



THE STANDARDS INSTITUTION OF ISRAEL

Electronics & Telematics Laboratory

***Test Report No. 9512306145***

***Applicant: Stratasys Ltd.***

**Equipment Under Test:**

***RFID reader system for  
Duplex Material Cabinet***

***From The Standards Institution  
Of Israel  
Industry Division  
Electronics & Telematics Laboratory  
EMC Branch***



***Certificate Number: AT-1359***

**Test Report No.:** 9512306145**Page 1 of 18 pages****Title:** RFID reader system for Duplex Material Cabinet**Model:** RFID reader BRD-08015, antenna board BRD-03012

|                                     |                                                                |
|-------------------------------------|----------------------------------------------------------------|
| <b>Applicant:</b>                   | Stratasys Ltd.                                                 |
| <b>Address:</b>                     | 2 Holzman St., Science Park, P.O.B 2496, Rehovot 76124, Israel |
| <b>Sample for test selected by:</b> | The customer                                                   |
| <b>The date of test:</b>            | 22 February 2015                                               |

**Description of Equipment****Under Test (EUT):**

RFID reader system for Duplex Material Cabinet

**Model:**

RFID reader BRD-08015, antenna board BRD-03012

**Hardware version of radio unit**

A

**Software version of radio unit**

1.1

**Manufactured by:**

Stratasys Ltd.

**Reference Documents:**

- ❖ CFR 47 FCC: Rules and Regulations; Part 15. "Radio frequency devices";  
Subpart B: "Unintentional radiators" (2014).  
Section 15.109. Radiated emission limits.  
Subpart C: "Intentional radiators" (2014),  
Section 15.207. Conducted limits  
Section 15.209. "Radiated emission limits, general requirements".

This Test Report contains 19 pages  
and may be used only in full.

This Test Report applies only to the specimen tested and may not  
be applied to other specimens of the same product.



Test Report No.: 9512306145

Page 2 of 18 pages

**Title:** RFID reader system for Duplex Material Cabinet**Model:** RFID reader BRD-08015, antenna board BRD-03012

## 1. Test summary

| Parameter                | FCC Part 15<br>Reference paragraph | Verdict |
|--------------------------|------------------------------------|---------|
| Radiated emission test.  | Subpart C Section 15.209.          | Comply  |
| Radiated emission test.  | Subpart B Section 15.109 class A   | Comply  |
| Conducted emissions test | Subpart C Section 15.207           | Comply  |

Electronics and  
Telematics Laboratory  
July 2015

Name: Eng. Yuri Rozenberg  
Position: Head of EMC Branch

Name: Michael Feldman  
Position: Test Technician

Measurement uncertainty.

The test equipment has been calibrated according to its recommended procedures and is within the manufacturer's published limit of error.

The laboratory calibrates its standards by a third party (traceable to NIST, USA) on a regular basis according to equipment manufacturer requirements.

In the following table the uncertainty calculation is given.

| Type of disturbance<br>Test description                                                             | Calculated uncertainty<br>$U_{LAB}$ |
|-----------------------------------------------------------------------------------------------------|-------------------------------------|
| <b>Conducted emissions</b><br>150 kHz to 30 MHz                                                     | $\pm 2.8$ dB                        |
| <b>Radiated disturbance</b><br>electric field strength in a SAR at 3 m distance<br>30 MHz – 1.0 GHz | $\pm 4.32$ dB                       |
| electric field strength in a FAR at 3 m distance<br>1.0 GHz – 18 GHz                                | $\pm 4.47$ dB                       |

**Test Report No.:** 9512306145**Page 3 of 18 pages****Title:** RFID reader system for Duplex Material Cabinet**Model:** RFID reader BRD-08015, antenna board BRD-03012

## **Table of Contents**

|                                                                 |           |
|-----------------------------------------------------------------|-----------|
| <b>1. Test summary</b>                                          | <b>2</b>  |
| <b>2. EUT Description and operation</b>                         | <b>4</b>  |
| 2.1. General description:                                       | 4         |
| 2.2. Potential emission sources:                                | 7         |
| 2.3. EUT setup and operation:                                   | 7         |
| <b>3. Measurements, examinations and derived results</b>        | <b>7</b>  |
| 3.1. Location of the Test Site:                                 | 7         |
| 3.2. Test condition:                                            | 7         |
| 3.3. Initial visual check and functional test:                  | 7         |
| 3.4. Radiated emission test.                                    | 8         |
| 3.5. Test of field strength emission from intentional radiator. | 9         |
| 3.6. AC main conducted emissions test                           | 12        |
| 3.7. Test of radiated emissions from unintentional radiator     | 14        |
| <b>4. Appendix 1. Test equipment used.</b>                      | <b>15</b> |
| <b>5. Appendix 2: Antenna Factor and Cable Loss</b>             | <b>16</b> |



