth® Low Energy

Type of Modulation GFSK

RF PHY LE 1M & 2M

Number of Channels 40

Antenna Type Integrated
Antenna Gain 2.4 dBi

Power Supply 3.85V DC by Battery FCC ID YHLBLUB1550VL

Condition of EUT as received No abnormality in appearance

3.2. Internal Identification of EUT

EUT ID*	IMEI	HW Version	SW Version	Receive Date
UT01aa	350547790004382	V1 0	BLU_B1550VL_V12.	2022-07-12
UTUTAA	330341130004302	V 1.U	0.02.05.02.17 FSec	2022-07-12

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE ID*	Description	SN
AE1	Battery	/
AE2	Charger	/

AE1

Model TN-BP4000N1

Manufacturer Guangdong Fenghua New Energy Co.,Ltd.

Capacity 4000mAh Nominal Voltage 3.85V

AE2

Model TN-050200U3

Manufacturer Guangdong Beicom Electronics Co.,Ltd.

3.4. General Description

The Equipment under Test (EUT) is a model of Smart Phone with integrated antenna and battery. It consists of normal options: Lithium Battery and Charger. Manual and specifications of the EUT were provided to fulfil the test. Samples undergoing test were selected by the client.

^{*}AE ID: is used to identify the test sample in the lab internally.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version		
FCC Part15	FCC CFR 47, Part 15, Subpart C:			
	15.205 Restricted bands of operation;			
	15.209 Radiated emission limits, general requirements;			
	15.247 Operation within the bands 902-928MHz,			
	2400-2483.5 MHz, and 5725-5850 MHz			
ANSI C63.10	American National Standard of Procedures for Compliance	2013		

Testing of Unlicensed Wireless Devices

5. Test Results

5.1. <u>Testing Environment</u>

Normal Temperature: 15~35°C Relative Humidity: 20~75%

5.2. Test Results

No	Test cases	Sub-clause of Part 15C	Verdict
0	Antenna Requirement	15.203	Р
1	Maximum Peak Output Power	15.247 (b)	Р
2	Peak Power Spectral Density	15.247 (e)	Р
3	6dB Bandwidth	15.247 (a)	Р
4	Band Edges Compliance	15.247 (d)	Р
5	Transmitter Spurious Emission - Conducted	15.247 (d)	Р

See ANNEX A for details.

5.3. Statements

SAICT has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.2 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.

Disclaimer:

- A. After confirmation with the customer, the sample information provided by the customer may affect the validity of the measurement results in this report, and the impact and consequences arising therefrom shall be borne by the customer.
- B. The samples in this report are provided by the customer, and the test results are only applicable to the samples received.

6. Test Equipments Utilized

Conducted test system

00	oundation tool oyotom						
No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due Date	Calibration Period	
1	Vector Signal Analyzer	FSV40	100903	Rohde & Schwarz	2022-12-29	1 year	
2	Power Sensor	U2021XA	MY55430013	Keysight	2022-12-29	1 year	
3	Data Acquisiton	U2531A	TW55443507	Keysight	/	/	

Test software

No.	Equipment	Manufacturer	Version
1	TechMgr Software	CAICT	2.1.1

EUT is engineering software provided by the customer to control the transmitting signal.

The EUT was programmed to be in continuously transmitting mode.

Anechoic chamber

Fully anechoic chamber by ETS-Lindgren

7. Laboratory Environment

Shielded room

Temperature	Min. = 15 °C, Max. = 35 °C		
Relative humidity	Min. = 20 %, Max. = 75 %		
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB		
Electrical insulation	> 2MΩ		
Ground system resistance	< 4 Ω		

8. Measurement Uncertainty

Test Name	Uncertainty (k=2)	
RF Output Power - Conducted	1.32	2dB
2. Power Spectral Density - Conducted	1.32dB	m/MHz
3. Occupied channel bandwidth - Conducted	4.56kHz	
	30MHz≤f<1GHz	1.41dB
4 Transmitter Spurious Emission Conducted	1GHz≤f<7GHz	1.92dB
4. Transmitter Spurious Emission - Conducted	7GHz≤f<13GHz	2.31dB
	13GHz≤f≤26GHz	2.61dB

ANNEX A: Detailed Test Results

A.0 Antenna requirement

Measurement Limit:

Standard	Requirement
Otanidard	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to
FCC CRF Part 15.203	comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Conclusion: The Directional gains of antenna used for transmitting is 2.4 dBi. The RF transmitter uses an integrate antenna without connector.

A.1 Maximum Peak Output Power

Method of Measurement: See ANSI C63.10-clause 11.9.1.3

The maximum peak conducted output power may be measured using a broadband peak RF power meter.

