

FCC / ISED Test Report

FOR:

HUF

Model Name:

HUF2718

Product Description:

Passive Entry Keyfob

FCC ID: YGOG21TB2 IC ID: 4008C-G21TB2

Applied Rules and Standards: 47 CFR Part: 15.231 RSS-210 & RSS-Gen Issue 5

REPORT #: EMC_HUFUS_017_18001_15.231_Rev1

DATE: 2019-05-07

A2LA Accredited

IC recognized # 3462B-1

CETECOM Inc. 411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A. Phone: + 1 (408) 586 6200 • Fax: + 1 (408) 586 6299 • E-mail: info@cetecom.com • <u>http://www.cetecom.com</u> CETECOM Inc. is a Delaware Corporation with Corporation number: 2905571

V4.0 2012-07-25

The BLUETOOTH trademarks are owned by Bluetooth SIG, Inc., U.S.A. and licensed to CETECOM Inc.

© Copyright by CETECOM

TABLE OF CONTENTS

1		ASSESSMENT	3
2		ADMINISTRATIVE DATA	4
	2.1 2.2 2.3	IDENTIFICATION OF THE TESTING LABORATORY ISSUING THE EMC TEST REPORT IDENTIFICATION OF THE CLIENT IDENTIFICATION OF THE MANUFACTURER	4
3	I	EQUIPMENT UNDER TEST (EUT)	5
	3.1 3.2 3.3 3.4 3.5 3.6	TEST SAMPLE CONFIGURATION MODE OF OPERATION JUSTIFICATION FOR WORST CASE MODE OF OPERATION	6 6 6 6
4	(SUBJECT OF INVESTIGATION	8
5	I	MEASUREMENT RESULTS SUMMARY	8
6	I	MEASUREMENT UNCERTAINTY	9
	6.1 6.2	ENVIRONMENTAL CONDITIONS DURING TESTING: Dates of Testing:	
7	I	MEASUREMENT PROCEDURES	. 10
	7.1	RADIATED MEASUREMENT	. 10
8		TEST RESULT DATA	. 13
	8.1 8.2 8.3 8.4	RADIATED TRANSMITTER SPURIOUS EMISSIONS AND RESTRICTED BANDS	.16 .21
9	1	TEST SETUP PHOTOS	. 27
10	Ī	TEST EQUIPMENT AND ANCILLARIES USED FOR TESTING	. 27
11	I	HISTORY	. 28

1 <u>Assessment</u>

The following device was evaluated against the applicable criteria specified in FCC rules Parts 15.231 of Title 47 of the Code of Federal Regulations and the relevant ISED Canada standard RSS-210 & RSS-Gen Issue 5.

No deviations were ascertained.

Company	Description	Model #
HUF	Passive Entry Keyfob	HUF2718

Responsible for Testing Laboratory:

Cindi Li			
2019-05-07	Compliance	(Lab Manager)	
Date	Section	Name	Signature
			- J

Responsible for the Report:

	Kris Lazarov		
2019-05-07	Compliance	(Senior EMC Engineer)	
Date	Section	Name	Signature

The test results of this test report relate exclusively to the test item specified in Section3.

CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM Inc. USA.

2 Administrative Data

2.1 Identification of the Testing Laboratory Issuing the EMC Test Report

Company Name:	CETECOM Inc.
Department:	Compliance
Street Address:	411 Dixon Landing Road
City/Zip Code	Milpitas, CA 95035
Country	USA
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
Compliance Manager:	Cindi Li
Responsible Project Leader:	Kris Lazarov

2.2 Identification of the Client

Applicant's Name:	Huf Hülsbeck & Fürst GmbH & Co. KG
Street Address:	Steeger Str. 17
City/Zip Code	Velbert 42551
Country	Germany

2.3 Identification of the Manufacturer

Manufacturer's Name:	Same as applicant
Manufacturers Address:	
City/Zip Code	
Country	

