Project #: 23094-15

Company: Hubbell Control Solutions

EUT: NXSMDT-OMNI

FCC and Industry Canada

Wireless Test Report

Prepared for:

Hubbell Control Solutions 710 Hesters Crossing Rd, Suite 100 Round Rock, TX 78681

Ву

Nemko PTI, Inc. 1601 North A.W. Grimes Blvd., Suite B Round Rock, Texas 78665

May 9, 2022

Written by

Shakil Murad Wireless Engineer

Table of Contents

	Result Summary	
1.0	Introduction	6
1.1	Scope	6
1.2	2 EUT Description	6
1.3	B EUT Test Mode	6
1.4	EUT Test Configuration	6
1.5	Modifications to Equipment	6
1.6	5 Test Site	6
1.7	Measurement Corrections	6
1.8		
	Fundamental Power	
2.1		
2.2		
2.3		
	Occupied Bandwidth	
3.1	•	
3.2		
3.3		
	Duty Cycle	
	Power Spectral Density	
5.1	1	
5.2		
5.3		
	Band Edge	
6.1		
	2 Test Criteria	
	3 Test Results	
	Conducted Antenna Port Spurious Emissions, Transmit Mode	
7.1	<u>.</u>	
7.1		
7.2		
	7.3.1 100 kHz Bandwidth Test data	
	7.3.2 1 MHz Bandwidth Test data	
	Transmitter Radiated Spurious Emissions	
8.1	1	
8.2		
	3 Test Results	
	8.3.1 Middle Channel, 30 MHz to 26.5 GHz	
	8.3.1 Bottom Channel, 1 GHz to 26.5 GHz	
	8.3.2 Top Channel, 1GHz to 26.5 GHz	
	Radiated Spurious Emissions, Receive Mode	
9.1	•	
9.2		
9.3		
,	9.3.1 Middle Channel 30 MHz to 14 GHz	
10.0	Antenna Construction	
10.0		
10.		
10		
11.0	Measurement Bandwidths	
12.0	Test Equipment	
12.0	1 1	
12.		
	ndix: Policy, Rationale, and Evaluation of EMC Measurement Uncertainty	
TUDELL	ngia. I oney, Kanonaie, and Evaluation of Eivie ivicasuicincil Uncertainty	3 /

NOTICE: (1) This Report must not be used to claim product endorsement, by NVLAP, NIST, the FCC or any other Agency. This report also does not warrant certification by NVLAP or NIST. (2) This report shall not be reproduced except in full, without the written approval of Nemko PTI, Inc. (3) The significance of this report is dependent on the representative character of the test sample submitted for evaluation and the results apply only in reference to the sample tested. The manufacturer must continuously implement the changes shown herein to attain and maintain the required degree of compliance.

Compliance Certificate

FCC MRA Designation Number: US5270 NVLAP Accreditation Number: 200062-0

Applicant	Device & Test Identification
Hubbell Control Solutions	Model(s): NXSMDT-OMNI
710 Hesters Crossing Rd, Suite 100	FCC ID: YH9NXSMDT-OMNI
Round Rock, TX 78681	IC: 9044A-NXSMDT-OMNI
	Laboratory Project ID: 23094-15

The device named above was tested utilizing the following standards and found to be in compliance with the required criteria:

Requirement	Reference	Detail
FCC 47 CFR Part 15 C	15.247	Operation within the bands <u>2400-2483.5 MHz</u>
FCC 47 CFR Part 15 C	15.209	Radiated emission limits; general requirements
FCC 47 CFR Part 15 C	15.205	Restricted Bands of Operation
FCC 47 CFR Part 15 C	15.203	Antenna requirement
FCC 47 CFR Part 1 I*	1.1310	Radiofrequency radiation exposure limits
RSS-247	Issue 2	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
RSS-Gen	Issue 5	General Requirements and Information for the Certification of Radio Apparatus
RSS-102	Issue 5	Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

^{*}MPE is reported separately from this document. **Corresponding RSS references are listed in the body of the report.

I, Shakil Murad, for Nemko PTI, Inc., being familiar with the above requirements and test procedures have reviewed the test setup, measured data, and this report. I believe them to be true and accurate.

Shakil Murad Wireless Engineer

This report has been reviewed and accepted by the Applicant. The undersigned is responsible for ensuring that this device will continue to comply with the requirements listed above.

Representative of Applicant	

Test Result Summary

Test	FCC Part 15 Rule Paragraphs	IC RSS References	Test Results	
Antenna Requirement	15.203	RSS-Gen 6.8	Pass	
Fundamental Power	15.247 (b)(3)	RSS-247 5.4 (d)	Pass	
Duty Cycle	15.247 (f)	RSS-247 5.3 (a)	Pass	
Power Spectral Density	15.247 (e)	RSS-247 5.2 (b)	Pass	
Occupied Bandwidth	15.247 (a)(2), 2.1049	RSS-247 5.2 (a)	Pass	
Band Edge	15.247 (d); 15.205 (a)	RSS-247 5.5;	Pass	
Conducted Spurious Emissions	15.247 (d);	RSS-247 5.5;	Pass	
Conducted Spurious Emissions	15.209 (a)	RSS-GEN 6.13	Pass	
Transmitter Radiated Spurious	15.247 (d);	RSS-247 5.5;	D	
Emissions	15.209 (a)	RSS-Gen 6.13 & 8.10	Pass	
Receiver Radiated Spurious Emissions	15.109	RSS-Gen 7.3	Pass	

1.0 Introduction

1.1 Scope

This report describes the extent to which the equipment under test (EUT) conformed to the intentional radiator requirements of the United States and Canada.

Nemko PTI, Inc., follows the guidelines of National Institute of Standards and Technology (NIST) for all uncertainty calculations, estimates, and expressions thereof for electromagnetic compatibility testing.

1.2 EUT Description

Manufacturer / Model	Serial #	Description
Hubbell Control Solutions Model: NXSMDT-OMNI	N/A	2.4GHz Bluetooth Low Energy Wireless Transmitter

1.3 EUT Test Mode

EUT has the capability to operate in BLE and Wirepas modes. Wirepas has the similar characteristics and the power levels as the BLE as observed during evaluation. Therefore, test data for BLE mode is reported in this report.

1.4 EUT Test Configuration

The EUT was exercised in a manner consistent with normal operations. The EUT is powered by +12 VDC via an external DC power supply.

1.5 Modifications to Equipment

The PCB mounted chip antenna was removed, and a small coaxial cable was soldered in its place to facilitate conducted RF measurements.