Measurement Limit:

Standard	Limit (dBm)	E.I.R.P Limit (dBm)	
FCC CRF Part 15.247 (b)	< 30	< 36	

Measurement Results:

Mode	Frequency (MHz)	Peak Conducted Output Power (dBm)	E.I.R.P (dBm)	Conclusion
	2402 (CH0)	-2.48	-0.08	Р
LE-1M	2440 (CH19)	-1.90	0.50	Р
	2480 (CH39)	-3.40	-1.00	Р
	2402 (CH0)	-2.68	-0.28	Р
LE-2M	2440 (CH19)	-2.08	0.32	Р
	2480 (CH39)	-3.53	-1.13	Р

Conclusion: Pass

A.2 Peak Power Spectral Density

Method of Measurement: See ANSI C63.10-clause 11.10.2

Measurement Limit:

Standard	Limit
FCC CRF Part 15.247 (e)	< 8 dBm/3 kHz

Measurement Results:

Mode	Frequency (MHz)	Peak Power Spectral Density (dBm)		Conclusion
	2402 (CH0)	Fig.1	-19.10	Р
LE-1M	2440 (CH19)	Fig.2	-18.45	Р
	2480 (CH39)	Fig.3	-19.91	Р
	2402 (CH0)	Fig.4	-22.96	Р
LE-2M	2440 (CH19)	Fig.5	-22.29	Р
	2480 (CH39)	Fig.6	-23.72	Р

See below for test graphs.