3 Equipment Under Test (EUT)

3.1 EUT Specifications

Model No:	HUF2718		
HW Version :	B2UID		
SW Version :	PreProduction		
FCC-ID :	YGOG21TB2		
IC-ID:	4008C-G21TB2		
FVIN:	PreProduction		
HVIN:	HUF2718		
PMN:	B2 Passive Entry Keyfob		
Product Description: Passive Entry Keyfob			
Frequency Range / number of channels:	433.2 MHz to 434.64 MHz / 3 channels		
Type(s) of Modulation:	ASK / FSK		
Modes of Operation:	Short term pulsed transmission		
Antenna Information as declared:	Internal PCB		
Power Supply/ Rated Operating Voltage Range:	Vmin: 2.4 VDC/ Vnom: 3 VDC / Vmax: 3.3VDC		
Operating Temperature Range	Fob: -20 °C to 70 °C / Immobilizer: -40 °C to 85 °C		
Other Radios included in the device:	125 kHz Immobilizer receiver		
Sample Revision	□Prototype Unit; □Production Unit; ■Pre-Production		

Test Report #:	EMC_HUFUS_017_18001_15.231_Rev1		FCC ID: YGOG21TB2	CETECOM
Date of Report	2019-05-07	Page 6 of 28	IC ID: 4008C-G21TB2	

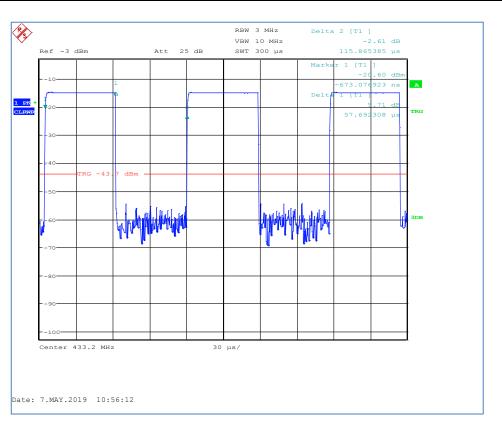
3.2 EUT Sample details

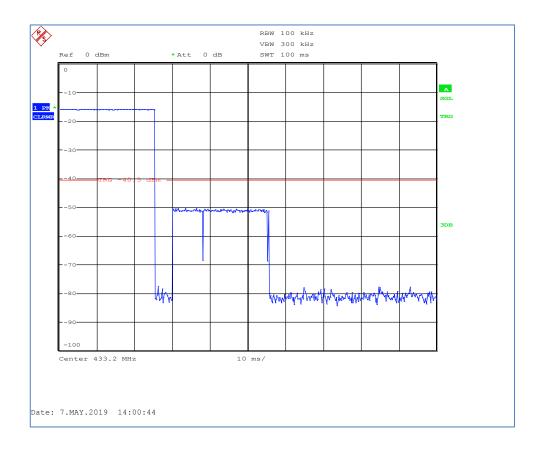
EUT #	Serial Number	HW Version	SW Version	Notes/Comments
1	Pre-Production Sample # 9712	B2UID	PreProduction	Radiated Measurements

3.3 Test Sample Configuration

Set-up #	EUT / AE used for set-up	Comments
1	EUT #1	Normal Battery
2	EUT #1	Powered with dummy battery

3.4 Mode of Operation


EUT Set-up #	Combination of AE used for test set up	Comments
1	ASK	Continuous ASK transmission at 433.2 MHz or 434.64 MHz
2	FSK	Continuous FSK transmission at 433.2 MHz or 434.64 MHz
3	Trigger	Short transmission triggered manually or with 125 kHz signal
4	CW	Unmodulated carrier at middle channel


3.5 Justification for Worst Case Mode of Operation

During the testing process, the EUT was tested with transmitter sets on low and high channels, and highest possible duty cycle. For radiated measurements, all data in this report shows the worst case between horizontal and vertical antenna polarizations and for all orientations of the EUT. It was determined during a pretesting that the worst emissions occur with the EUT at horizontal orientation.

3.6 Testing Notes

The device transmits with TX burst duty cycle of 50%, however only transmits for 24 ms on a single channel in any interval of 100 ms – see plots below. This allows for the use of duty cycle correction according to FCC 15.35. The correction offset of -12.4 dB was calculated using the following formula: 20 * log (Duty Cycle)

4 <u>Subject of Investigation</u>

The objective of the measurements done by CETECOM Inc. was to assess the performance of the EUT according to the relevant requirements specified in FCC rules Part 15.231 of Title 47 of the Code of Federal Regulations and Radio Standard Specification RSS-210 & RSS-Gen Issue 5 of ISED Canada.