1.6 Test Site

Measurements were made at the Nemko PTI semi-anechoic facility designated Site 45 (FCC 776781, IC 3036B-1) in Austin, Texas. The site is registered with the FCC under Section 2.948 and Industry Canada per RSS-GEN, and is subsequently confirmed by laboratory accreditation (NVLAP). The test site is located at 11400 Burnet Road, Austin, Texas 78758, while the main office is located at 1601 North A.W. Grimes Boulevard, Suite B, Round Rock, Texas, 78665. CAB Identifier: US 0123.

1.7 Measurement Corrections

Parameter	From Sums Of
Radiated Field Strength	Raw Measured Level + Antenna Factor + Cable Losses – Amplifier Gain
Conducted Antenna Port	Raw Measured Level + Attenuator Factor + Cable Losses
Conducted Mains Port	Raw Measured Level + LISN Factor + Cable/Filter/Limiter Losses

Additionally, measurement distance extrapolation factors (such as 1/d above 30 MHz) are applied and documented where used.

1.8 Applicable Documents

Table 1.8.1: Applicable Documents

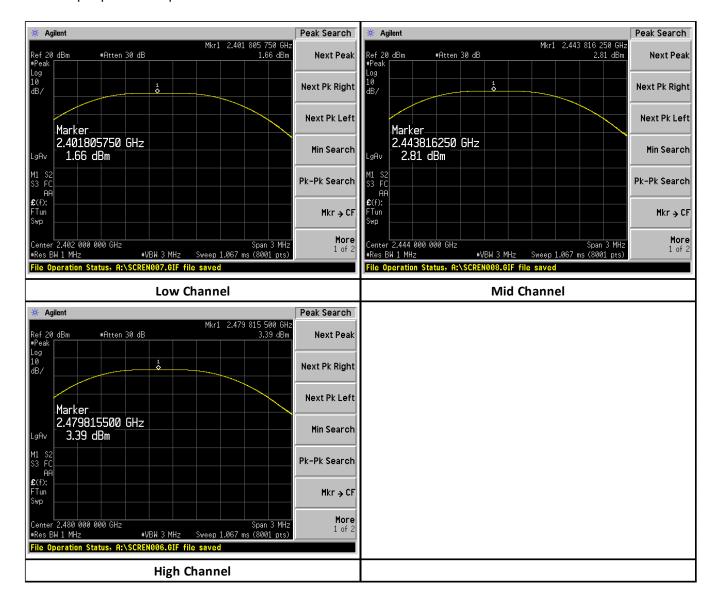
Document	Title
47 CFR	Part 15 – Radio Frequency Devices
47 CFN	Subpart C -Intentional Radiators
RSS-247 Issue 2	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-
N33-247 133UE 2	Exempt Local Area Network (LE-LAN) Devices
RSS-102 Issue 5	Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All
K33-102 ISSUE 3	Frequency Bands)
RSS-Gen Issue 5	General Requirements and Information for the Certification of Radio Apparatus
ANSI C63.10 2013	American National Standard of Procedures for Compliance Testing of Unlicensed
ANSI C03.10 2013	Wireless Devices
	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM,
KDB 558074 D01	FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES
	OPERATING UNDER SECTION 15.247 OF THE FCC RULES
	GUIDELINES FOR DETERMINING THE EFFECTIVE RADIATED POWER (ERP) AND
KDB 412172 D01	EQUIVALENT ISOTROPICALLY RADIATED POWER (EIRP) OF AN RF TRANSMITTING
	SYSTEM
KDB 447498 D01	RF EXPOSURE PROCEDURES AND EQUIPMENT AUTHORIZATION POLICIES FOR MOBILE
NDB 447496 DUI	AND PORTABLE DEVICES
OET Bulletin 65	Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency
Edition 97-01	Electromagnetic Fields

2.0 Fundamental Power

2.1 Test Procedure

The radio was connected directly to the spectrum analyzer for measurement. Low, mid, and high channel output power was measured.

2.2 Test Criteria


47 CFR (USA) // IC (Canada)	
Section Reference	Conducted Power Limit
15.247(b)(3) // RSS-247 (d)	1 W peak (+30dBm)

2.3 Test Results, Peak Power

Peak Output Power - Conducted Test Data																
Project Number: 22094-1				4-15 Test Date(s):						4/20/2022						
Environmental Conditions: Temperate				ure	22.8	22.8 °C Humidity 55 RH Barometric Pressure					sure	29.86	in Hg			
EUT (6 dB) Bandwidth: 0.684				MHz		-										
Measurem	ent Parame	ters:	RBW	1	MHz	VB	3W 3		MHz	Sp	Span		3 MHz		ctor	Peak
	Frequency			Attenuator Factor		Corrected Power		Limit								
Channel	(MHz)		(dBm)		(dB)		iB)		(dBm)		(dBm)		Test Result		ult	
Bottom	Bottom 2402 1.66		0		1.66		30			Pass						
Middle	2444		2.81		0		2.81		30		Pass					
Тор	2480		3.39				3.39			3.39 30 P		30		Pass		

The requirements were satisfied.

Peak output power test plots:

3.0 Occupied Bandwidth

3.1 Test Procedure

Bandwidth is measured and recorded. The bandwidth measurement is used to verify DTS characteristics and/or for general reporting for agency application.

3.2 Test Criteria

47 CFR (USA) // IC (Canada)						
Section Reference	Bandwidth					
15.247(a)(2), 2.1049 // RSS-247 5.2(a)	6 dB 500 kHz minimum 99% (all methods)					

In cases where the software function fails to find/mark the correct edge of the modulated envelope, a manual measurement (marker-delta over display line) is taken with the same spectrum analyzer settings.

3.3 Test Results, Occupied Bandwidth

Occupied Bandwidth - Conducted Test Data														
Project Number: 22094-						Tes	t Date	e(s):		4/20/2022				
Environmental Conditions: Temperat			ture	22.8	°C	Hum	idity	55	RH Bard	ometri	c Pres	sure	29.86	in Hg
Measurement Pa	Measurement Parameters: RBW			kHz	VB	w	300	kHz	Span	3	MHz	Dete	ctor	Peak
Measur	Measurement Bandwidth:			6	dB									
	Frequ	iency	М	Measured Bandwidth Reported Minimum Bandwid					idth					
Channel	(M)	Hz)		(kHz)										
Bottom 2402			701.802											
Middle 2444				683.68	683.68									
Top 2480				6	87.59	6								

The EUT met the requirements.

