

Inter**Lab**

FCC Measurement/Technical Report on

TUgen2
Telematic Unit

FCC ID: YGOTUGEN2

IC: 4008C-TUGEN2

Report Reference: MDE_HUF_1703_FCCa_rev2

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Director: Frank Spiller Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Table of Contents

0	Sun	nmary	3
	0.1 0.2 Revisi	Technical Report Summary Measurement Summary on History	3 4 4
1	Adr	ninistrative Data	5
	1.1 1.2 1.3 1.4	Testing Laboratory Project Data Applicant Data Manufacturer Data	5 5 5 5
2	Tes	t object Data	6
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	General EUT Description EUT Main components Ancillary Equipment Auxiliary Equipment EUT Setups Operating Modes Special software used for testing Product labelling	6 7 7 7 8 8 8 8
3	Tes	t Results	9
	3.1 3.2 3.3 3.4	Spurious radiated emissions Occupied bandwidth Spectrum mask Frequency tolerance	9 13 14 15
4	Tes	t Equipment	17
5	Pho	to Report	19
6	Set	up Drawings	19
7	FCC	and IC Correlation of measurement requirements	20
8	Anr	nex measurement plots	21
	8.1 8.2 8.3	Radiated emissions Occupied bandwidth Spectrum mask	21 23 24

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an intentional radiator operating at 13.56 MHz

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 (10-1-16 Edition) and 15 (10-1-16 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

§ 15.205 Restricted bands of operation

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.215 Additional provisions to the general radiated emission limitations

§ 15.225 Operation within the band 13.110-14.010 MHz

ANSI C63.10-2013 is applied

Summary Test Results:

The EUT complied with all performed tests as listed in chapter Measurement Summary.

Test report Reference: MDE_HUF_1703_FCCa_rev2

0.2 Measurement Summary

FCC Part 15, Subpart C § 15.207

Conducted Emissions AC Power line

The measurement was performed according to ANSI C63.10

OP-Mode

Setup

Port

2013

Final Result N/A

FCC Part 15, Subpart C §15.209

Radiated Emissions

The measurement was performed according to ANSI C63.10

2013

OP-Mode op-mode 1

Setup Setup_01 Port

Final Result

passed

Enclosure

FCC Part 15, Subpart C § 15.215

Setup 02

Occupied Bandwidth

The measurement was performed according to FCC § 2.1049

10-1-16 Edition

OP-Mode op-mode 1

Setup

Port

Final Result

Enclosure passed

FCC Part 15, Subpart C

Spectrum Mask

The measurement was performed according to ANSI C63.10

2013

OP-Mode op-mode 1

Setup Setup 01 Port

Enclosure

§ 15.225

Final Result passed

FCC Part 15, Subpart C § 15.225

Frequency Tolerance

The measurement was performed according to FCC § 2.1055

10-1-16 Edition

OP-Mode

Setup

Port

Final Result

op-mode 2

Setup_01

Enclosure

passed

N/A not applicable (the EUT is powered by DC)

Revision History

Responsible for Accreditation Scope:

Report version control						
Version	Release date	Change Description	Version validity			
initial	2017-07-18		invalid			
rev1	2017-08-03	Changed FCC/IC ID	invalid			
rev2	2017-11-03	Corrected FCC/IC correlation table	valid			

ayers

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany

Phone Réspénsible 2749 0

for Test Report:

FDAMIEL GALLY

1 Administrative Data

1.1 Testing Laboratory

1.1 Testing Laboratory	
Company Name:	7layers GmbH
Address	Borsigstr. 11 40880 Ratingen Germany
This facility has been fully described in a under the registration number 96716.	report submitted to the FCC and accepted
The test facility is also accredited by the Laboratory accreditation no.:	following accreditation organisation: DAkkS D-PL-12140-01-00
Responsible for Accreditation Scope:	DiplIng. Bernhard Retka DiplIng. Robert Machulec DiplIng. Andreas Petz DiplIng. Marco Kullik DiplIng. Daniel Gall
Report Template Version:	2015-08-24
1.2 Project Data	
Responsible for testing and report:	B.Sc. Jens Dörwald
Date of Test(s): Date of Report:	2017-06-26 to 2017-06-27 2017-11-03
1.3 Applicant Data	
Company Name:	Huf Secure Mobile GmbH
Address:	Haberstraße 46 42551 Velbert Germany
Contact Person:	Mr. Florian Schubert
1.4 Manufacturer Data Company Name: Address:	please see applicant data
Contact Person:	