Test Report No.: 9512306145

Page 4 of 18 pages

**Title:** RFID reader system for Duplex Material Cabinet**Model:** RFID reader BRD-08015, antenna board BRD-03012

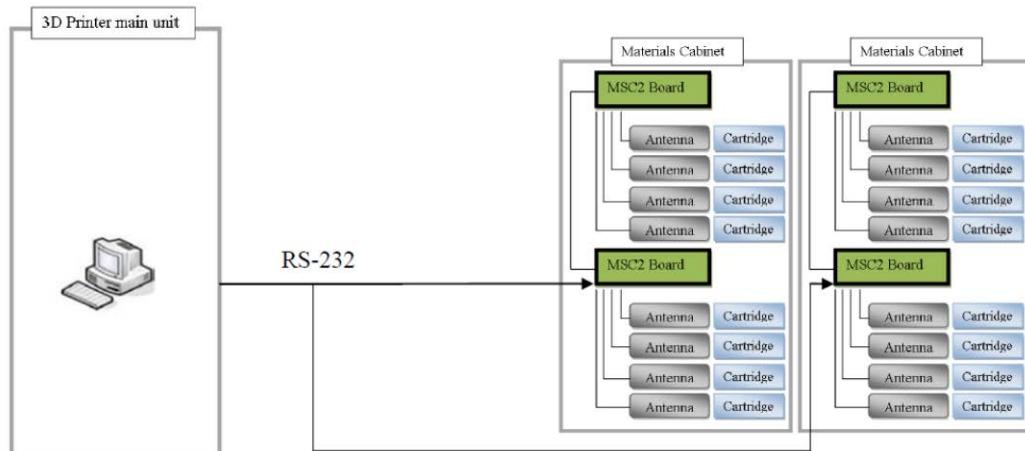
## 2. EUT Description and operation

### 2.1. General description:

\* Note: the customer supplied all information in clause below.

The EUT is RFID transceiver on MSC2 board installed inside material resin cabinet of 3D printer. The Duplex Material cabinet contains 4 boards and 16 antennas. Product's main functions are read and write data from material container protected by RFID identification tags attached to the resin material container. Its intended use is to identify the type of resin. The RFID unit voltage is 5V (produced from the main 24VDC). Through RS-232 interface the RFID MCU (PIC16F876A) gets commands: Number of channel, read or write etc.

The RFID signal is generated by the RFID chip (HTRC11001).


This RF signal from RFID chip is directed to a MUX chip that switches the RF energy to only one of the four channel antennas at certain time.

RS-232 interface connected internally inside a 3D printer.

The test was done by simulating all antennas at maximum duty cycle.

|                     |                                           |
|---------------------|-------------------------------------------|
| Transmit frequency: | 125 kHz                                   |
| Type of modulation: | AM                                        |
| Antenna type:       | Loop coil mfr. Stratasys model. BRD-03012 |

The Duplex Material Cabinet and RFID unit block diagrams are shown in Figures 1 and 2. The EUT's views are shown in photos below.