Conclusion: PASS

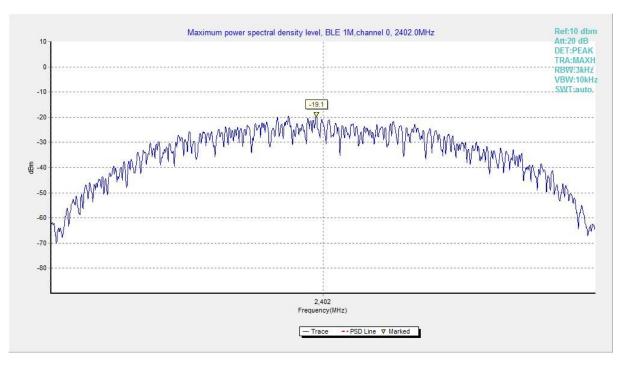


Fig.1 Power Spectral Density (Ch 0), LE 1M

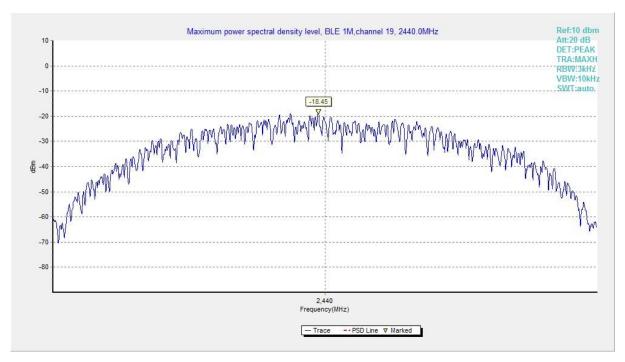


Fig.2 Power Spectral Density (Ch 19), LE 1M

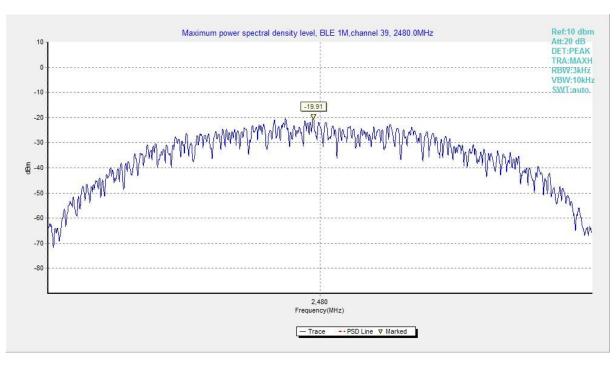


Fig.3 Power Spectral Density (Ch 39), LE 1M

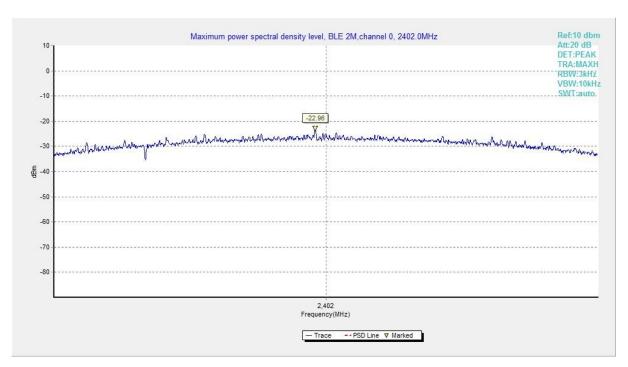


Fig.4 Power Spectral Density (Ch 0), LE 2M

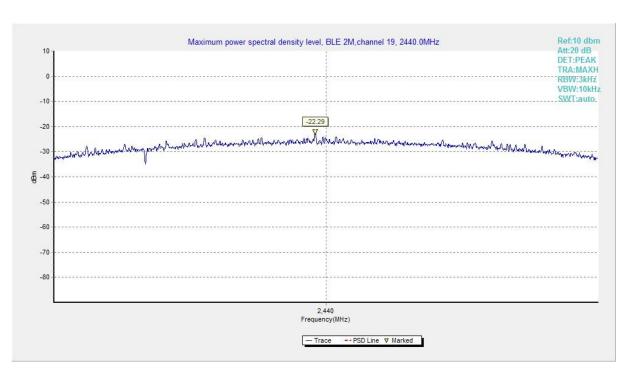


Fig.5 Power Spectral Density (Ch 19), LE 2M

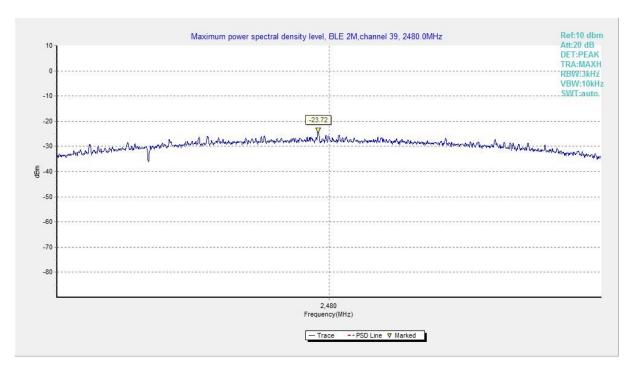


Fig.6 Power Spectral Density (Ch 39), LE 2M

A.3 6dB Bandwidth

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.247 (a)	≥ 500

Measurement Result:

Mode	Frequency (MHz)	Test Results (kHz)		Conclusion
LE-1M	2402 (CH0)	Fig.7	667.00	Р
	2440 (CH19)	Fig.8	667.00	Р
	2480 (CH39)	Fig.9	665.50	Р
LE-2M	2402 (CH0)	Fig.10	1169.00	Р
	2440 (CH19)	Fig.11	1170.50	Р
	2480 (CH39)	Fig.12	1172.50	Р

See below for test graphs.