This test report is to support a request for new equipment authorization under the FCC ID: YGOG21TB2, and IC ID: 4008C-G21TB2

5 Measurement Results Summary

Test Specification	Test Case	Temperature and Voltage Conditions	Mode	Pass	NA	NP	Result
§15.231(c) RSS-210 A1.1.3	Emission Bandwidth	Nominal	ASK FSK				Complies
§15.231(b) RSS-210 A1.1	Field strength	Nominal	ASK FSK				Complies
§15.231(b); §15.205 RSS-210 A1.1	TX Spurious emissions- Radiated	Nominal	ASK FSK				Complies
§15.231(a,2) RSS Gen 210 A1.1.1	5 s Periodic Operation	Nominal	Auto/Manu al Trigger				Complies
§2.1055; RSS-133 6.3	Frequency Stability	Extreme	CW				Complies
§15.207(a) RSS Gen 8.8	AC Conducted Emissions	Nominal	NA				See Note 2

Note1: NA= Not Applicable; NP= Not Performed.

Note2: This device does not connect to AC network; hence the test is not applicable.

6 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus, with 95% confidence interval (in dB delta to result), based on a coverage factor k=1.

Radiated measurement

)

According to TR 102 273 a multiplicative propagation of error is assumed for RF measurement systems. For this reason the RMS method is applied to dB values and not to linear values as appropriate for additive propagation of error. Also used: http://physics.nist.gov/cuu/Uncertainty/typeb.html. The above calculated uncertainties apply to direct application of the Substitution method. The Substitution method is always used when the EUT comes closer than 3 dB to the limit.

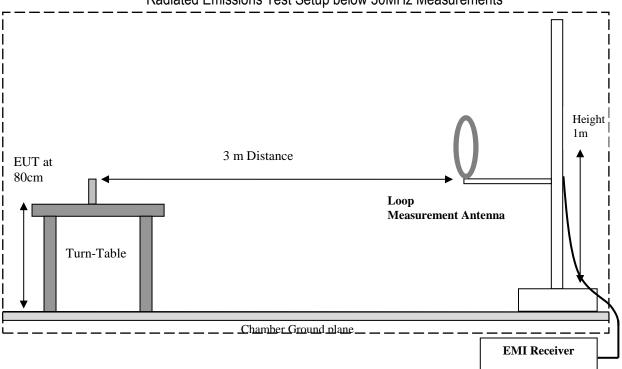
6.1 Environmental Conditions During Testing:

The following environmental conditions were maintained during the course of testing:

- Ambient Temperature: 20-25° C
- Relative humidity: 40-60%

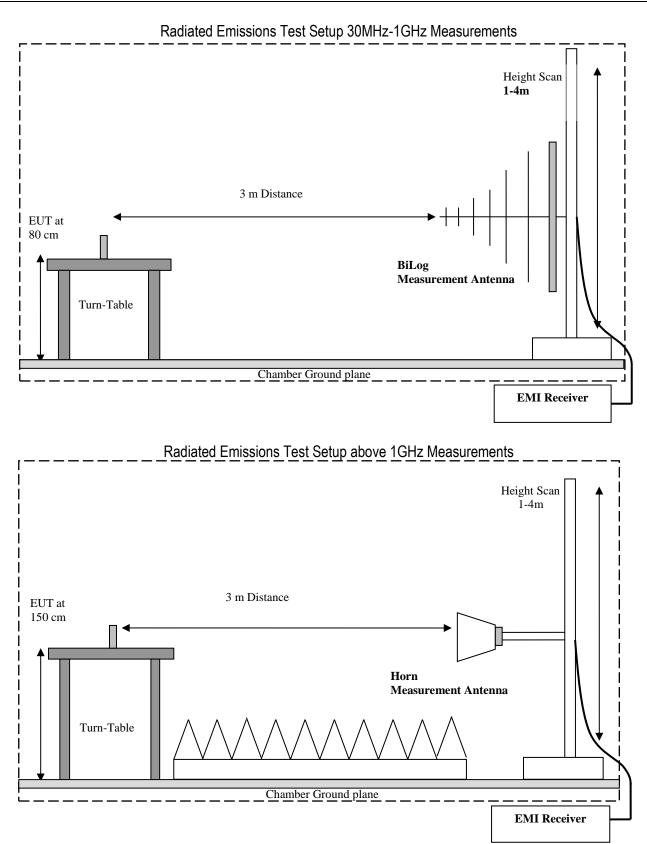
6.2 Dates of Testing:

03/25/2019 - 04/10/2019



7 Measurement Procedures

7.1 Radiated Measurement


The radiated measurement is performed according to ANSI C63.10 (2013)