**Figure 1. Duplex cabinet block diagram.**

Test Report No.: 9512306145

Page 5 of 18 pages

**Title:** RFID reader system for Duplex Material Cabinet  
**Model:** RFID reader BRD-08015, antenna board BRD-03012

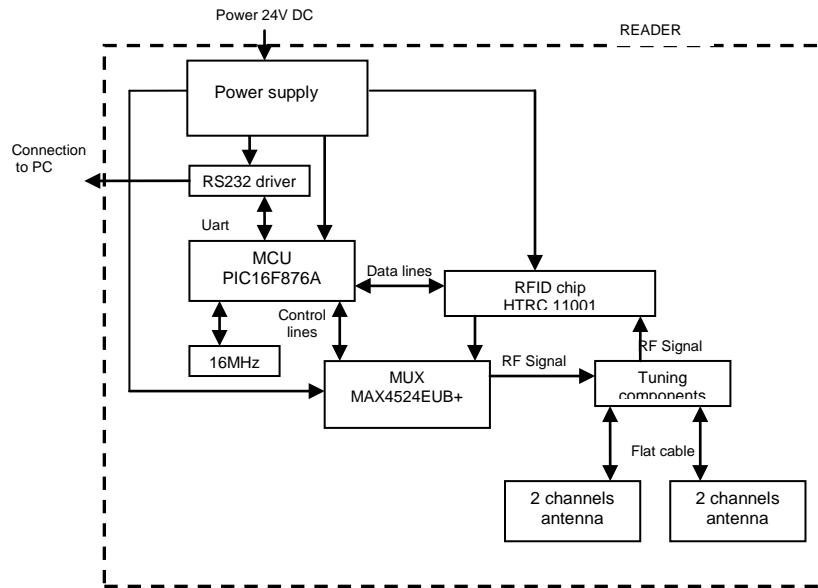



Figure 2. The RFID unit block-diagram.



**Test Report No.: 9512306145**

**Page 6 of 18 pages**

**Title:** RFID reader system for Duplex Material Cabinet

**Model:** RFID reader BRD-08015, antenna board BRD-03012



**Photo 1. Duplex cabinet view.**



**Photo 2. RE test setup**



**Photo 3. RE test setup**

**Test Report No.:** 9512306145**Page 7 of 18 pages****Title:** RFID reader system for Duplex Material Cabinet**Model:** RFID reader BRD-08015, antenna board BRD-03012

## 2.2. Potential emission sources:

The potential emission sources are detailed in Table 1.

**Table 1. Potential emission sources**

| Frequency        | Location                   |
|------------------|----------------------------|
| 125 kHz          | RFID (derived from 16 MHz) |
| 16 MHz crystal   | RFID                       |
| 33.3 MHz crystal | MSC board (CPLD)           |

## 2.3. EUT setup and operation:

Measurements were performed in continue transmission mode by simulating all channel antennas and using Max Hold mode.

# 3. Measurements, examinations and derived results

## 3.1. Location of the Test Site:

Radiated emission test was conducted at the EMC laboratory of the Standards Institution of Israel in Tel-Aviv.

## 3.2. Test condition:

Temperature: 22°C. Humidity: 53 %. Atmospheric pressure: 1009 mbar.

**Test Report No.:** 9512306145**Page 8 of 18 pages****Title:** RFID reader system for Duplex Material Cabinet**Model:** RFID reader BRD-08015, antenna board BRD-03012

### 3.3. Radiated emission test.

#### 3.3.1. General:

Per FCC Part 15 subpart B, C Sections 15.109, 15.209

#### 3.3.2. Radiated emission measurements procedure:

The radiated emission measurements were performed in the semi Anechoic chamber at the 3 m test distance. The EUT was installed on a turn - table. Measurements were performed with Active loop antenna at frequencies below 30 MHz and with Biconilog antenna above 30 MHz. The measurements were performed at each frequency that was founded previously. The levels were maximized by rotating turntable through 360° and changing antenna-to-EUT polarization from vertical to horizontal. The worse case result was noted in tables.

#### 3.3.3. Radiated emission test results:

All received emissions from the RFID transmitter were found below FCC Part 15 Subpart C sections 15.209 and below FCC part 15.109 class A limit for digital part. Final result measurements are presented in table #2 in section 3.4.5 and table #3 section 3.6.2.

**Test Report No.:** 9512306145**Page 9 of 18 pages****Title:** RFID reader system for Duplex Material Cabinet**Model:** RFID reader BRD-08015, antenna board BRD-03012

### 3.4. Test of field strength emission from intentional radiator.

#### 3.4.1. General:

Per FCC Part 15 Subpart C section 15.209 (a).

#### 3.4.2. Requirements:

The RFID operation frequency is 125 kHz.

The average field strength emission from intentional radiators operated on this frequency shall comply with the limit of section 15.209 (a).

| Emission frequency<br>MHz | Specified Field Strength<br>limit of Fundamental<br>$\mu$ V/m@300m | Calculated Field<br>Strength limit<br>dB $\mu$ V/m@3m |
|---------------------------|--------------------------------------------------------------------|-------------------------------------------------------|
| 0.125                     | 2400/F                                                             | 105.6                                                 |

Note: The field strength limit was calculated with 40 dB/decade linear distance extrapolation factor.