2 Test object Data

2.1 General EUT Description

Equipment under Test NFC TAG Reader working at 13.56 MHz

Type Designation: TUgen2

Kind of Device: 13.56 MHz card reader

(optional)

Voltage Type: DC (car equipment)

Voltage level: 12.0 V

General product description:

The NFC transceiver is a part of a Telematic Unit with integrated GSM, Bluetooth, 433.92 MHz receiver and 13.56 MHz tag reader.

Specific product description for the EUT:

The NFC tag reader is working at 13.56 MHz. No dedicated tag was provided.

The EUT provides the following ports:

Ports

Enclosure DC CAN

The main components of the EUT are listed and described in Chapter 2.2.

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status
EUT A	RFID	TUgen2	16102715TT0264	HW003.1	0.6.1
(Code: DE1068010aa01)	transceiver				
Remark: EUT A is equippe	ed with an inter	nally connected	external antenna.		
EUT B	RFID	TUgen2	16102723TT0442	HW003.1	0.6.1
(Code: DE1068010ab01)	transceiver	3			
Remark: EUT B is equippe	ed with an inter	nally connected	external antenna.		

NOTE: The short description is used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	FCC ID
ANC1	RFID	-	-	=	-	-
	Antenna					

2.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

	Equipment under Test	Type Designation	Serial no.	HW Status	SW Status	FCC ID
_	-	-	_	-	_	_

Test report Reference: MDE_HUF_1703_FCCa_rev2

2.5 EUT Setups

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup No.	Combination of EUTs	Description and Rationale
Setup_01	EUT A + ANC1	Setup with sample 1
Setup_02	EUT B + ANC1	Setup with sample 2

2.6 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1	modulated carrier signal	EUT is transmitting a periodic modulated signal.
op-mode 2	CW carrier signal	EUT is transmitting a non-modulated signal

2.7 Special software used for testing

Using an external PC, connected to the interface connector of the cable harness a connection to the device can be established and a script can be started.

2.8 Product labelling

2.8.1 FCC ID label

Please refer to the documentation of the applicant.

2.8.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

3 Test Results

3.1 Spurious radiated emissions

Standard FCC Part 15, 10-1-16 Edition Subpart C

The test was performed according to: ANSI C63.10-2013

3.1.1 Test Description

The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMC test software from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is performed at 2 axes. A pre-check is also performed while the EUT is powered from DC (battery) power in order to find the worst-case operating condition.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 3 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 and 0.15 30 MHz
- Frequency steps: 0.1 kHz and 5 kHz
- IF-Bandwidth: 0.2 kHz and 10 kHz
- Measuring time / Frequency step: 100 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 200 Hz 10 kHz
- Measuring time / Frequency step: 100 ms

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

Preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:
- Antenna distance: 3 m
- Detector: Peak-Maxhold

- Frequency range: 30 - 1000 MHz

Frequency steps: 60 kHzIF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 μs - Turntable angle range: -180° to 180°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: -180° to 180°

- Turntable step size: 45°

Height variation range: 1 – 4 m
Height variation step size: 0.5 m
Polarisation: horizontal + vertical

After this step the EMI test system has determined the following values for each frequency (of step 1):

- Frequency

- Azimuth value (of turntable)

- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°

- Antenna height: 0.5 m **Step 3:** final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will be slowly varied by +/- 22.5° around this value. During this action the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position the antenna height is also slowly varied by +/- 25 cm around the antenna height determined. During this action the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100 ms

- Turntable angle range: -22.5° to +22.5° around the determined value

- Height variation range: -0.25 m to +0.25 m around the determined value

Step 4: final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:
- Detector: Quasi-Peak(< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support at 1.4 m height in the fully-anechoic chamber. The measurement distance was reduced to 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact that in this frequency range a double ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18-25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only.

