	CTC advanced					
Bundesnetzagentur TEST R Test report no.: 1	Deutsche Aktreditierungsstelle					
Testing laboratory	Applicant					
CTC advanced GmbH Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.ctcadvanced.com e-mail: mail@ctcadvanced.com	Huf Hülsbeck und Fürst GmbH & Co. KG Steeger Str. 17 42551 Velbert / GERMANY Phone: +49 (0) 2051 2 72-0 Contact: Thomas Herzog e-mail: Thomas.Herzog@huf-group.com Phone: +49 205 127-2877					
Accredited Testing Laboratory: The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-03	Manufacturer Huf Hülsbeck und Fürst GmbH & Co. KG Steeger Str. 17 42551 Velbert / GERMANY					
Test sta						
FCC - Title 47 CFRFCC - Title 47 of the Code ofPart 15frequency devices	Federal Regulations; Chapter I; Part 15 - Radio					
RSS - 210 Issue 9 Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment						
For further applied test standards please refer to section 3 of	this tast report					

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item:	Volvo SPA Standard Key with motion sensor
Model name:	HUF8423MS
FCC ID:	YGOHUF8423MS
IC:	4008C-HUF8423MS
Frequency:	433.66 MHz – 433.92 MHz
Technology tested:	Proprietary
Antenna:	Integrated antenna
Power supply:	2.3 V to 3.3 V DC by Li battery
Temperature range:	-40°C to +85°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

p.o.

Christoph Schneider
Lab Manager
Radio Communications & EMC

Test performed:

Tobias Wittenmeier Testing Manager Radio Communications & EMC

Test report no.: 1-7857/19-01-89-A

1 Table of contents

1	Table	of contents	2
2	Gene	ral information	3
	2.1 2.2 2.3	Notes and disclaimer Application details Test laboratories sub-contracted	3
3	Test s	standard/s and references	4
4	Test e	environment	5
5	Test i	item	5
	5.1 5.2	General description Additional information	
6	Desc	ription of the test setup	6
	6.1 6.2 6.3	Shielded semi anechoic chamber Shielded fully anechoic chamber RF measurements	8
7	Sequ	ence of testing	10
	7.1 7.2 7.3	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 12.75 GHz	11
8	Meas	urement uncertainty	13
9	Sumr	nary of measurement results	14
	9.1	Additional comments	14
10	Меа	asurement results	15
	10.1 10.2 10.3 10.4 10.5	Timing of the transmitter Switch off time Emission bandwidth Field strength of the fundamental Field strength of the harmonics and spurious	18 19 22
11	Ob	servations	29
Anı	nex A	Glossary	30
Anı	nex B	Document history	31
Anı	nex C	Accreditation Certificate – D-PL-12076-01-04	31
Anı	nex D	Accreditation Certificate – D-PL-12076-01-05	32

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-7857/19-01-89 and dated 2019-05-22.

2.2 Application details

Date of receipt of order:	2019-04-02
Date of receipt of test item:	2019-05-09
Start of test:	2019-05-10
End of test:	2019-05-17
Person(s) present during the test:	-/-

2.3 Test laboratories sub-contracted

None

Test standard	Date	Description
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 9	August 2016	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment
RSS - Gen Issue 5	April 2018	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus
Guidance	Version	Description
ANSI C63.4-2014 ANSI C63.10-2013	-/- -/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

4 **Test environment**

Temperature	:	T _{nom} T _{max} T _{min}	 +22 °C during room temperature tests +85 °C during high temperature tests* -40 °C during low temperature tests* 		
Relative humidity content	:		55 %		
Barometric pressure	:		1021 hpa		
Power supply	:	V _{nom} V _{max} V _{min}	 3.0 V DC by Li battery 3.3 V* 2.3 V* 		

*No tests under extreme conditions required.