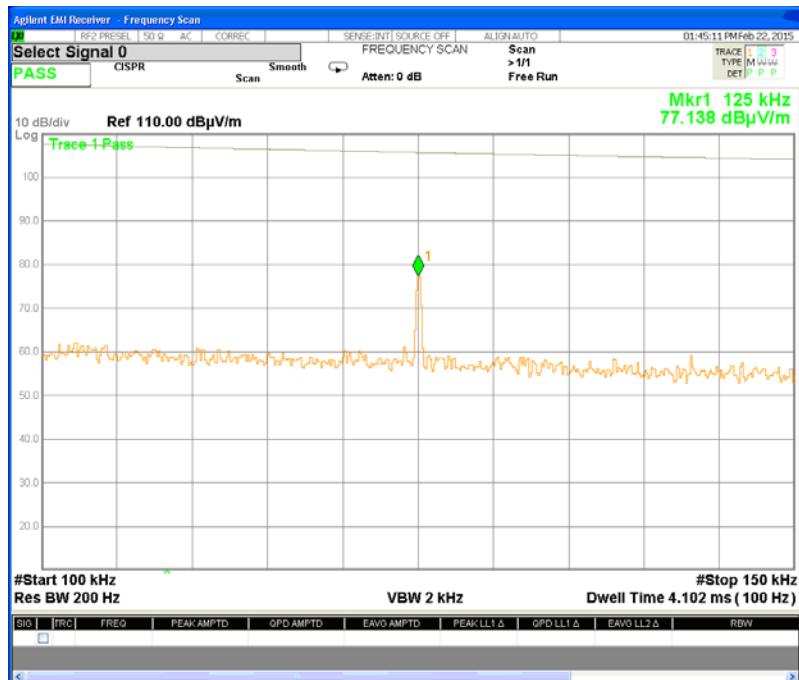
The field strength of any unwanted emissions shall not exceed the general radiated emission limits in § 15.209.

#### 3.4.3. Test procedure:

The test was conducted according to clause 15.209.

#### 3.4.4. Test summary:

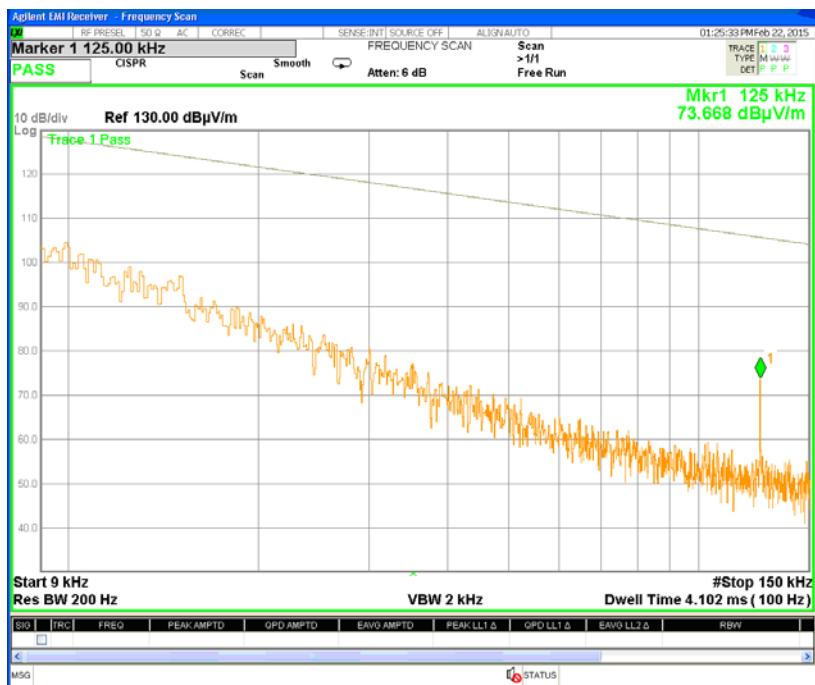
The tested unit meets the standard requirement.