Conclusion: PASS

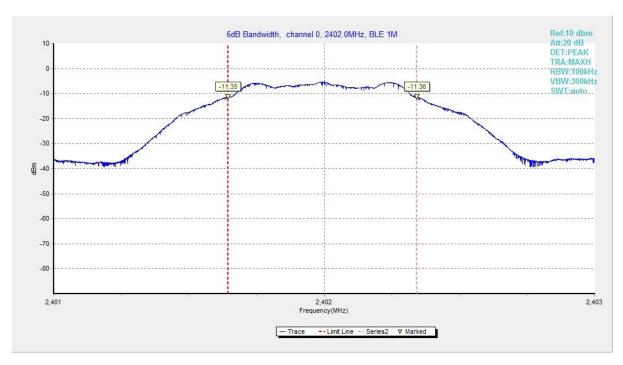


Fig.7 6dB Bandwidth (Ch 0), LE 1M

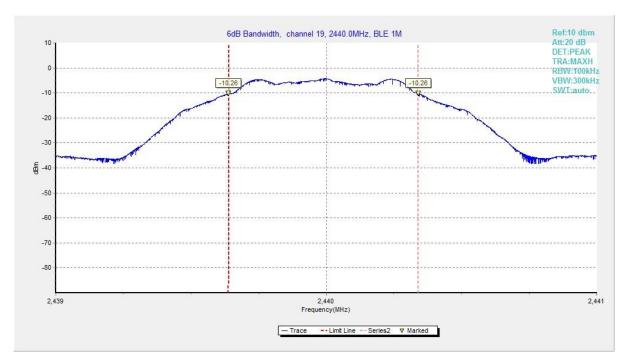


Fig.8 6dB Bandwidth (Ch 19), LE 1M

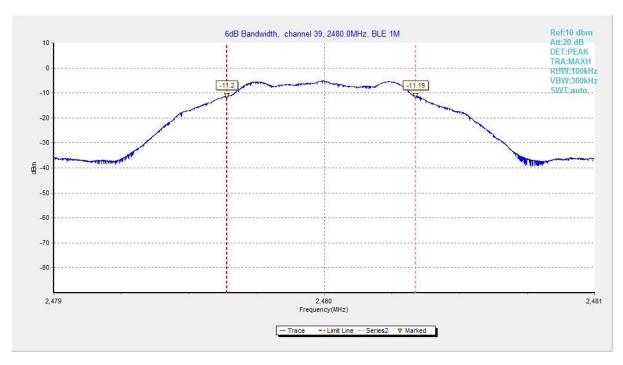


Fig.9 6dB Bandwidth (Ch 39), LE 1M

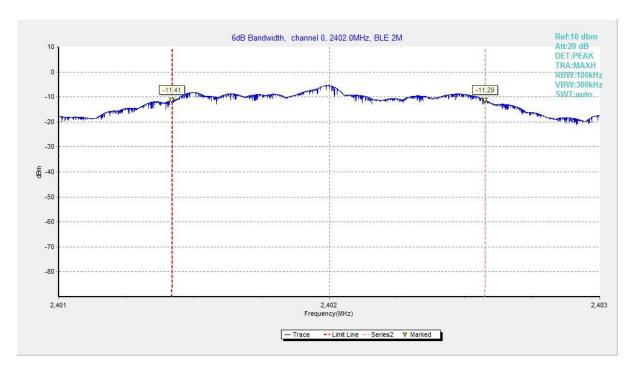


Fig.10 6dB Bandwidth (Ch 0), LE 2M

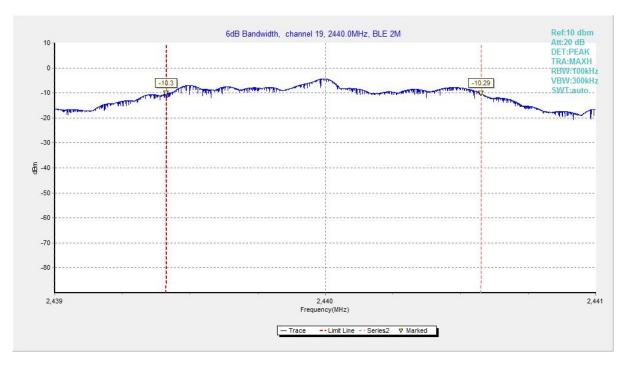


Fig.11 6dB Bandwidth (Ch 19), LE 2M

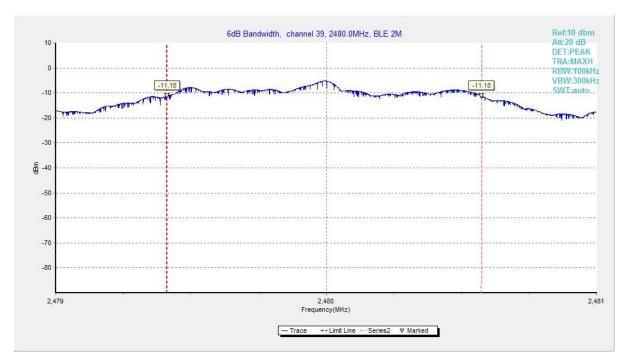


Fig.12 6dB Bandwidth (Ch 39), LE 2M

A.4 Band Edges Compliance

Measurement Limit:

Standard	Limit (dB)
FCC 47 CFR Part 15.247 (d)	> 20

Measurement Result:

Mode	Frequency (MHz)	Test Results (dB)		Conclusion
1 E 4M	2402 (CH0)	Fig.13	56.80	Р
LE-1M	2480 (CH39)	Fig.14	56.95	Р
LE-2M	2402 (CH0)	Fig.15	31.59	Р
	2480 (CH39)	Fig.16	56.17	Р

See below for test graphs.