5 Test item

5.1 **General description**

Kind of test item	Volvo SPA Standard Key with motion sensor
Type identification	HUF8423MS
HMN	-/-
PMN	HUF8423MS
HVIN	HUF8423MS
FVIN	-/-
S/N serial number	Test mode sample:0023Normal operation sample:0011
Hardware status	Revision 002
Software status	SW module for HF ver. 04.02
Firmware status	N/A
Frequency band	433.66 MHz – 433.92 MHz
Type of radio transmission Use of frequency spectrum	Modulated carrier
Type of modulation	FSK
Number of channels	2
Antenna	Integrated antenna
Power supply	2.3 V to 3.3 V DC by Li battery
Temperature range	-40°C to +85°C

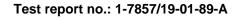
5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

1-7857/19-01-01_AnnexA 1-7857/19-01-01_AnnexB 1-7857/19-01-01_AnnexD

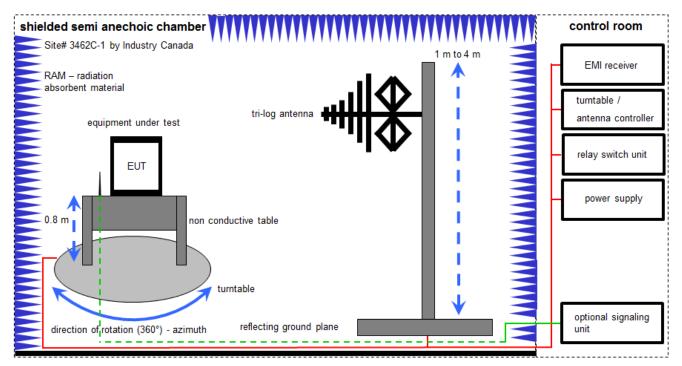
6 Description of the test setup


Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

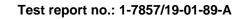

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

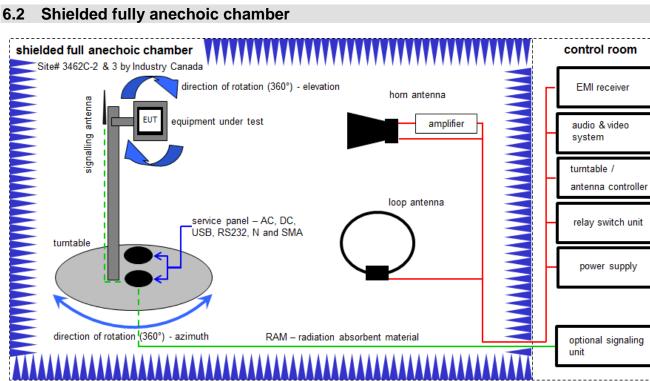
6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter EMC32 software version: 10.30.0

FS = UR + CL + AF


(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


Example calculation:

 $FS [dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
3	A	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	12.12.2018	11.12.2019
4	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vIKI!	15.01.2018	14.01.2020
5	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vIKI!	24.11.2017	23.11.2020

Measurement distance: horn antenna 3 meter; loop antenna 3 meter

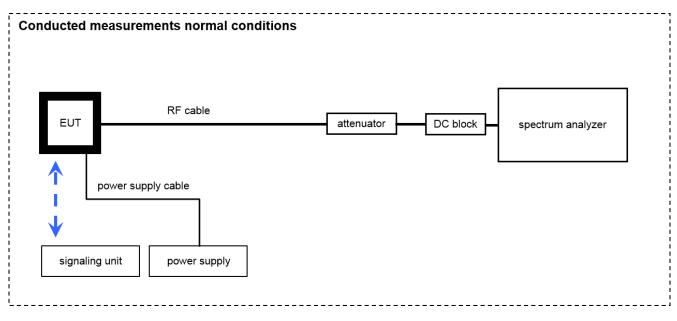
FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

Equipment table:


No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKl!	07.07.2017	06.07.2019
2	A,B	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A,B	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
4	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3089	300000307	viKi!	07.07.2017	06.07.2019
5	A,B	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	14.09.2018	13.12.2019
6	В	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
7	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
8	A,B	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
9	A,B	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
10	A,B	PC	ExOne	F+W		300004703	ne	-/-	-/-