- The exploratory measurement is accomplished by running a matrix of 16 sweeps over the required frequency range with R&S Test-SW EMC32 for 4 positions of the turntable, two orthogonal positions of the EUT and both antenna polarizations. This procedure exceeds the requirement of the above standards to cover the 3 orthogonal axis of the EUT. A max peak detector is utilized during the exploratory measurement. The Test-SW creates an overall maximum trace for all 12 sweeps and saves the settings for each point of this trace. The maximum trace is part of the test report.
- The 10 highest emissions are selected with an automatic algorithm of EMC32 searching for peaks in the noise floor and ensuring that broadband signals are not selected multiple times.
- The maxima are then put through the final measurement and again maximized in a 90deg range of the turntable, fine search in frequency domain and height scan between 1m and 4m.
- The above procedure is repeated for all possible ways of power supply to EUT and for all supported modulations.
- In case there are no emissions above noise floor level only the maximum trace is reported as described above.
- The results are split up into up to 4 frequency ranges due to antenna bandwidth restrictions. A magnetic loop is used from 9 kHz to 30 MHz, a Biconilog antenna is used from 30 MHz to 1 GHz, and two different horn antennas are used to cover frequencies up to 40 GHz.

Radiated Emissions Test Setup below 30MHz Measurements

7.1.1 Sample Calculations for Field Strength Measurements

Field Strength is calculated from the Spectrum Analyzer/ Receiver readings, taking into account the following parameters:

- 1. Measured reading in $dB\mu V$
- 2. Cable Loss between the receiving antenna and SA in dB and
- 3. Antenna Factor in dB/m

All radiated measurement plots in this report are taken from a test SW that calculates the Field Strength based on the following equation:

FS (dB μ V/m) = Measured Value on SA (dB μ V) + Cable Loss (dB) + Antenna Factor (dB/m)

Example:

Frequency	Measured SA	Cable Loss	Antenna Factor	Field Strength
(MHz)	(dBµV)	(dB)	Correction (dB/m)	Result (dBµV/m)
1000	80.5	3.5	14	98.0

8 <u>Test Result Data</u>

8.1 Field strength

8.1.1 Measurement according to ANSI C63.10 (2013)

Spectrum Analyzer settings:

- RBW ≥ DTS bandwidth
- VBW \ge 3 x RBW
- Span \geq 3 x RBW
- Sweep = Auto couple
- Detector function = RMS
- Trace = Max hold
- Use peak marker function to determine the peak amplitude level

8.1.2 Limits:

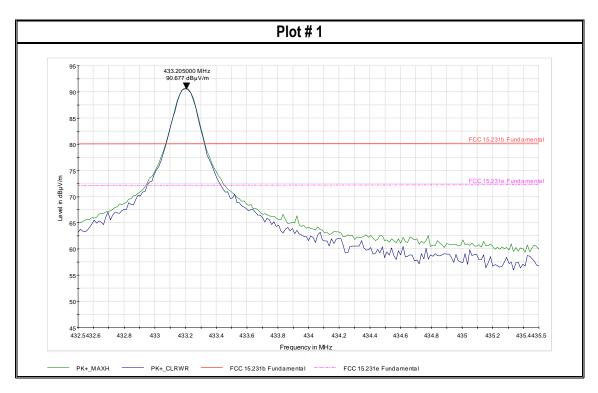
Maximum Peak Output Power:

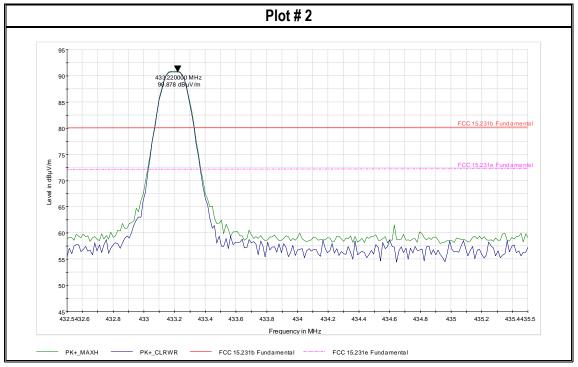
• §15.231(b) and RSS 210 A1.1: In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency	Field strength of fundamental
(MHz)	(microvolts/meter)
260-470	3,750 to 12,500 Linear interpolations