Occupied Bandwidth data plots, Recorded: 6 dB, 99% BW

4.0 Duty Cycle

Measurement is based on intervals not to exceed 100 msec. Maximum transmitter on time is divided by the lesser of 100 msec or the actual measured minimum transmitter interval time. The result is converted to dB and applied as needed to peak measurements of transmitter artifacts to determine average power. This is not a pass/fail measurement.

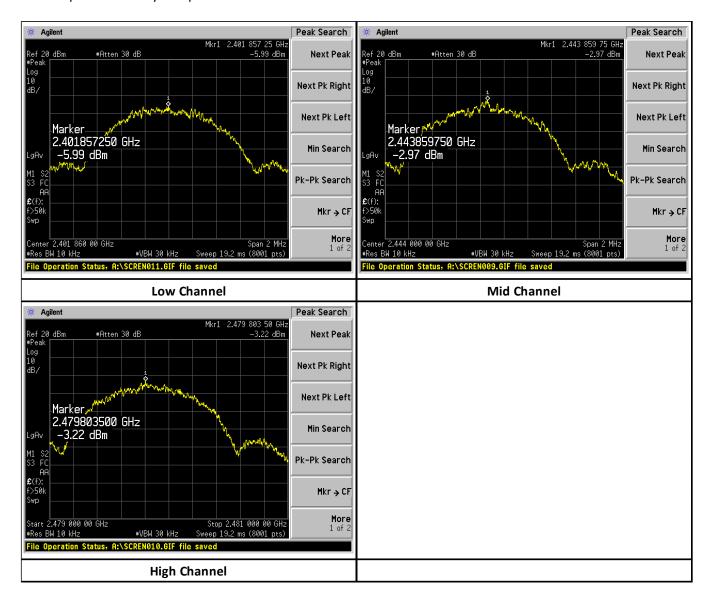
Duty Cycle Measurement

5.0 Power Spectral Density

5.1 Test Procedure

The radio was connected directly to the spectrum analyzer for measurement. Low, mid, and high channel was measured.

5.2 Test Criteria


47 CFR (USA) // IC (Canada)				
Section Reference	Power Spectral Density, Conducted Limit			
15.247(e) // RSS-247 5.2 (b)	8 dBm / 3 kHz			

5.3 Test Results, Power Spectral Density

	Power Spectral Density - Conducted Test Data															
Project	Project Number: 22094-15			5 Test Date(s):		4/20/2022										
Environmental Conditions: Temperatu		ure	22.8 °C Humidity 55 RH		Baro	metri	c Pres	sure	29.86	in Hg						
EUT Chan	nel Bandwi	dth:	0.70	MHz												
Measurem	Measurement Parameters: F		RBW	10	kHz	kHz VBW 30 kHz Sp		an	2	MHz	Dete	ctor	Peak			
	Frequency		easured Power		tenuat Factor		Co	rrecte	d Pov	ver		Limit				
Channel	(MHz)		(dBm)		(dB)			(dB	m)			(dBm)		Te	st Res	ult
Bottom	2402		-5.99		0			-5.	99			8			Pass	
Middle	2444		-2.97		0			-2.	97			8			Pass	
Тор	2480		-3.22		0			-3.	22			8			Pass	

The requirements were satisfied.

Power Spectral Density test plots:

6.0 Band Edge

6.1 Test Procedure

EUT is placed into normal transmit operation on the nearest band edge channel. The spectrum analyzer is approximately centered on the band edge frequency with span sufficient to include the peak of the adjacent fundamental signal. Measurement includes at least two standard bandwidths from the respective band edge. If required, the band-edge marker-delta method is utilized. The radio was connected directly to the spectrum analyzer for measurement.

6.2 Test Criteria

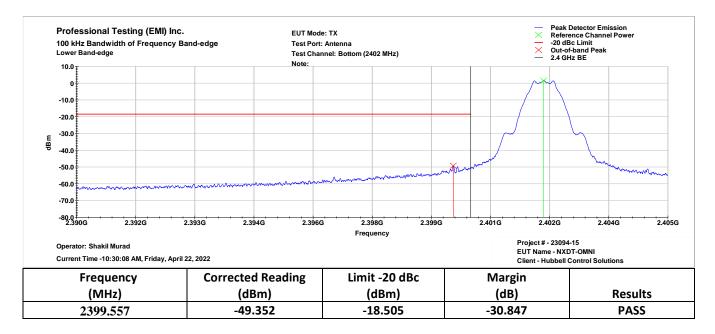
47 CFR (USA) // IC (Canada)				
Section Reference	Unwanted Emissions			
15.247 (d), 15.205 (a) //	Emissions Adjacent to Authorized Band			
RSS-247 5.5, RSS-Gen 6.13	Emissions Adjacent to Authorized Band			

6.3 Test Results

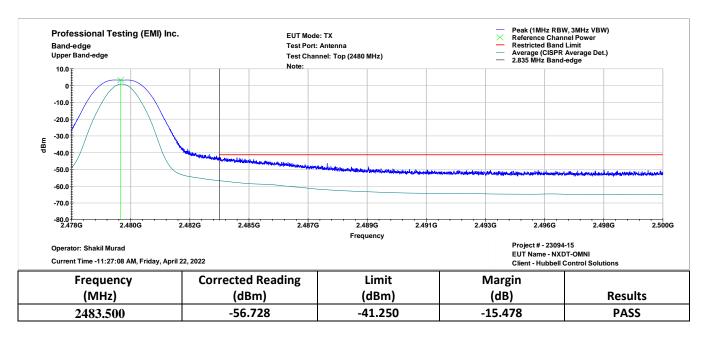
Measurements included fundamental and more than 2 standard bandwidths (standard bandwidth 1 MHz) beyond the band edges to provide a clear view of the fundamental and the declining emission levels. Beyond this point, the general emission limits are applied in the radiated emission tests reported elsewhere in the report.

This is a conducted measurement with limits derived from the general emission field strength limits. The far field path loss equation is utilized to convert the field strength limits to EIRP limits in dBm as follows:

Given EIRP =
$$E_{dB\mu V/m}$$
 + $20Log_{10}(d)$ – 104.8


EIRP = $54 \text{ dB}\mu\text{V/m} + 20\text{Log}_{10}(3 \text{ m}) - 104.8 \text{ dB} = -41.25 \text{ dBm}$ (commonly -41 dBm is applied)

Emissions below band were measured with peak detection in 100 kHz RBW.


Emissions above band measured with peak detection and 1 Hz video average in 1 MHz RBW if the peak emission exceeds the average limit.