CTC I advanced

member of RWTÜV group

6.3 **RF** measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

<u>Example calculation:</u> OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.		Last Calibration	Next Calibration
1	А	EMI Test Receiver 9 kHz - 3 GHz incl. Preselector	ESPI3	R&S	101713	300004059	k	13.12.2018	12.12.2019
2	Α	Loop Antenna		ZEG TS Steinfurt		400001208	ev	-/-	-/-
3	A	RF Cable BNC	RG58	Huber & Suhner		400001209	ev	-/-	-/-

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 12.75 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

Test report no.: 1-7857/19-01-89-A

8 **Measurement uncertainty**

Measurement uncertainty							
Test case	Uncertainty						
Occupied bandwidth	± used RBW						
Field strength of the fundamental	±3 dB						
Field strength of the harmonics and spurious	± 3 dB						
Receiver spurious emissions and cabinet radiations	± 3 dB						
Conducted limits	± 2.6 dB						

Test report no.: 1-7857/19-01-89-A

9 Summary of measurement results

\square	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS 210, Issue 9 RSS-Gen, Issue 5	See table!	2019-07-11	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	С	NC	NA	NP	Remark
§ 15.35 (c) RSS-Gen, Issue 5	Timing of the transmitter (Duty cycle correction factor)	Nominal	Nominal					
§ 15.231 (a) (1) RSS-210 Issue 9	Switch off time	Nominal	Nominal	\boxtimes				-/-
§ 15.231 (b) (3) (c) RSS-210 Issue 9	Emission bandwidth	Nominal	Nominal	\boxtimes				-/-
§ 15.231 (b) RSS-210 Issue 9	Fieldstrength of Fundamental	Nominal	Nominal	\boxtimes				-/-
§ 15.209 RSS-210 Issue 9	Fieldstrength of harmonics and spurious	Nominal	Nominal	\boxtimes				-/-
§ 15.209 RSS-Gen, Issue 5	Receiver spurious emissions (radiated)	Nominal	Nominal			\boxtimes		-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

9.1 Additional comments

Reference documents: None

Special test descriptions: None

Configuration descriptions: None

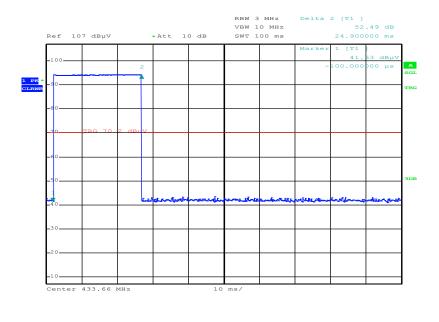
10 Measurement results

10.1 Timing of the transmitter

Measurement:

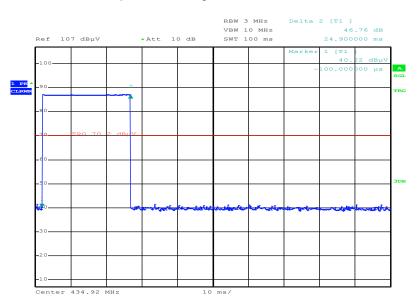
Measurement parameter			
Detector:	Peak		
Sweep time:	See plots		
Resolution bandwidth:	3 MHz		
Video bandwidth:	10 MHz		
Span:	Zero		
Trace-Mode:	Single sweep		
Test setup	See chapter 6.3A		

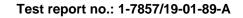
Limits:


FCC	IC
terms of the average value of the emission, and pulsed shall be determined by averaging over one complete pulse train does not exceed 0.1 seconds. As an altern 0.1 seconds) or in cases where the pulse train excee determined from the average absolute voltage during at its maximum value. The exact method of calculating), when the radiated emission limits are expressed in operation is employed, the measurement field strength pulse train, including blanking intervals, as long as the ative (provided the transmitter operates for longer than eds 0.1 seconds, the measured field strength shall be a 0.1 second interval during which the field strength is g the average field strength shall be submitted with any the measurement data file for equipment subject to