EMI receiver settings:

Detector: Peak, AverageIF Bandwidth = 1 MHz

3.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d)

 \dots In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement	Calculate	Limit (dBµV/m)
		distance (m)	Limit(dBµV/m @10m)	@10m
0.009 - 0.49	2400/F (kHz)	300	(48.5 - 13.8) + 59.1 dB	107.6 - 72.9
0.49 - 1.705	24000/F (kHz)	30	(33.8 - 23.0) + 19.1 dB	52.9 - 42.1
1.705 - 30	30	30	29.5 + 19.1 dB	39.5

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limit (dBµV/m)
30 - 88	100	3	40.0
88 - 216	150	3	43.5
216 - 960	200	3	46.0
above 960	500	3	54.0

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

3.1.3 Test Protocol

Temperature: 26 °C Air Pressure: 1008 hPa Humidity: 42 %

3.1.3.1 Measurement up to 30 MHz

Op. Mode	Setup	Port
op-mode 1	Setup_01	Enclosure

Frequen MHz	icy	Cor	rected va dBµV/m		Limit dBµV/ m	Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
13.56		-	18.4	-	29.5	-	_	11.1	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found therefore step 2 was not performed. Please refer to the plot in the annex.
The peak found at 13.56 MHz is the wanted signal of the EUT.

3.1.3.2 Measurement above 30 MHz

Op. Mode	Setup	Port	
op-mode 1	Setup_01	Enclosure	<u> </u>

Polari- sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/ m	Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB	
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical	40.7	32.6	-	-	40.0	-	-	7.4	-
Vertical	45.8	30.4	-	-	40.0	-	-	9.6	_

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

3.1.4 Test result: Spurious radiated emissions

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed

3.2 Occupied bandwidth

Standard FCC Part 15, 10-1-16 Edition Subpart C

The test was performed according to: FCC §15.31

3.2.1 Test Description

The Equipment Under Test (EUT) was setup in a shielded room to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. The results recorded were measured with the modulation which produces the worst-case (widest) occupied bandwidth.

3.2.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.215 (c)

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. ...

3.2.3 Test Protocol

Temperature: 23 °C Air Pressure: 998 hPa Humidity: 55 %

Op. ModeSetupPortop-mode 1Setup 02Enclosure

20 dB bandwidth kHz	99% bandwidth kHz	Remarks
424.986	917.596325115	The 20 dB bandwidth from 13.348757 MHz to 13.773743 MHz is contained within the designated frequency band 13.110 MHz to 14.010 MHz.

Remark: Please see annex for the measurement plot.

3.2.4 Test result: Occupied bandwidth

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed

Test report Reference: MDE_HUF_1703_FCCa_rev2 Page 13 of 24

3.3 Spectrum mask

Standard FCC Part 15, 10-1-16 Edition Subpart C

The test was performed according to: FCC §15.225

3.3.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C 63.10–2013. The Equipment Under Test (EUT) was set up on a non-conductive table in the anechoic chamber.

The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software EMC32 from R&S. The Loop antenna HFH2-Z2 is used.

- Anechoic chamber

Antenna distance: 10 mDetector: Peak-Maxhold

- Frequency range: 13.06 - 14.06 MHz

Frequency steps: 5 kHzIF-Bandwidth:10 kHz

- Measuring time / Frequency step: 100 ms

3.3.2 Test Limits

FCC Part 15, Subpart C, §15.225 (a-d), and §15.209, corrected by the means of the extrapolation of §15.31 due to the reduced measuring distance from 30 m to 3 m.

3.3.3 Test Protocol

Temperature: 26 °C Air Pressure: 1008 hPa Humidity: 42 %

Op. ModeSetupPortop-mode 1Setup_01Enclosure

Maximum value dBµV/m	Limit dBµV/m	Remarks		
18.2	84	measuring distance 3 m		

Remark: Please see annex for the measurement plot.