Test Report No.: 9512306145

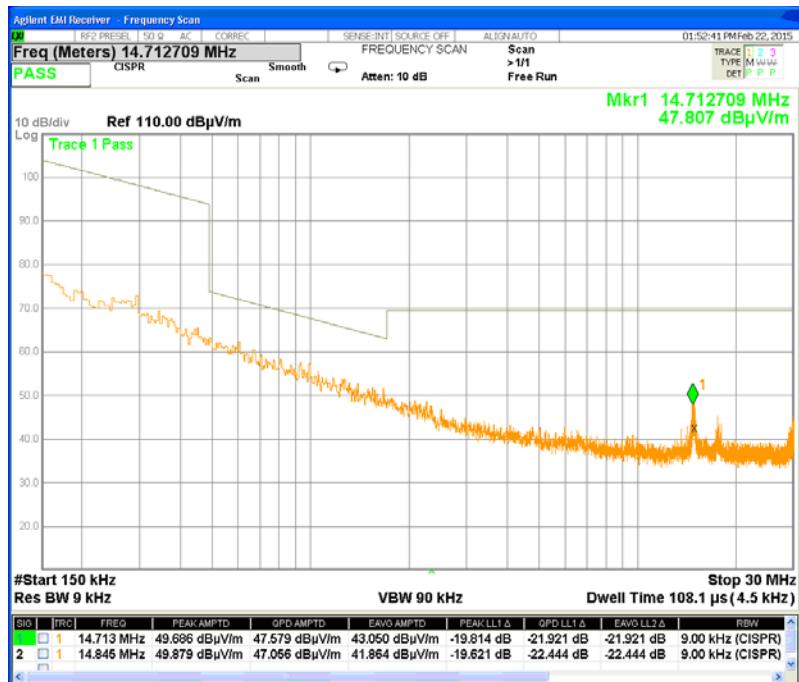
Page 10 of 18 pages

**Title:** RFID reader system for Duplex Material Cabinet**Model:** RFID reader BRD-08015, antenna board BRD-03012**3.4.5. Test results:****Table # 2. Fundamental frequency test result**

| Carrier frequency<br>MHz | Peak amplitude<br>dB $\mu$ V/m | Limit@ 3m<br>dB $\mu$ V/m |
|--------------------------|--------------------------------|---------------------------|
| 0.125                    | 77.1                           | 105.6                     |


For recorded fundamental frequency result see plot #1.

The received radiated emission result was found below the § 15.209 specified limit.  
Investigation scans of spurious emission present in plots ## 2 and 3**Plot # 1. Field strength of fundamental frequency 125 kHz.**




Test Report No.: 9512306145

Page 11 of 18 pages

**Title:** RFID reader system for Duplex Material Cabinet**Model:** RFID reader BRD-08015, antenna board BRD-03012

Plot # 2. Frequency scan 0.009 - 0.15 MHz. Test distance =3m.



Plot # 3. Frequency scan 0.15 – 30 MHz. Test distance =3m.

**Test Report No.:** 9512306145**Page 12 of 18 pages****Title:** RFID reader system for Duplex Material Cabinet**Model:** RFID reader BRD-08015, antenna board BRD-03012

### 3.5. AC main conducted emissions test

Per FCC Part 15 subpart B Section 15.207

**Test configuration:**

The EUT as a part inside 3D printer was placed in a shielded room on reference ground plane (floor) at 80 cm from the LISN and any other metal part or surface of the room.

#### 3.5.1. **Test procedure:**

First, initial scans were performed. Final measurements were performed at the frequencies where emission exceeded the tolerance limit.

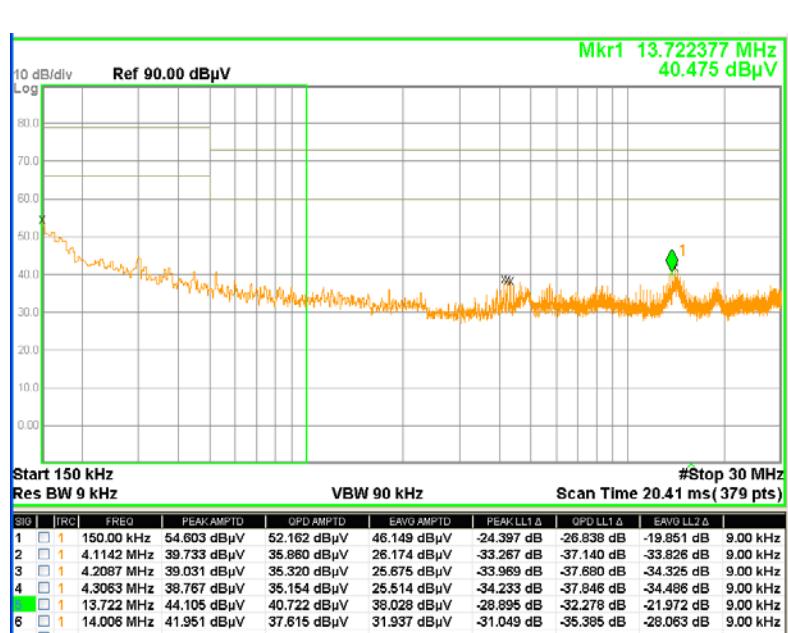
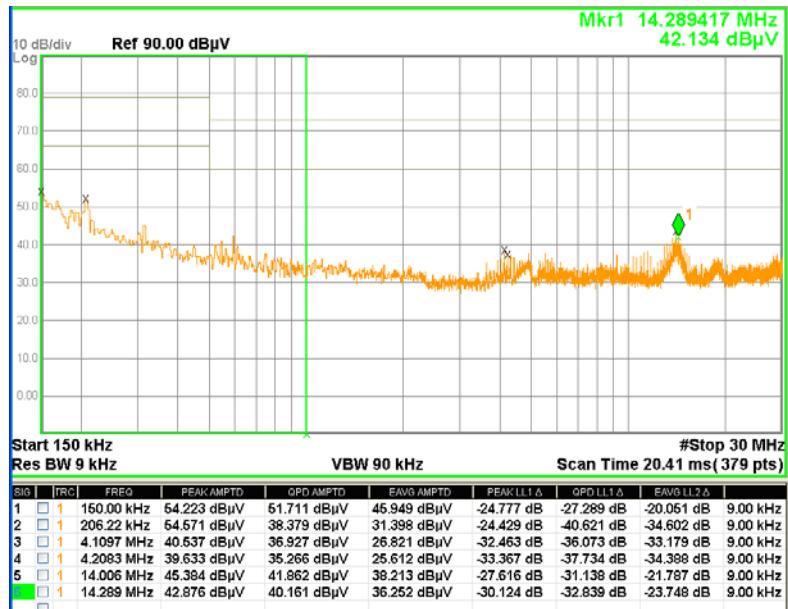
Test equipment (EMI receiver) setup was as follow:

**Initial scan:**

|               |          |
|---------------|----------|
| Detector type | Peak     |
| Mode          | Max hold |
| Bandwidth     | 9 kHz    |

**Measurements:**

|               |                             |
|---------------|-----------------------------|
| Detector type | Quasi-peak (CISPR), Average |
| Bandwidth     | 9 kHz                       |



#### 3.5.2. **Test results:**

All received emissions from EUT were found below FCC Part 15.207 limits (see plots ## 4, 5 below).



Test Report No.: 9512306145

Page 13 of 18 pages

**Title:** RFID reader system for Duplex Material Cabinet**Model:** RFID reader BRD-08015, antenna board BRD-03012

**Test Report No.:** 9512306145**Page 14 of 18 pages****Title:** RFID reader system for Duplex Material Cabinet**Model:** RFID reader BRD-08015, antenna board BRD-03012

### 3.6. Test of radiated emissions from unintentional radiator

Per FCC Part 15 subpart B Section 15.109

#### 3.6.1. Test procedure:

The EUT was on at normal performance.

First, initial scans were performed. Final measurements were performed according to clause 3.3.2.

##### Initial scan:

Detector type Peak  
Mode Max hold  
Bandwidth 120 kHz

##### Measurements:

Detector type Quasi-peak (CISPR)  
Bandwidth 120 kHz

#### 3.6.2. Radiated emission test results:

All received emissions were found below FCC Part 15 class A limit and presented in table 3 below.

**Table 3. Radiated emission test results  
Subpart B class A 3 m distance.**

| Frequency<br>MHz | Antenna<br>Polariz.<br>V/H | Antenna<br>Height<br>m | Turn-<br>table<br>Angle<br>(°) | Emission<br>Level<br>Note 1<br>dB $\mu$ V/m | Limit<br>@ 3 m<br>dB $\mu$ V/m | Margin<br>dB | Results  |
|------------------|----------------------------|------------------------|--------------------------------|---------------------------------------------|--------------------------------|--------------|----------|
| 31.5             | V                          | 1.0                    | 249                            | 35.5                                        | 49.5                           | 14           | Complies |
| 50.0             | V                          | 1                      | 241                            | 43.0                                        | 49.5                           | 6.5          | Complies |
| 55.7             | V                          | 1                      | 179                            | 39.7                                        | 49.5                           | 9.8          | Complies |
| 60.5             | V                          | 1                      | 187                            | 41.1                                        | 49.5                           | 8.4          | Complies |
| 66.2             | V                          | 1                      | 282                            | 39.1                                        | 49.5                           | 10.4         | Complies |
| 170.4            | H                          | 1.2                    | 179                            | 33.3                                        | 54.0                           | 20.7         | Complies |

**Note 1:** Emission level = E Reading (dB $\mu$ V) + Cable loss (dB) + Antenna Factor (dB/m)  
For Cable Loss and Antenna Factor refer to Appendix 2

**Test Report No.: 9512306145****Page 15 of 18 pages****Title: RFID reader system for Duplex Material Cabinet****Model: RFID reader BRD-08015, antenna board BRD-03012**

#### 4. Appendix 1. Test equipment used.

All measurements equipment is on SII calibration schedule with a recalibration interval not exceeding one year.