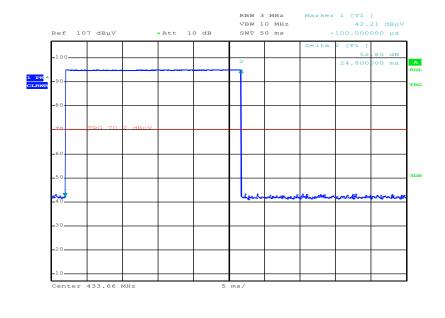
Result:

Transmit time (Tx on)	=	24.8 ms (l	ow channel); 24.9 m	ns (high channel)	(Plot 3&4)
Tx on + Tx off	=	100 ms	(Plot 1&2)		


The peak-to-average correction factor is calculated with 20Log [Tx on/(Tx on + Tx off)]. Hereby the peak-to-average correction factor is -12.1 (worst case)

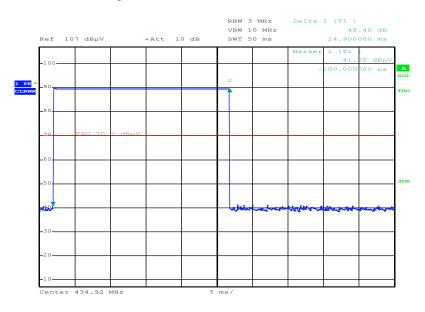

Plot 1: Transmit burst, max. 1 burst per 100ms, low channel

Plot 2: Transmit burst, max. 1 burst per 100ms, high channel



Date: 15.MAY.2019 07:48:06

Date: 15.MAY.2019 07:47:28



Plot 3: Timing of the transmitter, low channel

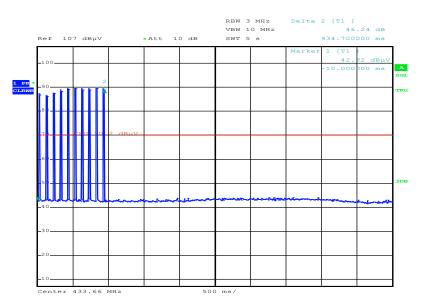
Plot 4: Timing of the transmitter, high channel

Date: 15.MAY.2019 07:49:28

Date: 15.MAY.2019 07:50:07

10.2 Switch off time

Measurement:


Measurement parameter			
Detector:	Peak		
Sweep time:	See plots		
Resolution bandwidth:	3 MHz		
Video bandwidth:	10 MHz		
Span:	Zero		
Trace-Mode:	Single sweep		
Test setup	See chapter 6.3A		
Measurement uncertainty	See chapter 8		

Limits:

FCC	IC
	itch that will automatically deactivate the transmitter econds of being released.

Results:

Plot 1: TX on time

Date: 15.MAY.2019 07:52:32

The EUT automatically ceases transmission within 934.7 ms after releasing the switch.

10.3 Emission bandwidth

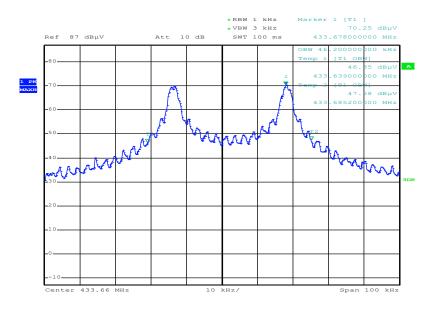
Measurement:

Measurement of the 99 % bandwidth of the modulated signal

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	1 % of the span		
Video bandwidth:	3 x RBW		
Span:	100 kHz		
Trace-Mode:	Max. hold		
Test setup	See chapter 6.3A		
Measurement uncertainty	See chapter 8		

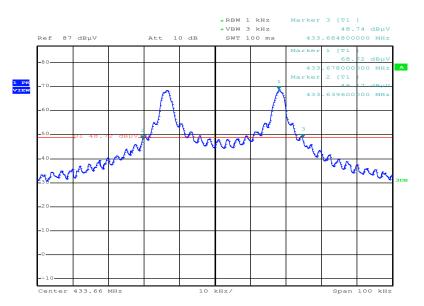
Limits:

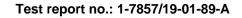
FCC	IC
433.66 MHz: The OBW shall not be wider than 0.25 %	o of the center frequency, here maximum 1.0842 MHz.
434.18 MHz: The OBW shall not be wider than 0.25 %	o of the center frequency, here maximum 1.0855 MHz.