Conclusion: Pass

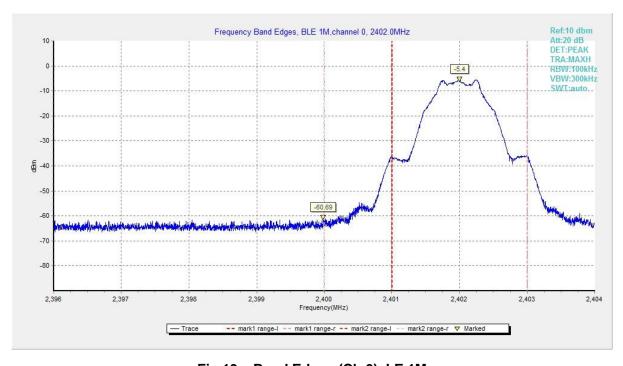


Fig.13 Band Edges (Ch 0), LE 1M

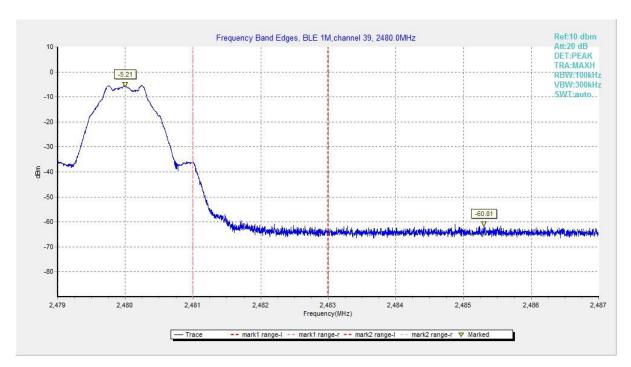


Fig.14 Band Edges (Ch 39), LE 1M

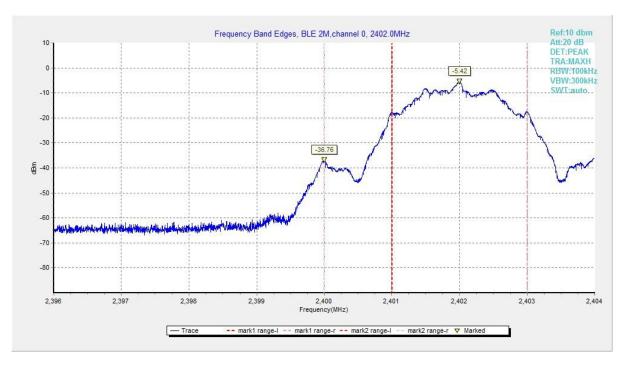


Fig.15 Band Edges (Ch 0), LE 2M

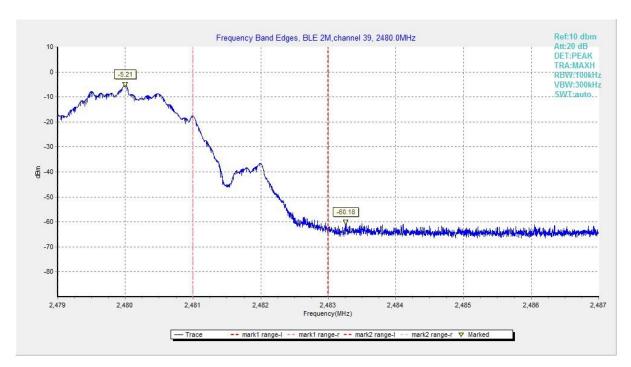


Fig.16 Band Edges (Ch 39), LE 2M

A.5 Transmitter Spurious Emission - Conducted

Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247 (d)	20dB below peak output power in 100kHz bandwidth	

Measurement Results:

MODE	Channel	Frequency Range	Test Results	Conclusion
	0	1 GHz ~ 3 GHz	Fig.17	Р
		3 GHz ~ 10 GHz	Fig.18	Р
	19	1 GHz ~ 3 GHz	Fig.19	Р
I = 4N4		3 GHz ~ 10 GHz	Fig.20	Р
LE-1M	39	1 GHz ~ 3 GHz	Fig.21	Р
		3 GHz ~ 10 GHz	Fig.22	Р
	All channels	30 MHz ~ 1 GHz	Fig.23	Р
		10 GHz ~ 26 GHz	Fig.24	Р
LE-2M	0	1 GHz ~ 3 GHz	Fig.25	Р
		3 GHz ~ 10 GHz	Fig.26	Р
	19	1 GHz ~ 3 GHz	Fig.27	Р
		3 GHz ~ 10 GHz	Fig.28	Р
	39	1 GHz ~ 3 GHz	Fig.29	Р
		3 GHz ~ 10 GHz	Fig.30	Р
	All channels	30 MHz ~ 1 GHz	Fig.31	Р
		10 GHz ~ 26 GHz	Fig.32	Р

See below for test graphs.