3.3.4 Test result: Spectrum mask

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed

Test report Reference: MDE_HUF_1703_FCCa_rev2 Page 14 of 24

3.4 Frequency tolerance

Standard FCC Part 15, 10-1-16 Edition Subpart C

The test was performed according to: FCC §15.225

3.4.1 Test Description

The Equipment Under Test (EUT) is placed in a temperature chamber.

The frequency drift during temperature and voltage variation is measured by the means of a spectrum analyzer with frequency counter function.

The temperature was varied from -20 °C to +50 °C. At +20 °C the extreme power supply voltages of 85% and 115% are applied. After reaching each target temperature and waiting sufficient time allowing the temperature to stabilize, one measurement is performed immediately after powering on the EUT, and three further measurements are performed after 2, 5 and 10 minutes continuous operation of EUT.

3.4.2 Test Limits

FCC Part 15, Subpart C, $\S15.225$ (e): The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

3.4.3 Test Protocol

Temperature: 23 °C Air Pressure: 998 hPa Humidity: 55 %

Op. Mode Setup Port

op-mode 2 Setup_01 Enclosure

Temperature / °C	Voltage / V	Time / min.	Frequency / MHz	Delta / Hz
50	12.0	0	13.559859	-141
50	12.0	2	13.559845	-155
50	12.0	5	13.559847	-153
50	12.0	10	13.559843	-157
40	12.0	0	13.559865	-135
40	12.0	2	13.559896	-104
40	12.0	5	13.559873	-127
40	12.0	10	13.559896	-104
30	12.0	0	13.559926	-74
30	12.0	2	13.559906	-94
30	12.0	5	13.559908	-92
30	12.0	10	13.559941	-59
20	16.0	0	13.559952	-48
20	16.0	2	13.559963	-37
20	16.0	5	13.559963	-37
20	16.0	10	13.559969	-31
20	12.0	0	13.559966	-34
20	12.0	2	13.559970	-30
20	12.0	5	13.559945	-55
20	12.0	10	13.559935	-65
20	9.0	0	13.559952	-48
20	9.0	2	13.559946	-54
20	9.0	5	13.559996	-4
20	9.0	10	13.559983	-17
10	12.0	0	13.559988	-12
10	12.0	2	13.559978	-22
10	12.0	5	13.560036	36
10	12.0	10	13.560023	23
0	12.0	0	13.560031	31
0	12.0	2	13.560072	72
0	12.0	5	13.560046	46
0	12.0	10	13.559988	-12
-10	12.0	0	13.560021	21
-10	12.0	2	13.560033	33
-10	12.0	5	13.560036	36
-10	12.0	10	13.560061	61
-20	12.0	0	13.559977	-23
-20	12.0	2	13.559970	-30
-20	12.0	5	13.560023	23
-20	12.0	10	13.560067	67

Remark: The limit is a delta of max. ± 1356 Hz (0.01 %).

The wider than $\pm 15\%$ voltage range of the declared voltage range by the applicant was used for extreme voltage testing (worst case)