Result:

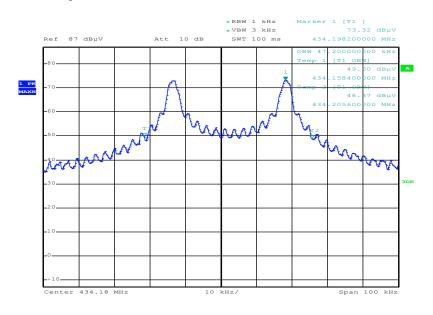
Channel / MHz	Test conditions		Signal bandwidth / kHz		
	Mode		OBW 99%	20 dB-bandwidth	
433.66	T _{nom} V _{nom}		46.2	45.2	
434.18	T _{nom}	V _{nom}	47.2	45.0	

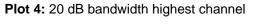



Plots:



Date: 15.MAY.2019 12:56:22




Date: 15.MAY.2019 12:57:46

Plot 3: 99 % bandwidth highest channel

Date: 15.MAY.2019 13:54:18

Date: 15.MAY.2019 12:59:25

CTC I advanced

10.4 Field strength of the fundamental

Measurement:

Measurement parameter			
Detector:	Peak / pulse averaging / quasi peak		
Sweep time:	Auto		
Resolution bandwidth:	120 kHz		
Video bandwidth:	3 x RBW		
Trace-Mode:	Max. hold		
Test setup	See chapter 6.1A		
Measurement uncertainty	See chapter 8		

Limits:

FCC	IC			
	Field strength of the fundamental.			
In addition to the provisions of S	ection 15.205, the field strength of en	nissions from intentional radiators		
operated u	under this Section shall not exceed the	e following:		
Fundamental Frequency (MHz)	Field strength of Fundamental (µV/m)	Measurement distance (m)		
40.66 - 40.70	2,250	3		
70-130	1,250	3		
130-174	1,250 to 3,750	3		
174-260	3,750	3		
260-470	3,750 to 12,500	12,500 3		
Above 470	12,500	3		

Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

- for the band 130-174 MHz, μV/m at 3 meters = 56.81818(F) - 6136.3636;

- for the band 260-470 MHz, μ V/m at 3 meters = 41.6667(F) - 7083.3333.

Result:

Test conditions	Maximum power (dBµ\	Limit	
Channel / MHz	Peak	Average	
433.66	88.1	76.0*	80.8
434.18	89.0	76.9*	80.8

*Value recalculated from Peak-to-Average correction factor described in 6.1

10.5 Field strength of the harmonics and spurious

Measurement:

Measurement parameter						
Detector:	Peak / average / quasi peak					
Sweep time:	Auto					
Resolution bandwidth:	200 Hz / 9 kHz / 120 kHz					
Video bandwidth:	3 x RBW					
Span:	See plots					
Trace-Mode:	Max. hold					
Test setup	See chapter 6.1A & 6.2A,B					
Measurement uncertainty	See chapter 8					

Limits:

FCC			IC		
	Field strength of	the fundamental.			
In addition to the provisions of S	Section 15.205, the f	ield strength of er	nissions from intentional radiators		
operated	under this Section s	hall not exceed th	e following:		
Fundamental Frequency (MHz)	Field strength of spurious (µV/m) Measurement distanc				
40.66 - 40.70	22	5	3		
70-130	12	5	3		
130-174	125 to	o 375 3			
174-260	375 3				
260-470	375 to 1	3			
Above 470	1,25	50	3		

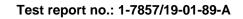
Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in Section 15.209, whichever limit permits a higher field strength.