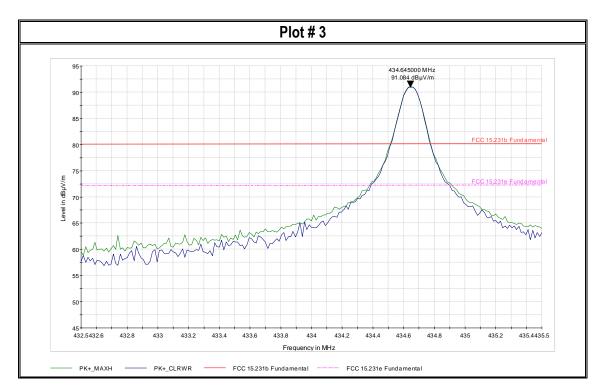
8.1.3 Test conditions and setup:

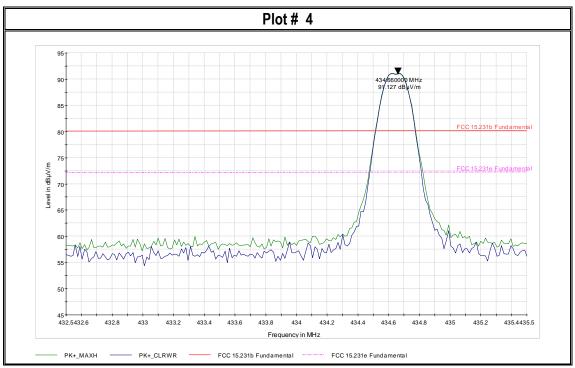
Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input
23° C	1	433.2 MHz / 434.64 MHz	3 V Battery


8.1.4 Measurement result:


Plot #	Fundamental frequency (MHz)	Modulation	Fundamental Field Strength (dBµV/m)	Corrected For Duty Cycle* (dBµV/m)	Limit (dBµV/m)	Result
1	433.2	ASK	90.68	78.68	80.8	Pass
2	433.2	FSK	90.88	78.88	80.8	Pass
3	434.64	ASK	91.09	79.09	80.8	Pass
4	434.64	FSK	91.13	79.13	80.8	Pass

* The field strength results were corrected for the maximum duty cycle of 24% for the device by applying an offset of -12.4 dB calculated using the following formula: 20 * log (Duty Cycle) = 20 * log 0.24 = (-12.4 dB)




8.1.5 Measurement Plots:

8.2 Emission Bandwidth

8.2.1 Measurement according to ANSI C63.10 (2013)

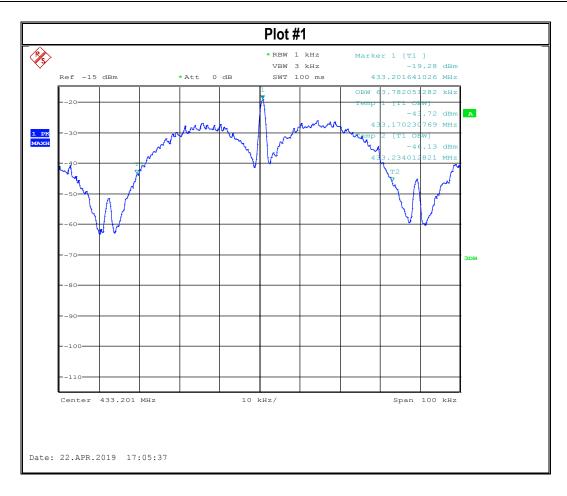
Spectrum Analyzer settings:

- Set RBW = 100 kHz
- Set the video bandwidth (VBW) \ge 3 x RBW
- Detector = Peak
- Trace mode = Max hold
- Sweep = Auto couple
- Allow the trace to stabilize
- Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

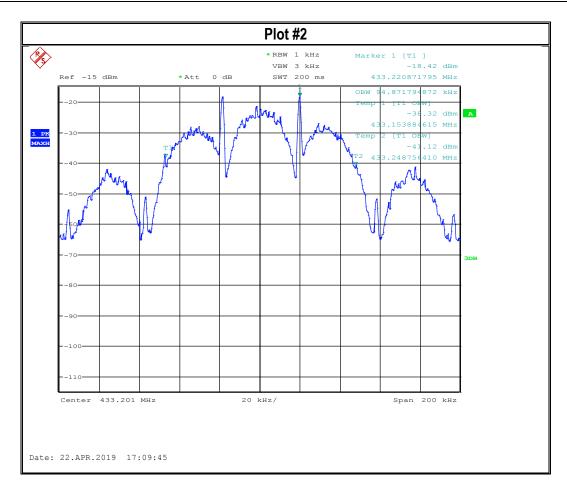
8.2.2 Limits:

- FCC §15.231(c): The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.
- RSS-210 A1.1.3: The 99% bandwidth shall be no wider than 0.25% of the center frequency for devices operating between 70 MHz and 900 MHz.