Test result: Frequency tolerance

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 2	passed

Test report Reference: MDE_HUF_1703_FCCa_rev2 Page 16 of 24

4 Test Equipment

1 Radiated Emissions

Lab to perform radiated emission tests

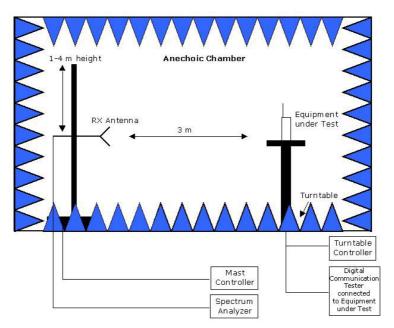
Ref.No.	Device Name	Description	Manufacturer	Serial Number		Calibration
					Calibration	Due
1.1	NRV-Z1		Rohde & Schwarz	827753/005	2017-05	2018-05
1.2	MFS	Frequency Normal MFS	Datum GmbH	002	2016-09	2017-09
1.3	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH	13936	2017-04	2019-04
1.4	Anechoic Chamber	10.58 x 6.38 x 6.00 m ³	Frankonia	none	2016-05	2019-05
1.5	HL 562	Ultralog new biconicals	Rohde & Schwarz	830547/003	2015-06	2018-06
1.6	5HC2700/12750 -1.5-KK	High Pass Filter	Trilithic	9942012		
1.7	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		
1.8	Fully Anechoic Room	8.80m x 4.60m x 4.05m (l x w x h)	Albatross Projects	P26971-647-001- PRB	2015-07	2018-07
1.9	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2016-02	2018-02
1.10	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
1.11	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2016-12	2018-12
1.12	3160-09		EMCO Elektronic GmbH	00083069		
1.13	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright	09		
1.14	4HC1600/12750 -1.5-KK	High Pass Filter	Trilithic	9942011		
1.15	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304		
1.16	JS4-00102600- 42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
1.17	TT 1.5 WI	Turn Table	Maturo GmbH	-		
1.18	HL 562 Ultralog	Logper. Antenna	Rohde & Schwarz	100609	2016-04	2019-04
1.19	3160-10		EMCO Elektronic GmbH	00086675		
1.20	5HC3500/18000 -1.2-KK		Trilithic	200035008		
1.21	HFH2-Z2		Rohde & Schwarz	829324/006	2014-11	2017-11

Test report Reference: MDE_HUF_1703_FCCa_rev2

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.22	Opus10 THI (8152.00)	, ,	Lufft Mess- und Regeltechnik GmbH	12482	2017-03	2019-03
1.23	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2016-11	2018-11
1.24	JS4-00101800- 35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
1.25	AS 620 P	Antenna mast	HD GmbH	620/37		
	Tilt device Maturo (Rohacell)	Antrieb TD1.5- 10kg	Maturo GmbH	TD1.5- 10kg/024/37907 09		
	ESIB 26	Spectrum Analyzer	Rohde & Schwarz	830482/004	2015-12	2017-12
1.28	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
1.29	AM 4.0	Antenna mast	Maturo GmbH	AM4.0/180/1192 0513		
1.30	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2015-05	2018-05

2 R&S TS8997

EN300328/301893 Test Lab


Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2014-06	2017-06
2.2	MFS	Rubidium Frequency Standard	Datum-Beverly	5489/001	2016-06	2017-06
2.3	1515 / 93459		Weinschel Associates	LN673		
2.4	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2016-02	2018-02
2.5	VT 4002	Climatic Chamber	Vötsch	58566002150010	2016-03	2018-03
2.6	A8455-4	4 Way Power Divider (SMA)		-		
2.7	Opus10 THI (8152.00)	ThermoHygro	Lufft Mess- und Regeltechnik GmbH	7482	2017-03	2019-03
2.8	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	259291	2016-10	2019-10
2.9	OSP120	Switching Unit with integrated power meter	Rohde & Schwarz	101158	2016-11	2018-11

5 Photo Report

Photos are included in an external report.

6 Setup Drawings

<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber:

Measurements below 1 GHz: Semi-anechoic, conducting ground plane. Measurements above 1 GHz: Fully-anechoic, absorbers on all surfaces.

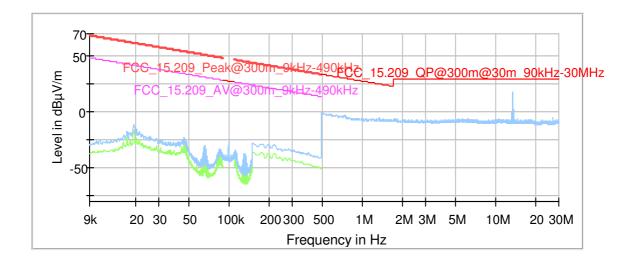
7 FCC and IC Correlation of measurement requirements

The following tables show the correlation of measurement requirements Radio equipment operating in the Band 13.110-14.010 MHz from FCC and IC.