FCC		IC		
Frequency (MHz)	Field streng	gth (µV/m)	Measurement distance (m)	
0.009 - 0.490	2400/F	(kHz)	300	
0.490 – 1.705	24000/F	(kHz)	30	
1.705 – 30	30)	30	
30 - 88	10	0	3	
88 – 216	15	0	3	
216 – 960	20	0	3	
above 960	50	0	3	

Results:

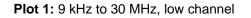
Valid for the frequency range between 1 GHz to 6 GHz. For emissions between 30 MHz and 1 GHz see result table below the plots. For emissions between 9 kHz to 30 MHz all emissions were more than 10 dB below the limit.

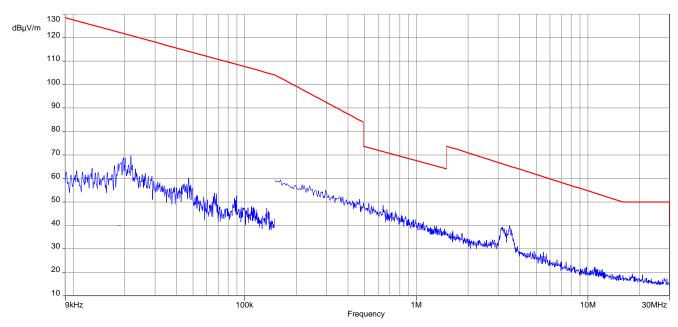
Low channel:

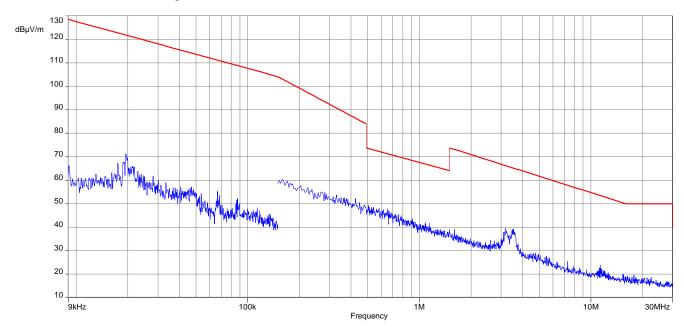

f [MHz]	Detector	Limit max. allowed [dBµV/m]	Amplitude of emission Peak / Average* [dBµV/m]
1347	Peak	74 Peak / 54 Average	51.2 / 39.1
4341	Peak	74 Peak / 54 Average	54.0 / 41.9
4770	Peak	74 Peak / 54 Average	57.9 / 45.8

*Value recalculated from Peak-to-Average correction factor described in 6.1

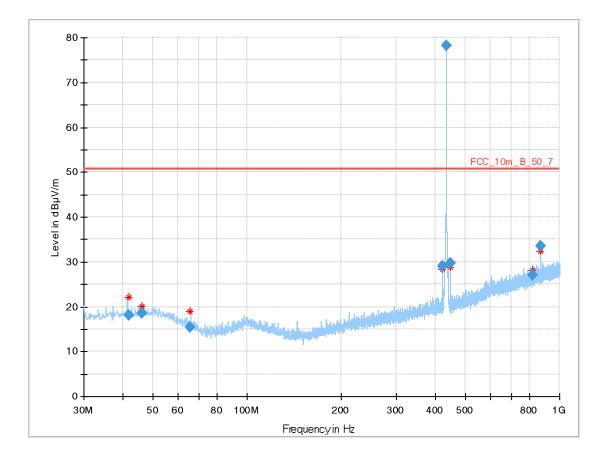
High channel:


f [MHz]	Detector	Limit max. allowed [dBµV/m]	Amplitude of emission Peak / Average* [dBµV/m]
1349	Peak	74 Peak / 54 Average	48.3 / 36.2
4776	Peak	74 Peak / 54 Average	59.2 / 47.1

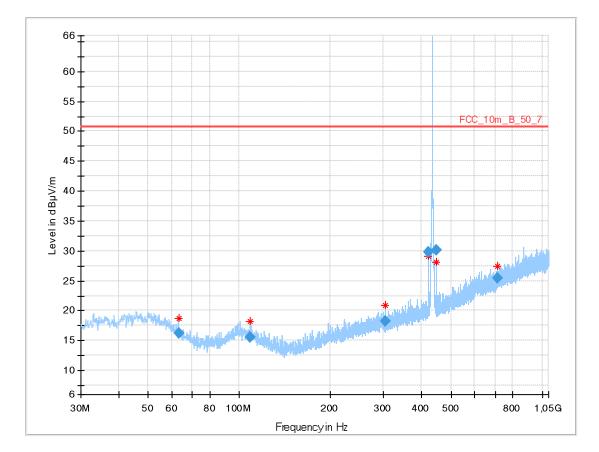

*Value recalculated from Peak-to-Average correction factor described in 6.1



Plots:



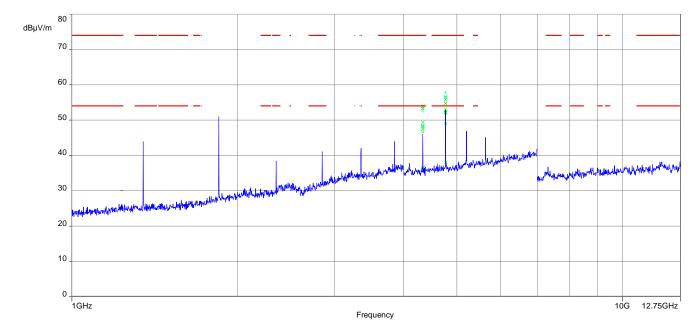
Plot 2: 9 kHz to 30 MHz, high channel



Plot 3: 30 MHz to 1000 MHz, vertical & horizontal polarisation, low channel

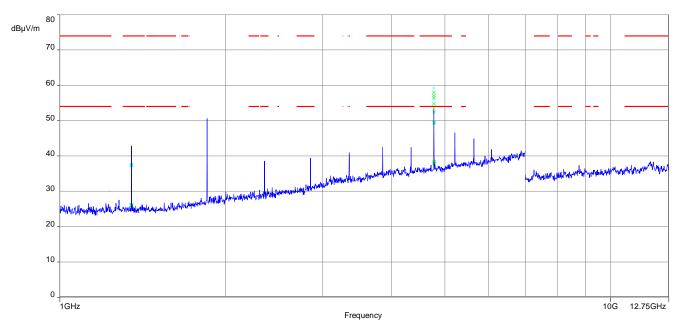
Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
41.859	18.20	50.7	32.5	1000	120	100.0	Н	296.0	15
45.967	18.49	50.7	32.21	1000	120	100.0	Н	248.0	15
65.703	15.44	50.7	35.26	1000	120	101.0	Н	28.0	12
420.572	28.96	50.7	21.74	1000	120	160.0	Н	309.0	17
433.760	78.12	50.7	-27.42	1000	120	195.0	Н	57	17
446.763	29.71	50.7	20.99	1000	120	160.0	Н	141.0	17
816.953	27.15	50.7	23.55	1000	120	160.0	Н	1.0	23
867.355	33.44	50.7	17.26	1000	120	98.0	Н	309.0	23


Plot 4: 30 MHz to 1000 MHz, vertical & horizontal polarisation, high channel

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
63.331	16.20	50.7	34.50	1000	120	272.0	V	220.0	12
108.930	15.60	50.7	35.10	1000	120	271.0	Н	264.0	12
303.180	18.19	50.7	32.51	1000	120	400.0	V	304.0	15
421.101	29.76	50.7	20.94	1000	120	200.0	Н	93.0	17
434.166	78.99	50.7	-28.29	1000	120	203.0	Н	220.0	17
447.241	30.09	50.7	20.61	1000	120	271.0	Н	16.0	17
710.666	25.37	50.7	25.33	1000	120	400.0	V	284.0	21


Test report no.: 1-7857/19-01-89-A

Plot 5: 1000 MHz to 12.75 GHz, vertical & horizontal polarisation, low channel

11 **Observations**

No observations except those reported with the single test cases have been made.

Test report no.: 1-7857/19-01-89-A

Annex A Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
OC	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

CTC I advanced

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2019-05-22
А	PMN and HVIN added, HMN removed	2019-07-11

Annex C Accreditation Certificate – D-PL-12076-01-04

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04.pdf

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05.pdf