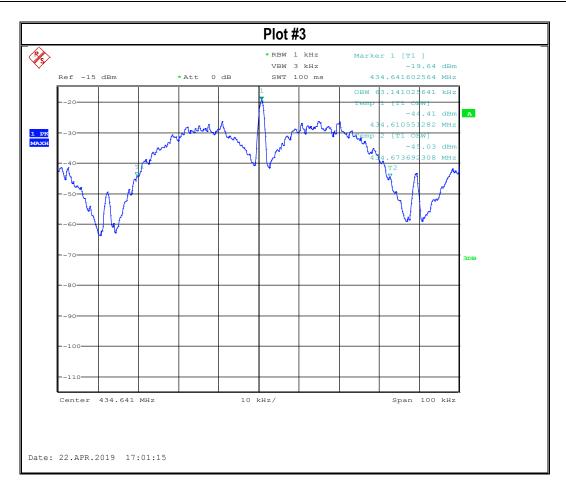
8.2.3 Test conditions and setup:

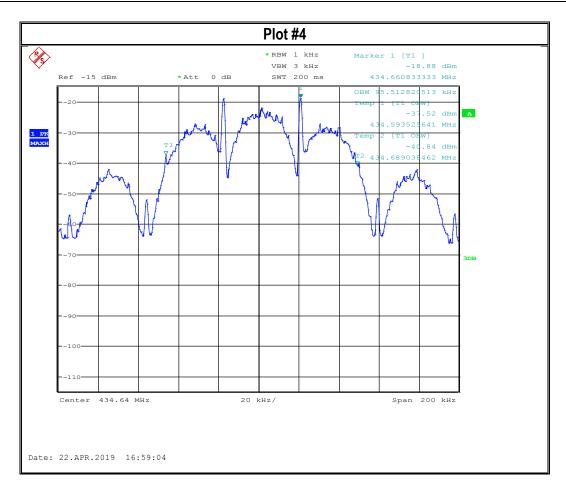

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input
23° C	1	433.2 MHz / 434.64 MHz	3 V Battery

8.2.4 Measurement result:


Plot #	Frequency (MHz)	Modulation	99% Emissions Bandwidth (MHz)	Limit (MHz)	Result
1	433.2	ASK	63.8	1.082	Pass
2	433.2	FSK	94.9	1.082	Pass
3	434.64	ASK	63.1	1.082	Pass
4	434.64	FSK	95.5	1.082	Pass

8.2.5 Measurement Plots:





8.3 Radiated Transmitter Spurious Emissions and Restricted Bands

8.3.1 Measurement according to ANSI C63.10 (2013)

Spectrum Analyzer Settings:

- Frequency = 9 KHz 30 MHz
- RBW = 9 KHz
- Detector: Peak
- Frequency = 30 MHz 1 GHz
- Detector = Peak / Quasi-Peak
- RBW= 120 KHz (<1GHz)
- Frequency > 1 GHz
- Detector = Peak / Average
- RBW = 1 MHz
- Radiated spurious emissions shall be measured for the transmit frequencies, transmit power, and data rate for the lowest, middle and highest channel in each frequency band of operation and for the highest gain antenna for each antenna type, and using the appropriate parameters and test requirements.
- The highest (or worst-case) data rate shall be recorded for each measurement.
- For testing at distance other than the specified in the standard, the limit conversion is calculated by using 40 dB/decade extrapolation factor as follow: Conversion factor (CF) = 40 log (D/d) = 40 log (300m / 3m) = 80dB

8.3.2 Limits:

• §15.231(b) and RSS 210 A1.1: In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

• FCC §15.205 & RSS-Gen 8.10: Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

Test Report #:	EMC_HUFUS_017_18001_15.231_F	Rev1	FCC ID: YGOG21TB2	CETECOM
Date of Report	2019-05-07	Page 22 of 28	IC ID: 4008C-G21TB2	Contraction of the State State of the State

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

• Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209 (see §15.205(b)).