##### Test equipment used

| No | Description                                     | Manufacturer information       |                  |            | Due Calibration date |
|----|-------------------------------------------------|--------------------------------|------------------|------------|----------------------|
|    |                                                 | Name                           | Model            | Serial No  |                      |
| 1  | MXE EMI Receiver<br>20 Hz -26.5 GHz             | Agilent                        | N9038A           | SII 650114 | February 2016        |
| 2  | Double Ridged Guide Antenna<br>0.75 – 18 GHz    | ETS-Lindgren                   | 3115             | 00143138   | December 2015        |
| 3  | Broadband Horn antenna<br>15 – 40 GHz           | Schwarzbeck<br>Mess-Electronik | BBHA 9170        | 9170-341   | December 2015        |
| 4  | Double Ridged Waveguide Horn Antenna 1 – 18 GHz | ETS-Lindgren                   | 3117             | 00139055   | December 2015        |
| 5  | Antenna Biconilog<br>30 – 6000 MHz              | ETS-Lindgren                   | 31142D           | 0146490    | December 2015        |
| 6  | Spectrum analyzer<br>9 kHz-6.0 GHz              | Rohde&Schwarz                  | FSL              | SII5912    | May 2015             |
| 7  | EMI Analyser<br>9 kHz - 26.5 GHz                | HP                             | E7405A           | SII 4944   | May 2015             |
| 8  | Attenuator 3 dB<br>DC – 12.4 GHz                | HP                             | 8491A            | 50469      | October 2015         |
| 9  | LISN 9 kHz – 30 MHz                             | FCC                            | LISN 250-32-4-16 | SII5023    | October 2015         |
| 10 | Transient limiter<br>0.009-200 MHz              | HP                             | 11947A           | 3107105    | August 2015          |
| 11 | Cable RF 1m                                     | Huber-Suhner                   | Sucoflex 104PE   | 21325/4PE  | October 2015         |
| 12 | Cable RF 4m                                     | Huber-Suhner                   | Sucoflex 104PE   | 21329/4PE  | October 2015         |
| 13 | Cable RF 0.5m                                   | Huber-Suhner                   | Multiflex 141    | 520201     | October 2015         |
| 14 | Active Loop antenna<br>1.0 kHz – 30 MHz         | ETS-Lindgren                   | 6507             | 00144641   | December 2015        |



Test Report No.: 9512306145

Page 16 of 18 pages

Title: RFID reader system for Duplex Material CabinetModel: RFID reader BRD-08015, antenna board BRD-03012

## 5. Appendix 1: Antenna Factor and Cable Loss

### Cable Loss. Mast 6 m set cable.

| Point | Frequency, MHz | Cable Loss, dB | Point | Frequency, MHz | Cable Loss, dB |
|-------|----------------|----------------|-------|----------------|----------------|
| 1     | 30             | 0.3            | 21    | 1000           | 2.5            |
| 2     | 50             | 0.4            | 22    | 1100           | 2.6            |
| 3     | 100            | 0.6            | 23    | 1200           | 2.8            |
| 4     | 150            | 0.8            | 24    | 1300           | 2.9            |
| 5     | 200            | 1.0            | 25    | 1400           | 3.1            |
| 6     | 250            | 1.1            | 26    | 1500           | 3.2            |
| 7     | 300            | 1.2            | 27    | 1600           | 3.3            |
| 8     | 350            | 1.3            | 28    | 1700           | 3.5            |
| 9     | 400            | 1.5            | 29    | 1800           | 3.6            |
| 10    | 450            | 1.6            | 30    | 1900           | 3.7            |
| 11    | 500            | 1.7            | 31    | 2000           | 3.9            |
| 12    | 550            | 1.8            | 32    | 2100           | 4.0            |
| 13    | 600            | 1.9            | 33    | 2200           | 4.1            |
| 14    | 650            | 1.9            | 34    | 2300           | 4.2            |
| 15    | 700            | 2.0            | 35    | 2400           | 4.4            |
| 16    | 750            | 2.1            | 36    | 2500           | 4.6            |
| 17    | 800            | 2.1            | 37    | 2600           | 4.7            |
| 18    | 850            | 2.2            | 38    | 2700           | 4.8            |
| 19    | 900            | 2.3            | 39    | 2800           | 4.9            |
| 20    | 950            | 2.4            | 40    | 2900           | 5.0            |