The requirement was satisfied. Plotted results appear on the following page.

Lower Band-edge

Upper Band-edge

7.0 Conducted Antenna Port Spurious Emissions, Transmit Mode

7.1 Test Procedure

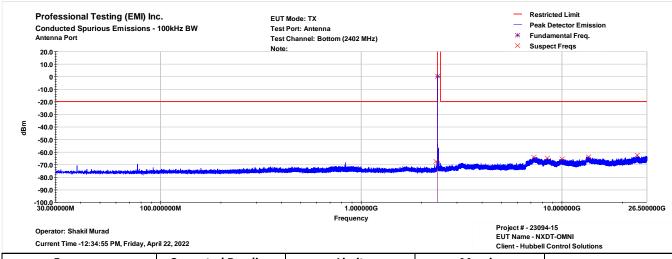
Conducted antenna port emissions are measured with the EUT transmitting on the required frequencies.

Table 7.1.1: Test Parameters

30 MHz to 1 GHz	1 GHz to 18 GHz	18 GHz to 25 GHz
120kHz RBW / 300kHz VBW	1MHz RBW / 3MHz VBW	1MHz RBW / 3MHz VBW
Quasi-peak	Peak & Average	Peak & Average

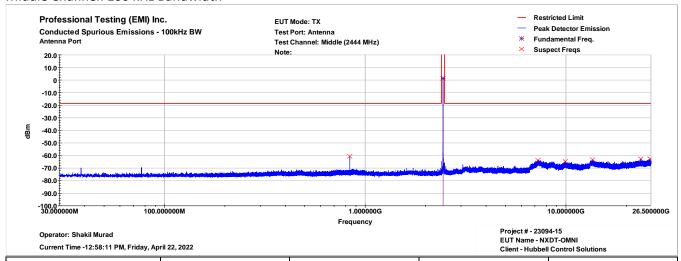
7.2 Test Criteria

47 CFR (USA) // IC (Canada)				
Section Reference	Unwanted Emissions			
15.247 (d), 15.209 (a) //	Antenna Port Conducted Spurious/Harmonic Emissions			
RSS-247 5.5, RSS-Gen 6.13	Transmit Mode			

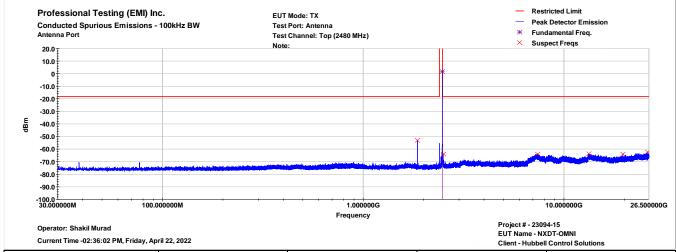

7.3 Test Results

Three channels were tested. EUT was transmitting continuously and modulated.

The top, middle and bottom channels were tested. 15.209 limits were applied to entire band for worst-case limits. The EUT satisfied the requirements.

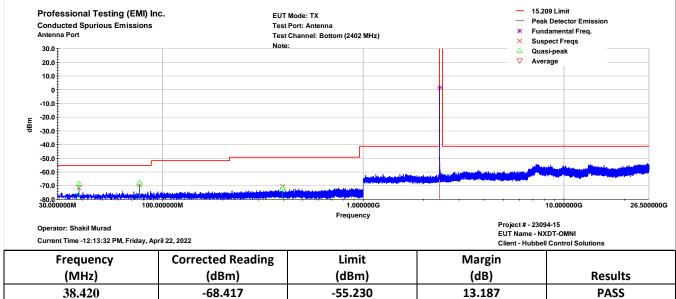

7.3.1 100 kHz Bandwidth Test data

Bottom Channel: 100 kHz Bandwidth

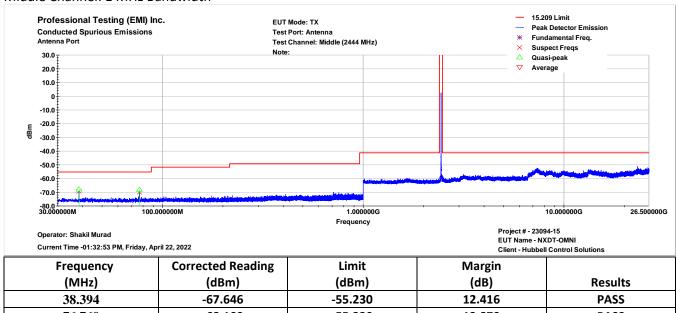

Frequency	Corrected Reading	Limit	Margin	
(MHz)	(dBm)	(dBm)	(dB)	Results
2363.450	-67.411	-19.675	47.736	PASS
7253.775	-63.995	-19.675	44.320	PASS
8459.925	-64.824	-19.675	45.149	PASS
10019.175	-65.507	-19.675	45.832	PASS
13552.104	-63.535	-19.675	43.860	PASS
23721.438	-62.440	-19.675	42.765	PASS

Middle Channel: 100 kHz Bandwidth

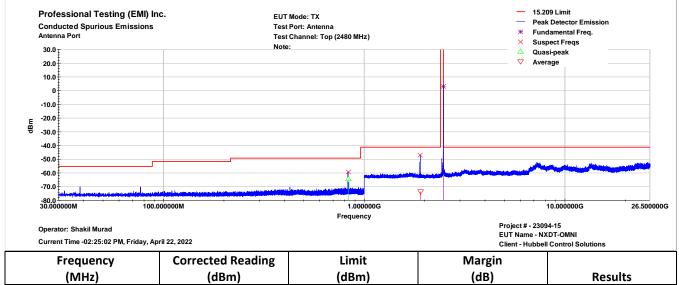
Frequency	Corrected Reading	Limit	Margin	
(MHz)	(dBm)	(dBm)	(dB)	Results
837.646	-60.739	-18.567	42.172	PASS
7248.000	-63.730	-18.567	45.163	PASS
9904.500	-64.564	-18.567	45.997	PASS
13591.375	-63.271	-18.567	44.704	PASS
23596.979	-62.711	-18.567	44.144	PASS
26252.896	-62.756	-18.567	44.189	PASS


Top Channel: 100 kHz Bandwidth

Frequency	Corrected Reading	Limit	Margin	
(MHz)	(dBm)	(dBm)	(dB)	Results
1862.400	-52.971	-18.320	34.651	PASS
2518.275	-63.969	-18.320	45.649	PASS
7403.100	-63.954	-18.320	45.634	PASS
13316.479	-63.761	-18.320	45.441	PASS
19656.604	-64.156	-18.320	45.836	PASS
26169.521	-62.362	-18.320	44.042	PASS


7.3.2 1 MHz Bandwidth Test data

Bottom Channel: 1 MHz Bandwidth



Frequency	Corrected Reading	Limit	Margin	
(MHz)	(dBm)	(dBm)	(dB)	Results
38.420	-68.417	-55.230	13.187	PASS
76.781	-67.873	-55.230	12.643	PASS
397.638	-71.627	-49.210	22.417	PASS

Middle Channel: 1 MHz Bandwidth

Top Channel: 1 MHz Bandwidth

8.0 Transmitter Radiated Spurious Emissions

8.1 Test Procedure

Radiated emissions are measured with the EUT transmitting on the required frequencies.