Conclusion: Pass

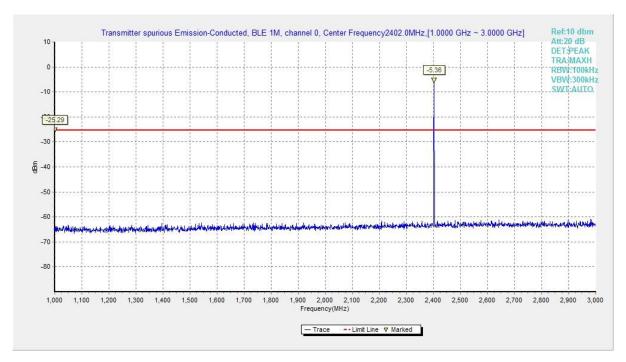


Fig.17 Conducted Spurious Emission (Ch0, 1 GHz-3 GHz), LE 1M

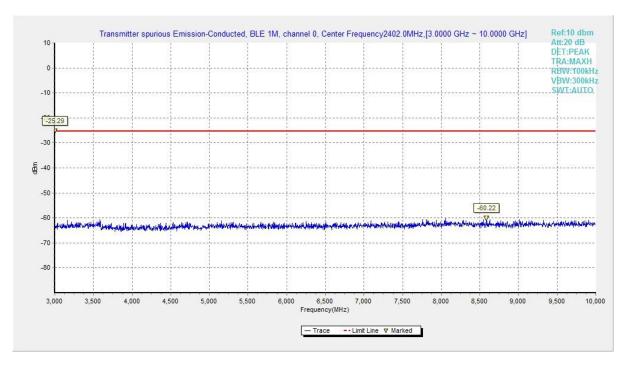


Fig.18 Conducted Spurious Emission (Ch0, 3 GHz-10 GHz), LE 1M

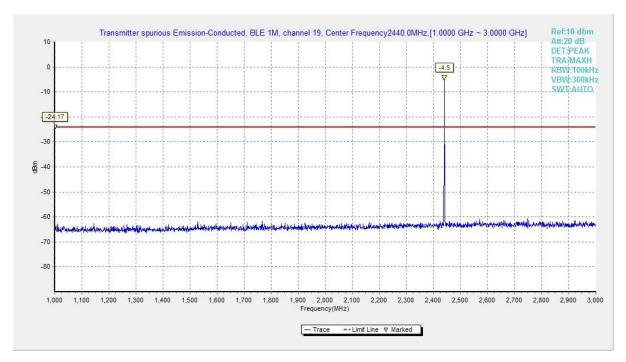


Fig.19 Conducted Spurious Emission (Ch19, 1 GHz-3 GHz), LE 1M

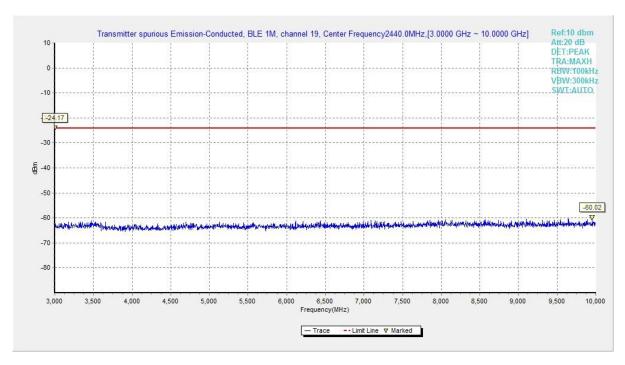


Fig.20 Conducted Spurious Emission (Ch19, 3 GHz-10 GHz), LE 1M

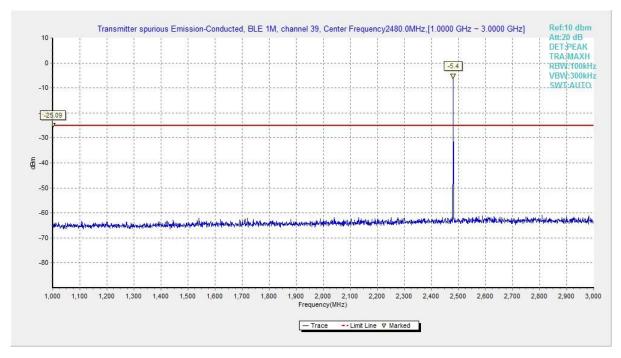


Fig.21 Conducted Spurious Emission (Ch39, 1 GHz-3 GHz), LE 1M

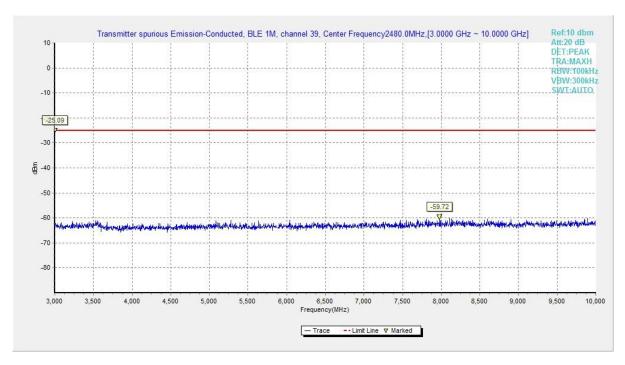