8.3.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input
23° C	1	433.2 MHz / 434.64 MHz	3 V Battery

8.3.4 Measurement result:

Table #	Frequency (MHz)	Modulation	Scan Frequency	Limit	Result
1	433.2	ASK	9 kHz – 5 GHz	See section 8.3.2	Pass
2	433.2	FSK	9 kHz – 5 GHz	See section 8.3.2	Pass
3	434.64	ASK	9 kHz – 5 GHz	See section 8.3.2	Pass
4	434.64	FSK	9 kHz – 5 GHz	See section 8.3.2	Pass

Note 1: The field strength results were corrected for the maximum duty cycle of 24% for the device by applying an offset of -12.4 dB calculated using the following formula: 20 * log (Duty Cycle) = 20 * log 0.24 = (-12.4 dB)

Note 2: The device complies with CFR 47 Part 2.1055, with measured frequency stability better than 1ppm.

Table # 1									
Modulation: ASK Fundamental @ 433.2 MHz 24% Duty Cycle									
Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Result	
125.009028	20.49	43.52	23.03	100	140.0	Н	148.0	Pass	
866.406941	46.22	60.80	14.58	100	186.0	Н	20.0	Pass	
1299.612	34.21	53.98	19.77	1000	164.0	Н	0	Pass	
1732.698	37.54	53.98	16.44	1000	136.0	Н	192	Pass	
3465.640000	36.40	53.98	17.58	1000	212.0	Н	259.0	Pass	
3898.687000	34.90	53.98	19.08	1000	249.0	V	331.0	Pass	
4331.949000	37.18	53.98	16.80	1000	152.0	Н	209.0	Pass	

Table # 2									
Modulation: FSK Fundamental @ 433.2 MHz 24% Duty Cycle									
Frequency (MHz)	MaxPeak* (dBµV/m)	Limit** (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Result	
124.996854	20.22	43.52	23.30	100	158.0	Н	205.0	Pass	
866.450603	46.40	60.80	14.40	100	175.0	Н	14.0	Pass	
1299.541	35.28	53.98	18.70	1000	238.0	Н	40	Pass	
1732.804	37.59	53.98	16.39	1000	166.0	Н	62	Pass	
3465.458666	35.10	53.98	18.88	1000	175.0	Н	47.0	Pass	
3898.972334	35.03	53.98	18.95	1000	247.0	V	312.0	Pass	
4332.306334	37.19	53.98	16.79	1000	247.0	Н	213.0	Pass	

Table # 3								
Modulation: ASK Fundamental @ 434.64 MHz 24% Duty Cycle								
Frequency (MHz)	MaxPeak* (dBµV/m)	Limit** (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Result
125.003458	20.80	43.52	22.72	100	157.0	Н	69.0	Pass
869.283627	49.42	60.80	11.38	100	180.0	Н	15.0	Pass
1304.016	36.89	53.98	17.09	1000	163.0	Н	0	Pass
1738.516	37.42	53.98	16.56	1000	315.0	Н	34	Pass
3477.100000	34.99	53.98	18.99	1000	186.0	Н	72.0	Pass
4346.573667	35.21	53.98	18.77	1000	166.0	Н	15.0	Pass

Table # 4								
Modulation: FSK Fundamental @ 434.64 MHz 24% Duty Cycle								
Frequency (MHz)	MaxPeak* (dBµV/m)	Limit** (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Result
125.011358	20.98	43.52	22.54	100	140.0	Н	233.0	Pass
869.328027	49.31	60.80	11.49	100	183.0	Н	21.0	Pass
1304.031	37.18	53.98	16.80	1000	118.0	Н	57	Pass
1738.519	37.03	53.98	16.95	1000	141.0	Н	35	Pass
3477.060000	34.01	53.98	19.97	1000	140.0	Н	65.0	Pass
4346.627000	35.01	53.98	18.97	1000	286.0	Н	209.0	Pass

8.4 5 s Periodic Operation

8.4.1 Measurement according to FCC 15.231

Spectrum Analyzer settings:

- Center Frequency = Mid Channel Frequency
- Span = Zero Span
- Set RBW = 3 MHz
- Set the video bandwidth (VBW) \geq 3 x RBW
- Detector = Peak
- Trace mode = Max hold
- Trigger = Video
- Sweep Time = Sufficient to capture complete transmission
- Use marker delta to measure the duration of transmission