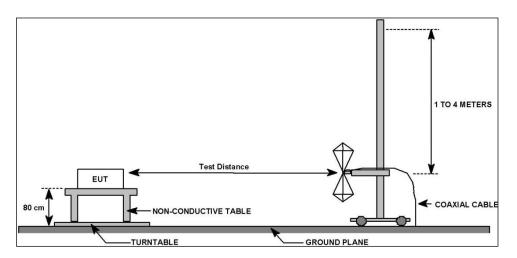
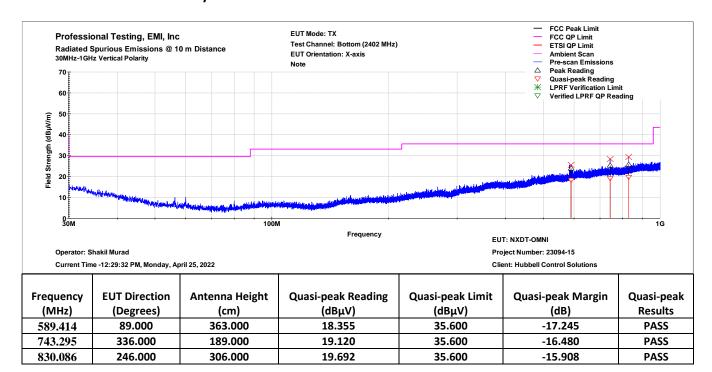


Table 8.1.1: Test Distance, Table Height, and Detection Method

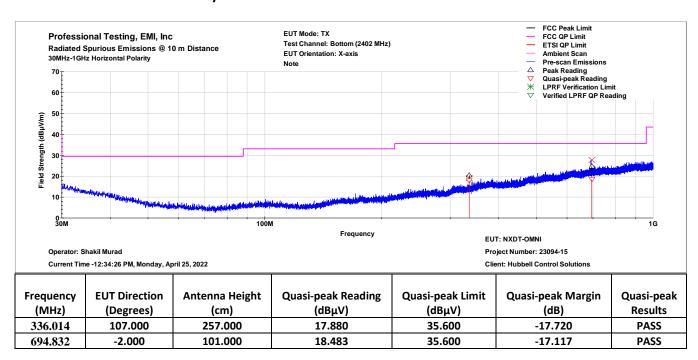
30 MHz to 1 GHz	1 GHz to 18 GHz	18 GHz to 26.5 GHz
10 m, 80 cm	3 m, 1.5 m	1 m, 1.5 m
Quasi-peak	Peak & Average	Peak & Average

8.2 Test Criteria

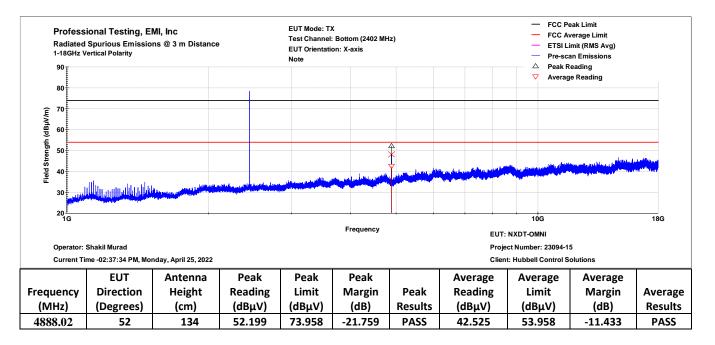
47 CFR (USA) // IC (Canada)	
Section Reference	Parameter
15.247(d), 15.209 (a) //	Field Strength of Radiated Spurious/Harmonic Emissions
RSS-247 5.5, RSS-Gen 6.13 & 8.10	Transmit Mode

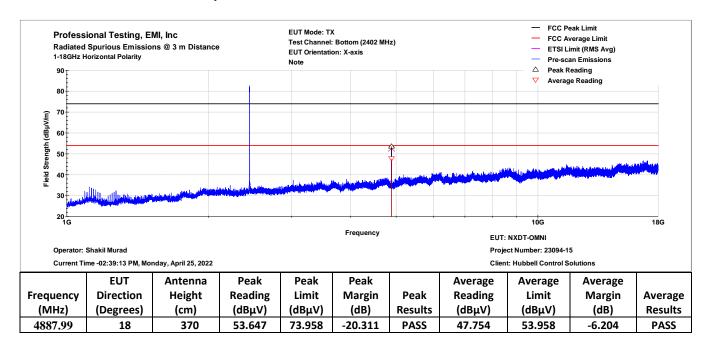

8.3 Test Results

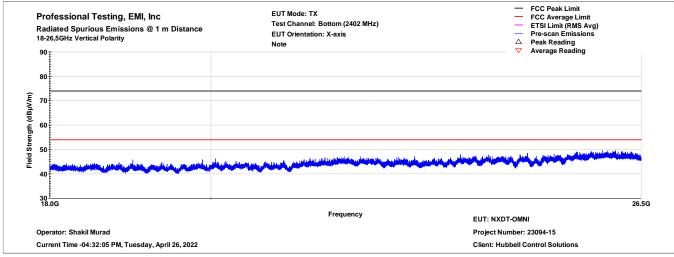
Three channels were tested. EUT was transmitting continuously and modulated. Device tested in normal operational orientation.


The EUT satisfied the requirement. Graphical and tabular data appears below.