Test Report No.: 9512306145

Page 17 of 18 pages

Title: RFID reader system for Duplex Material CabinetModel: RFID reader BRD-08015, antenna board BRD-03012

**Antenna Factor Biconilog Antenna, ETS-Lindgren mod. 31142D,  
S/N: 0146490 3m calibration.**

| No. | f / MHz | AF / dB/m | f / MHz | AF / dB/m | f / MHz | AF / dB/m |
|-----|---------|-----------|---------|-----------|---------|-----------|
| 1   | 30      | 18.7      | 250     | 12.0      | 2750    | 31.0      |
| 2   | 35      | 15.7      | 300     | 13.8      | 3000    | 31.2      |
| 3   | 40      | 12.9      | 400     | 16.2      | 3250    | 32.7      |
| 4   | 45      | 10.6      | 500     | 18.6      | 3500    | 34.5      |
| 5   | 50      | 9.0       | 600     | 20.2      | 3750    | 34.3      |
| 6   | 60      | 7.3       | 700     | 21.8      | 4000    | 34.5      |
| 7   | 70      | 7.7       | 800     | 22.9      | 4250    | 35.3      |
| 8   | 80      | 8.2       | 900     | 24.1      | 4500    | 35.5      |
| 9   | 90      | 9.2       | 1000    | 24.8      | 4750    | 36.1      |
| 10  | 100     | 9.4       | 1250    | 26.9      | 5000    | 37.4      |
| 11  | 120     | 8.5       | 1500    | 30.2      | 5250    | 38.4      |
| 12  | 140     | 8.5       | 1750    | 28.5      | 5000    | 39.9      |
| 13  | 160     | 9.1       | 2000    | 28.9      | 5750    | 38.2      |
| 14  | 180     | 10.5      | 2250    | 29.8      | 6000    | 39.1      |
| 15  | 200     | 10.9      | 2500    | 32.5      |         |           |

**Test Report No.: 9512306145****Page 18 of 18 pages****Title: RFID reader system for Duplex Material Cabinet****Model: RFID reader BRD-08015, antenna board BRD-03012****Active Loop antenna mfr.ETS-Lindgren mod. 6507 S/N 144641.**

| Frequency,<br>MHz | Magnetic Antenna factor<br>dBs/m | Electric Antenna factor<br>dB/m |
|-------------------|----------------------------------|---------------------------------|
| 0.009             | -20.0                            | 31.5                            |
| 0.010             | -21.0                            | 30.5                            |
| 0.020             | -26.7                            | 24.9                            |
| 0.075             | -32.4                            | 19.1                            |
| 0.100             | -32.7                            | 18.8                            |
| 0.150             | -32.9                            | 18.6                            |
| 0.250             | -33.0                            | 18.5                            |
| 0.500             | -33.0                            | 18.5                            |
| 0.750             | -33.0                            | 18.5                            |
| 1.000             | -32.8                            | 18.7                            |
| 2.000             | -32.7                            | 18.8                            |
| 3.000             | -32.9                            | 18.7                            |
| 4.000             | -33.2                            | 18.3                            |
| 5.000             | -33.4                            | 18.2                            |
| 10.000            | -34.0                            | 17.6                            |
| 15.000            | --34.2                           | 17.3                            |
| 20.000            | -34.4                            | 17.1                            |
| 25.000            | -34.8                            | 16.7                            |
| 30.000            | -35.0                            | 16.5                            |

**Cable Loss****Type: Sucoflex 104PE; Ser.No.21329/4PE; 4 m length**

| Point | Frequency (GHz) | Cable Loss (dB) |
|-------|-----------------|-----------------|
| 1     | 0.0-1.0         | 1.7             |
| 2     | 1.0- 3.5        | 3.2             |
| 3     | 3.5- 5.5        | 4.0             |
| 4     | 5.5 - 7.5       | 4.7             |
| 5     | 7.5 - 9.5       | 5.3             |
| 6     | 9.5 - 10.5      | 5.6             |
| 7     | 10.5 - 12.5     | 6.2             |
| 8     | 12.5 - 14.5     | 6.8             |
| 9     | 14.5 - 16.5     | 7.5             |
| 10    | 16.5 - 18.0     | 8.1             |