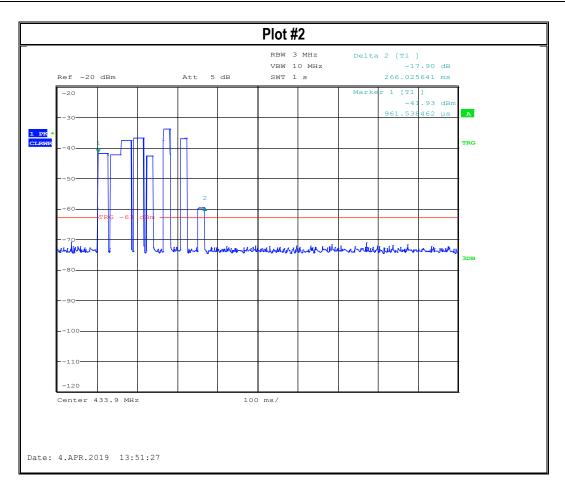
8.4.2 Limits:

- FCC §15.231 (a) The provisions of this section are restricted to periodic operation within the band 40.66-40.70 MHz and above 70 MHz. Except as shown in paragraph (e) of this section, the intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Continuous transmissions, voice, video and the radio control of toys are not permitted. Data is permitted to be sent with a control signal. The following conditions shall be met to comply with the provisions for this periodic operation:
 - (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.
 - o (2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.
- RSS-210 A1.1: Devices shall comply with the following for momentary operation:
 - A manually operated transmitter shall be equipped with a push-to-operate switch and be under manual control at all times during transmission. When released, the transmitter shall cease transmission within no more than 5 seconds of being released.
 - A transmitter that has been activated automatically shall cease transmission within 5 seconds of activation.

8.4.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input
23° C	1	433.2 MHz Triggered	3 V Battery

8.4.4 Measurement result:


Plot #	Frequency (MHz)	Trigger	Total transmission time (s)	Limit (s)	Result
1	433.2	Manual	0.5	<5	Pass
2	433.2	Remote	0.3	<5	Pass

8.4.5 Measurement Plots:

						Plo	t#	1				
	Ref -20	dBm		Att 5	dB	VB		0 MHz	Delta		0.46 dB	_
	-20								Marke		.48 dBm	
1 PK *	30							2		-641.025	1641 μs	A
CLRWR	40	<u> </u>										TRG
	60	TRG -63	dBm ——				+					
	70		e benticule	antraine	ichtwich	- 14	ww	weather	galayaamad	hicknesser	the and	ЗДВ
	80											
	90											
	100											
	110											
	-120 Center 4	33 9 MII-	,		100	ms/						
	Center 4	55.5 Mil2	-		100	11137						
Date:	4.APR.20	19 13:4	19:26									

9 <u>Test setup photos</u>

Setup photos are included in supporting file name: "EMC_HUFUS-017-18001_15.231_Setup_Photos.pdf"

10 Test Equipment And Ancillaries Used For Testing

Item Name	Manufacturer	Model	Serial #	Calibration Cycle	Last Calibration Date
Antenna Biconilog 3142E	EMCO	3142E	166067	3 years	6/27/2017
Magnetic Loop Antenna	ETS Lindgren	6512	164698	3 years	7/8/2017
Antenna Horn 3115	ETS Lindgren	3115	35114	3 years	31/6/2017
Antenna Horn 3117-PA	ETS Lindgren	3117-PA	169547	3 years	8/8/2017
Digital Barometer	Control Company	35519-055	91119547	2 Years	6/8/2017
FSV40	R&S	FSV40	101022	2 years	5/7/2017
FSU26	R&S	FSU26	200302	2 years	7/5/2017
Digital Thermometer	Control Company	36934-164	221197993	2 Years	4/27/2018

Note: Equipment used meets the measurement uncertainty requirements as required per applicable standards for 95% confidence levels. Calibration due dates, unless defined specifically, falls on the last day of the month. Items indicated "N/A" for cal status either do not specifically require calibration or is internally characterized before use.

11 <u>History</u>

Date	Report Name	Changes to report	Report prepared by
2019-04-29	EMC_HUFUS_017_18001_15.231	Initial Version	Kris Lazarov
2019-05-07	EMC_HUFUS_017_18001_15.231_Rev1	Added section 3.6 Testing Notes; Updated the tables in section 8.3.4	Kris Lazarov