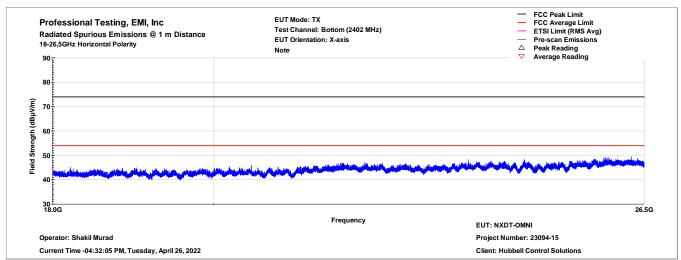
8.3.1 Middle Channel, 30 MHz to 26.5 GHz


30MHz - 1GHz Vertical Polarity Emissions Data


30MHz - 1GHz Horizontal Polarity Emissions Data

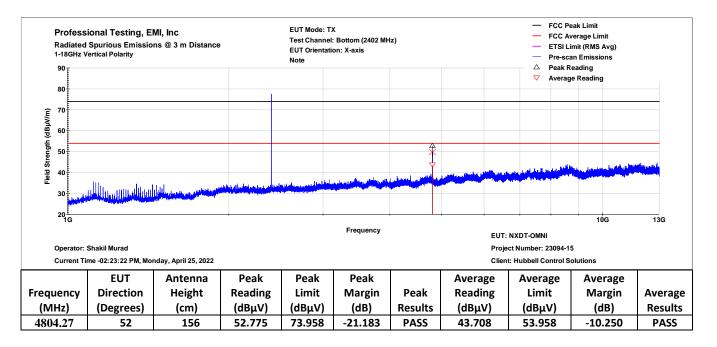

1GHz - 18GHz Vertical Polarity Emissions Data

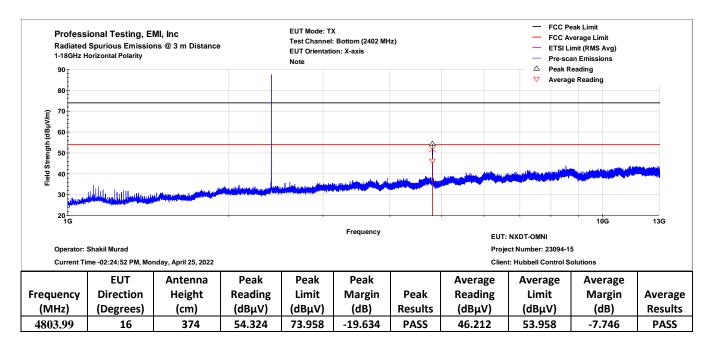
1GHz - 18GHz Horizontal Polarity Emissions Data



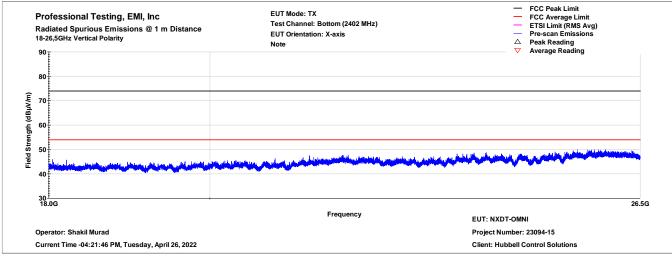
18GHz - 26.5GHz Vertical Polarity Emissions Data

Note: No emissions were observed.

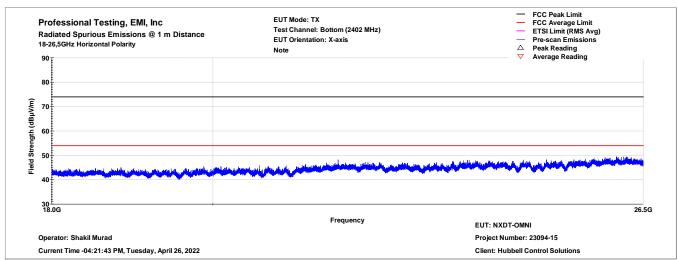

18GHz - 26.5GHz Horizontal Polarity Emissions Data


Note: No emissions were observed.

8.3.1 Bottom Channel, 1 GHz to 26.5 GHz

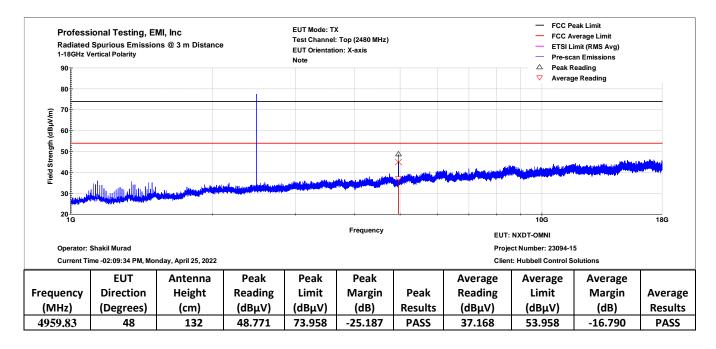

1GHz - 18GHz Vertical Polarity Emissions Data

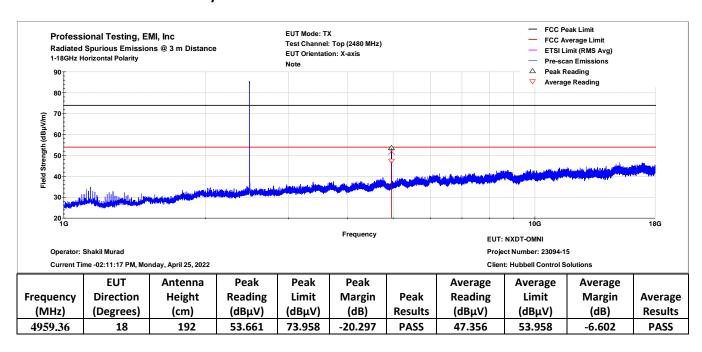
1GHz - 18GHz Horizontal Polarity Emissions Data



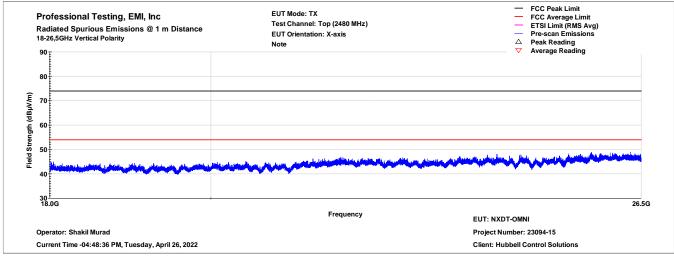
18GHz - 26.5GHz Vertical Polarity Emissions Data

Note: No emissions were observed.