Fig.22 Conducted Spurious Emission (Ch39, 3 GHz-10 GHz), LE 1M

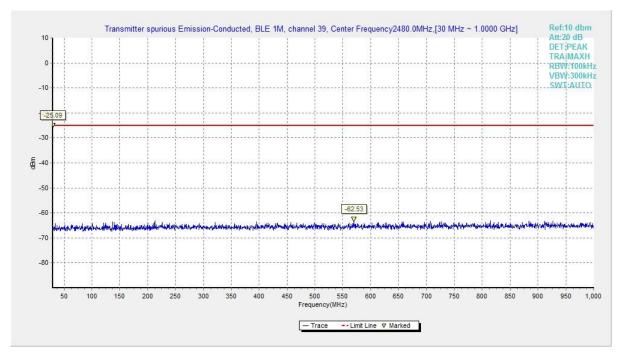


Fig.23 Conducted Spurious Emission (All channels, 30 MHz-1 GHz), LE 1M

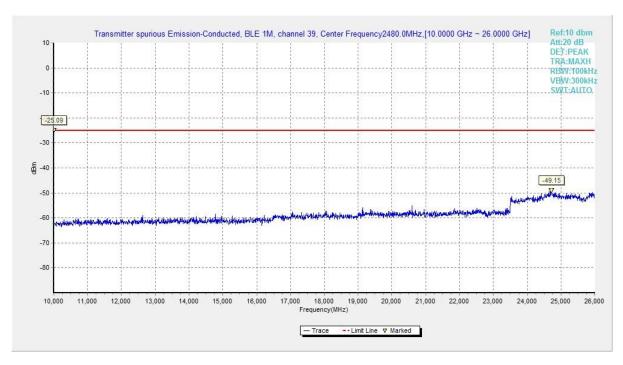


Fig.24 Conducted Spurious Emission (All channels, 10 GHz-26 GHz), LE 1M

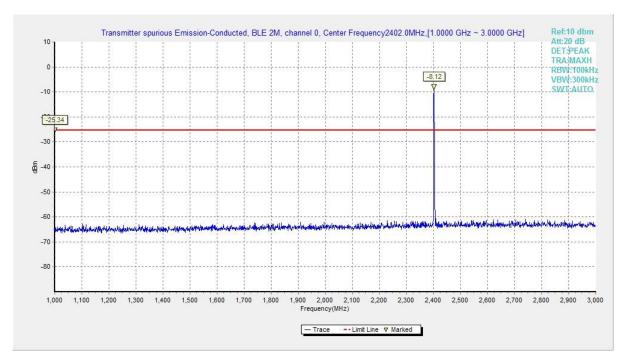


Fig.25 Conducted Spurious Emission (Ch0, 1 GHz-3 GHz), LE 2M

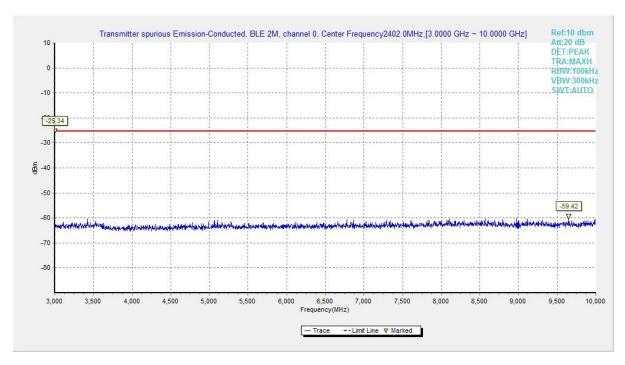


Fig.26 Conducted Spurious Emission (Ch0, 3 GHz-10 GHz), LE 2M

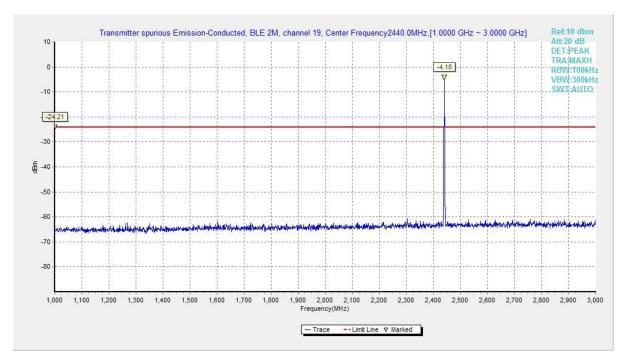


Fig.27 Conducted Spurious Emission (Ch19, 1 GHz-3 GHz), LE 2M