Radio equipment

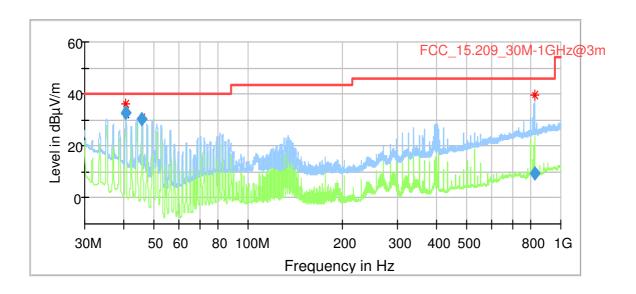
Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 4: 8.8
Out-of-band emissions	§ 15.225 (d)	RSS Gen Issue 4: 6.13/8.9/8.10; RSS-210 Issue 9: B.6
In-band emissions	§ 15.225 (a) / (b) / (c)	RSS-210 Issue 9: B.6
Frequency Stability	§ 15.225 (e)	RSS-210 Issue 9: B.6
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 4: 8.3
Receiver spurious emissions	-	RSS-210 Issue 9: 2.3; RSS Gen Issue 4: 5/7 *)
Handling of active and passive tag devices of RFID application	§ 15.225 (f)	RSS Gen Issue 4: 8.7

^{*)} Receivers are exempted from certification besides if operating in stand-alone mode in the frequency range 30–960 MHz or if these are scanner receivers.



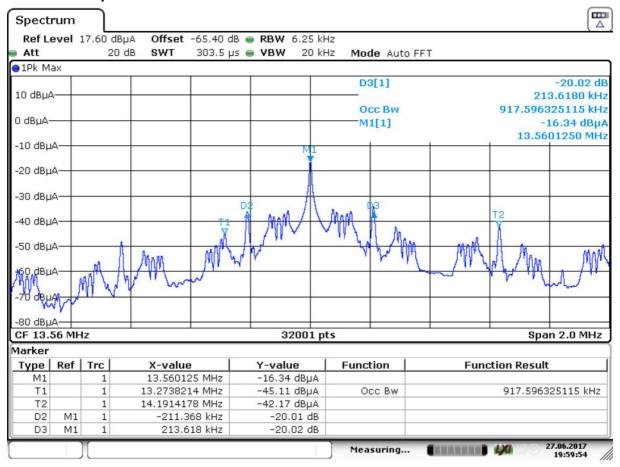
8 Annex measurement plots

8.1 Radiated emissions


8.1.1 Radiated emissions (f < 30 MHz)

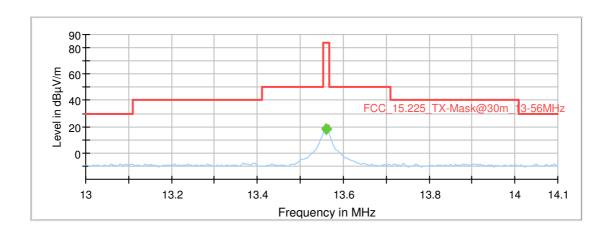
0 ° and 90° antenna polarisation

8.1.2 Radiated emissions (f > 30 MHz)


Final_Result

Frequency (MHz)	QuasiPeak (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
40.680000	32.57	40.00	7.43	1000.0	120.000	107.0	٧	-36.0	13.3
45.810000	30.37	40.00	9.63	1000.0	120.000	110.0	٧	-180.0	9.9
826.650000	9.25	46.00	36.75	1000.0	120.000	190.0	Н	-129.0	24.7

8.2 Occupied bandwidth


8.2.1 99 % / 20 dB bandwidth

Date: 27.JUN.2017 19:59:54

8.3 Spectrum mask

Final_Result

Frequency (MHz)	MaxPeak (dBμV/m)	QuasiPeak (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol
13.560000		17.84	84.00	66.16	1000.0	10.000	100.0	Н
13.560000	18.18		84.00	65.82	1000.0	10.000	100.0	Н