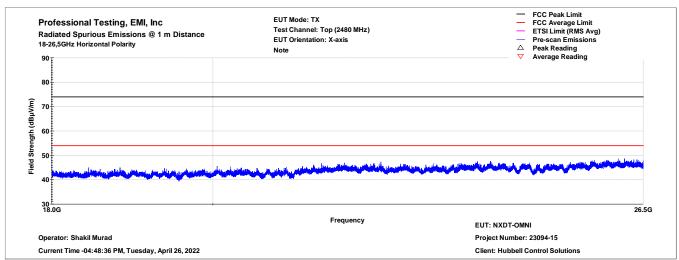

18GHz - 26.5GHz Horizontal Polarity Emissions Data


Note: No emissions were observed.

8.3.2 Top Channel, 1GHz to 26.5 GHz


1GHz - 18GHz Vertical Polarity Emissions Data

1GHz - 18GHz Horizontal Polarity Emissions Data



18GHz - 26.5GHz Vertical Polarity Emissions Data

Note: No emissions were observed.

18GHz - 26.5GHz Horizontal Polarity Emissions Data

Note: No emissions were observed.

9.0 Radiated Spurious Emissions, Receive Mode

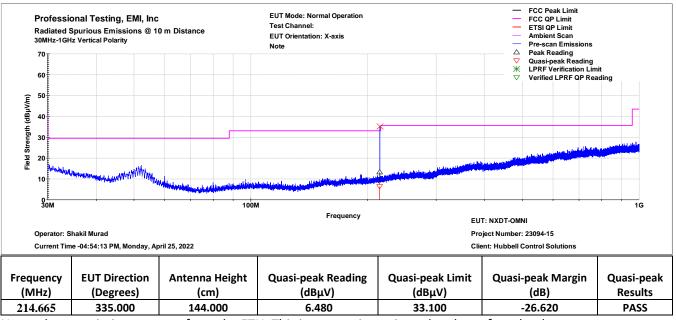
9.1 Test Procedure

The EUT was in normal operating mode (Transmitting and Receiving) during this measurements.

Table 9.1.1: Test Distance, Table Height, and Detection Method

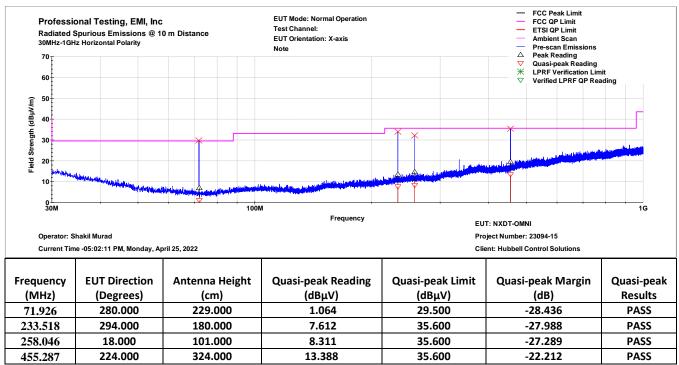
30 MHz to 1 GHz	1 GHz to 18 GHz	18 GHz to 25 GHz
10 m, 80 cm	3 m, 80 cm	1 m, 80 cm
Quasi-peak	Peak & Average	Peak & Average

9.2 Test Criteria

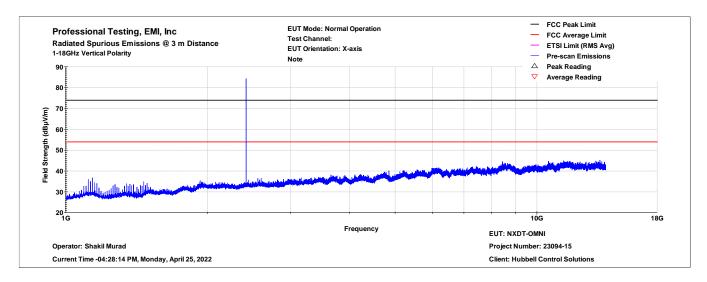

47 CFR (USA) // IC (Canada)				
Section Reference	Parameter			
15.109 // RSS-Gen 7.3	Field Strength of Radiated Spurious/Harmonic Emissions Receive Mode			

9.3 Test Results

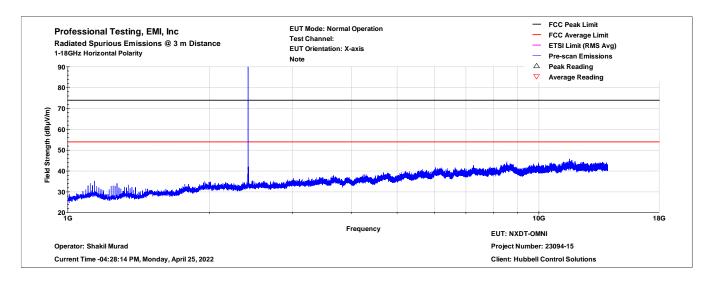
The requirement was satisfied. Graphical and tabular data appears below.


9.3.1 Middle Channel 30 MHz to 14 GHz

30MHz - 1GHz Vertical Polarity Emissions Data


Note: above emissions are not from the ETU. This issue was investigated and was found to be spontaneous emissions from the turntable movement

30MHz - 1GHz Horizontal Polarity Emissions Data



Note: above emissions are not from the ETU. This issue was investigated and was found to be spontaneous emissions from the turntable movement

1GHz - 18GHz Vertical Polarity Emissions Data

1GHz - 18GHz Horizontal Polarity Emissions Data

10.0 Antenna Construction

10.1 Procedure

A direct examination of the antenna construction is performed and compared to rule criteria that prevent wireless device antennas from being modified by end users.

10.2 Criteria

47 CFR (USA) // IC (Canada)		
Section Reference Antenna Construction		
15.203 // RSS-Gen 6.8	Type of Antenna(s)	
	Type of Connector	
	Gain	

10.3 Results

Table 8.3.1 Antenna Construction Details

Chip Antenna

Manufacturer: Pulse Model/PN: W3001

Antenna peak gain: 1.5 dBi

No connector.

Chip is soldered to circuit board.

User cannot substitute antenna.

Gain is under maximum limit of 6 dBi.

The requirement was satisfied.