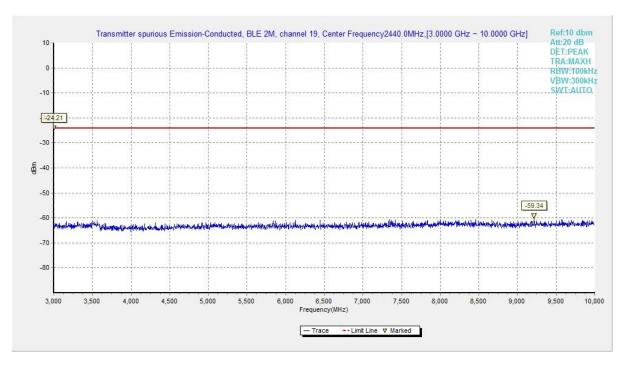


Fig.28 Conducted Spurious Emission (Ch19, 3 GHz-10 GHz), LE 2M

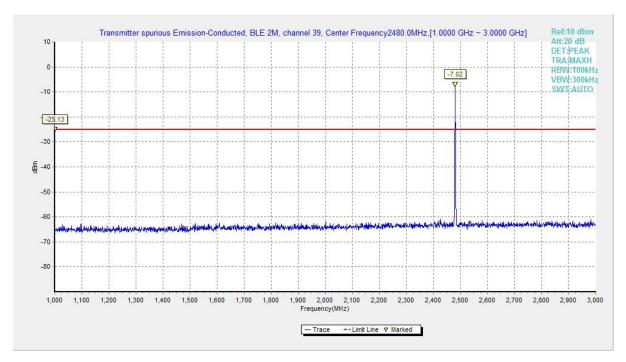


Fig.29 Conducted Spurious Emission (Ch39, 1 GHz-3 GHz), LE 2M

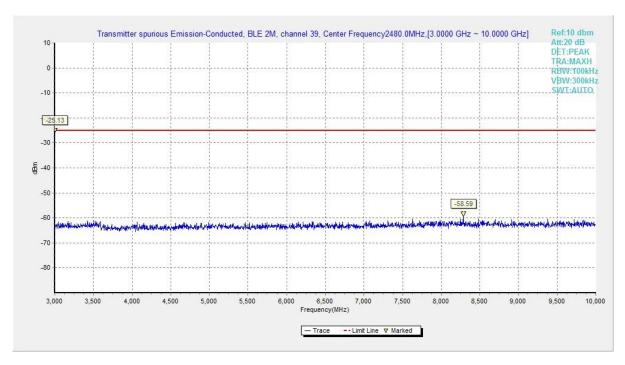


Fig.30 Conducted Spurious Emission (Ch39, 3 GHz-10 GHz), LE 2M

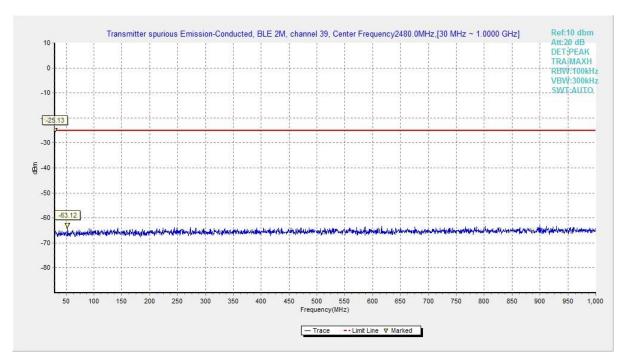


Fig.31 Conducted Spurious Emission (All channels, 30 MHz-1 GHz), LE 2M

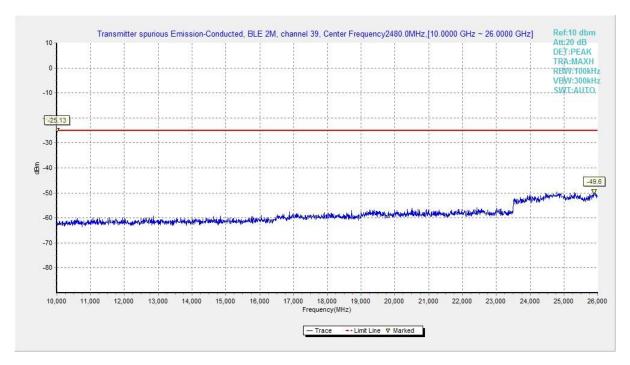


Fig.32 Conducted Spurious Emission (All channels, 10 GHz-26 GHz), LE 2M

END OF REPORT