11.0 Measurement Bandwidths

Radiated Emissions Spectrum Analyzer Bandwidth and Measurement Time - Peak Scan						
Frequency Band Start (MHz)	Frequency Band Stop (MHz)	6 dB Bandwidth (kHz)	Number of Ranges Used	Measurement Time per Range		
0.009	0.15	0.3	2	Multiple Sweeps		
0.15	30	9	6	Multiple Sweeps		
30	1000	120	2	Multiple 800 mS Sweeps		
1000	6000	1000	2	Multiple Sweeps		
6000	18000	1000	2	Multiple Sweeps		
18000	26500	1000	2	Multiple Sweeps		

*Notes:

- 1. The settings above are specifically calculated for the E4440A series of spectrum analyzers, which have 8,000 data points per range.
- 2. The measurement receiver resolution bandwidth setting was 300 Hz for quasi-peak measurements from 9-150 kHz.
- 3. The measurement receiver resolution bandwidth setting was 9 kHz for quasi-peak measurements from 0.15-30 MHz.
- 4. The measurement receiver resolution bandwidth setting was 120 kHz for quasi-peak measurements from 30-1000 MHz.
- 5. The measurement receiver resolution bandwidth setting was 1 MHz for average measurements from 1-18 GHz.

12.0 Test Equipment

12.1 Conducted Measurements at the Antenna Port

Asset#	Manufacturer	Model	Equipment Nomenclature	Serial Number	Calibration Due Date
2295	Keysight	E4440A-AYZ	PSA Spectrum Analyzer	MY46186204	1/5/2023
1117	HP	6296A	Power Supply, DC, 60V 3A	1552A02489	N/A

12.2 Radiated Spurious Emissions

Tile! Software Version: Version: 7.1.2.17 (Jan 08, 2016 - 02:12:48 PM) or 4.1.A.0, April 14 2009, 11:01:00PM					A.0, April 14,	
	Test Profile: 2020_RE_Unintentional_TILE7_v4					
Asset #	Manufacturer	Model	Equipment Nomenclature	Serial Number	Calibration Due Date	
1509A	Braden	TDK 10M	K 10M TDK 10M Chamber, NSA < 1 GHz		4/9/2023	
1969	НР	11713A	Attenuator/Switch Driver	3748A04113	N/A	
942	EMCO	11968D	Turntable, 4ft.	9510-1835	N/A	
1326	EMCO	1051-12	Controller, Antenna Mast	9101-1564	N/A	
1244	EMCO	1050C	Controller, Antenna Mast	1100	N/A	
C027	none	RG214	Cable Coax, N-N, 25m, 25MHz - 1GHz	None	9/14/2022	
C233	Sucoflex	None	Cable, SMA-SMA, 7.62m, 9kHz - 1.5 GHz, Purple	None	10/22/2023	
2172	ETS-Lindgren	3142C	Antenna, Biconilog, 26 MHz-3GHz	49383	3/11/2023	
1457	НР	8447D	Preamp, .1-1300MHz	1937A02800	10/21/2022	
C289	Pasternack	PE354-24	Cable, N-SMA, 0.610m Blue	1310	9/9/2022	
C030	none	none	Cable Coax, N-N, 30m, 1 - 18GHz None		9/15/2022	
C038	none	LMR-400	Cable Coax, N-N, 0.15m	None	N/A	
1780	Dytran	3032A	Accelerometer, Voltage Mode	2703	3/3/2024	
2004	Miteq	AFS44- 00101800-2S- 10P-44	Amplifier, 40dB, 100MHz-18GHz None		1/14/2024	
745	0	ZKL1500-1	Amplifier, 40dB, 0.1-1500MHz	618-00180	N/A	
1326	EMCO	1051-12	Controller, Antenna Mast	9101-1564	N/A	
1542	A.H. Systems	SAS-572	Antenna, Horn 18-26.5GHz, 20dB gain 225		N/A	
1973	Agilent	83017A	Amplifier, Microwave 0.5-26.5 GHz MY39500497		11/10/2022	
1937	Agilent	E4440A - AYZ	PSA , 3 Hz - 26.5 GHz, Opt. AYZ	MY44808298	11/12/2022	

Appendix: Policy, Rationale, and Evaluation of EMC Measurement Uncertainty

All uncertainty calculations, estimates and expressions thereof shall be in accordance with NIST policy. Since PTI operates in accordance with NIST (NVLAP) Handbook 150-11: 2007, all instrumentation having an effect on the accuracy or validity of tests shall be periodically calibrated or verified traceable to national standards by a competent calibration laboratory. The certificates of calibration or verification on this instrumentation shall include estimates of uncertainty as required by NIST Handbook 150-11.

1. Rationale and Summary of Expanded Uncertainty.

Each piece of instrumentation at Nemko PTI that is used in making measurements for determining conformance to a standard (or limit), shall be assessed to evaluate its contribution to the overall uncertainty of the measurement in which it is used. The assessment of each item will be based on either a type A evaluation or a type B evaluation. Most of the evaluations will be type B, since they will be based on the manufacturer's statements or specifications of the calibration tolerances, or uncertainty will be stated along with a brief rationale for the type of evaluation and the resulting stated uncertainties.

The individual uncertainties included in the combined standard uncertainty for a specific test result will depend on the configuration in which the item of instrumentation is used. The combination will always be based on the law of propagation of uncertainty. Any systematic effects will be accommodated by including their uncertainties, in the calculation of the combined standard uncertainty; except that if the direction and amount of the systematic effect cannot be determined and separated from its uncertainty, the whole effect will be treated as uncertainty and combined along with the other elements of the test setup.

Type A evaluations of standard uncertainty will usually be based on calculating the standard deviation of the mean of a series of independent observations, but may be based on a least-squares curve fit or the analysis of variance for unusual situations. Type B evaluations of standard uncertainty will usually be based on manufacturer's specifications, data provided in calibration reports, and experience. The type of probability distribution used (normal, rectangular, a priori, or u-shaped) will be stated for each Type B evaluation.

In the evaluation of the uncertainty of each type of measurement, the uncertainty caused by the operator will be estimated. One notable operator contribution to measurement uncertainty is the manipulation of cables to maximize the measured values of radiated emissions. The operator contribution to measurement uncertainty is evaluated by having several operators independently repeat the same test. This results in a Type A evaluation of operator-contributed measurement uncertainty.

A summary of the expanded uncertainties of Nemko PTI measurements is shown as Table 1. These are the worst-case uncertainties considering all operative influence factors.

Table 1: Summary of Measurement Uncertainties for Site 45

Type of Measurement	Frequency Range	Meas. Dist.	Expanded Uncertainty U, dB (k=2)
Mains Conducted Emissions	150 kHz to 30 MHz	N/A	2.9
Telecom Conducted Emissions	150 kHz to 30 MHz	N/A	2.8
Radiated Emissions	30 to 1,000 MHz	10 m	4.8
	1 to 18 GHz	3 m	5.7

End of Report