

Test Report

(Class II Permissive Change)

Product Name	Full HD Video Wireless Transmitter Module
Model No	ZRF-31100
FCC ID	YG7ZRF31100

Applicant	ZINWELL CORPORATION
Address	7F 512, Yuan Shan Road, Chung Ho City, 235, Taipei Hsien, Taiwan

Date of Receipt June 11, 2010				
Issued Date	Aug. 25, 2010			
Report No.	106228R-RFUSP46V01			
Report Version	V1.0			

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issued Date: Aug. 25, 2010 Report No.: 106228R-RFUSP46V01

Product Name	Full HD Video Wireless Transmitter Module			
Applicant	ZINWELL CORPORATION			
Address	7F 512, Yuan Shan Road, Chung Ho City, 235, Taipei Hsien, Taiwan			
Manufacturer	ZINWELL CORPORATION			
Model No.	ZRF-31100			
FCC ID.	YG7ZRF31100			
EUT Rated Voltage	AC 100-240V, 50-60Hz			
EUT Test Voltage	AC 120V/60Hz			
Trade Name	ZINWELL [®]			
Applicable Standard	FCC CFR Title 47 Part 15 Subpart E: 2009			
	ANSI C63.4: 2003			
Test Result	Complied			

The Test Results relate only to the samples tested.

•

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By :

Genie Chang

(Senior Adm. Specialist / Genie Chang)

Tested By

Juo 00

(Engineer / Joe Guo)

Approved By

(Manager / Vincent Lin)

Page

Description

1.

2.

3.

4.

5.

6.

7.

TABLE OF CONTENTS

1.1. 1.2. 1.3. 1.4. 1.5 1.6. 21 2.2. 2.3. 2.4. 2.5. 2.6. 3.1. 3.2. Test Setup17 3.3. 3.4. 3.5. 3.6. Peak Power Spectral Density......25 4.1. 4.2. 43 4.4. 4.5. 4.6. 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 6.1. 6.2. 6.3. 6.4. 6.5. 6.6.

7.1.	Test Equipment	
7.2.	Test Setup	
7.3.	Limits	
7.4.	Test Procedure	
7.5.	Uncertainty	
7.6.	Test Result of Band Edge	
8.	Frequency Stability	56
8.1.	Test Equipment	
8.2.	Test Setup	
8.3.	Limits	
8.4.	Test Procedure	
8.5.	Uncertainty	
8.6.	Test Result of Frequency Stability	
9.	EMI Reduction Method During Compliance Testing	61
Attachment 1:	EUT Test Photographs	

Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Full HD Video Wireless Transmitter Module
Trade Name	ZINWELL
FCC ID.	YG7ZRF31100
Model No.	ZRF-31100
Frequency Range	5270-5310MHz, 5510-5670MHz
Number of Channels	5
Data Rate	63Mbps
Type of Modulation	OFDM (BPSK, QPSK, 16QAM, 64QAM)
Antenna type	PIFA
Channel Control	Auto
Antenna Gain	Refer to the table "Antenna List"
Power Adapter	MFR: SINO-AMERICAN, M/N: SA115B-05-A
	Input: AC 100-240V, 50-60Hz, 0.4A
	Output: DC 5V, 3A, 15W
	Cable out: Non-Shielded, 1.8m, with one ferrite core bonded.
Contain Module	ZINWELL / ZRF-31100

Antenna List

	Manufacturer	Model No.	Peak Gain
Internal	ZINWELL	N/A	3.47dBi for 5.25~5.725GHz
External	INVAX	NB0169-B	0.07dBi for 5.25~5.725GHz

NOTE: External Antenna only uses in receive mode.

All testing are use external antenna.

802.11n-40MHz (5GHz Band) Center Working Frequency of Each Channel:

Channel Frequency Channel Frequency Channel Frequency Channel Frequency Channel Frequency Channel 54: 5270 MHz Channel 62: 5310 MHz Channel 102: 5510 MHz Channel 110: 5550 MHz Channel 134: 5670 MHz

- 1. This device is a Full HD Video Wireless Transmitter Module with a built-in 5GHz transceiver.
- 2. This device is Slave equipment, the transmission is disabled in the 5600-5650MHz band.
- 3. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 4. These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15 Subpart E for Unlicensed National Information Infrastructure devices.

1.2. Operational Description

The EUT is a Full HD Video Wireless Transmitter Module with a built-in 5GHz transceiver, together with Full HD Video Wireless Receiver Module. It has a SIMO design of five channel and one slow rate output wireless channel, which generates an upstream channel for data content transmissions.

The data modulation is OFDM, using five antennas to support 4(Transmit) * 1(Receive) technology. The device only provided one transmitting speed 31.5Mbps in 20MHz bandwidth mode and 63Mbps in 40MHz bandwidth mode.

Presents the ultimate solution for converting any High Definition (HD) system, including Full HD, into a wireless one. These add-on modules enable wireless A/V applications that fit easily into the living room and eliminate traditional A/V wiring. The perfect HD video and audio quality and the high robustness are unmatched by any other wireless technology and present a true alternative to cable. The WHDI system transmits uncompressed video and audio streams wirelessly and thus simplifies and eliminates system issues, such as: lip-sync, large buffers and other burdens like retransmissions or error propagation.

The device can transmit audio and video signal to associate equipment, device will receive signal form associate equipment when associate equipment request change operation frequency.

The AMN2120 WHDITM baseband transmitter chip is the heart of the ZRF31100 WHDI transmitter module. The AMN2120 interfaces the A/V source through the WHDI connector. The AMN2120 includes an internal microcontroller for controlling the physical level.

The AMN2120 is based on MIMO technology transmitting through up to four output channels. Four digital-to-analog converters and one analog-to-digital converter are embedded within the chip.

The AMN2120 internal PLL accepts an input clock frequency of 40MHz. The input frequency is multiplied and then used as an internal system clock. The AMN2120 also generates a 10 MHz reference clock, derived from 40 MHz for general use.

The AMN3110 is a fully-integrated direct conversion MIMO transmitter specifically designed for WHDI applications using OFDM modulation in single-band 4.9 GHz to 5.9 GHz. The device consists of:

- Four Complete Downlink Direct Conversion Transmitters.
- One Uplink Receiver.
- Integrated Synthesizer.
- Internal DC Servo Loops.
- RSSI.
- IQ Detector.
- RF and Baseband Control Interface.
- Power Management Unit.
- 3-Wire SPI Interface.

To complete the RF front-end solution, the AMN3110 uses external PA, RF switches, RF Band Pass Filters (BPF), RF BALUNs and a few passive components.

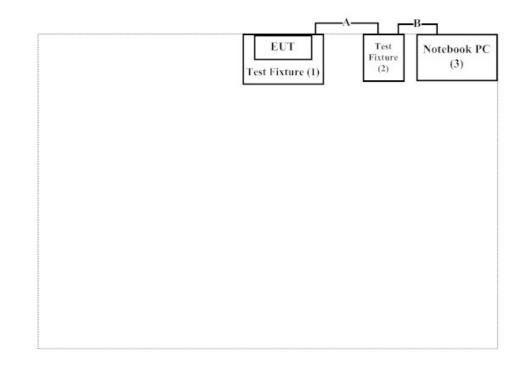
The device antenna are use five FIFA(4TX, 1RX) and printed on PCB, for receiver function there are support one external antenna which can instead of printed antenna.

The frequency band 5250-5350MHz and 5470 – 5725MHz are not support 20M bandwidth mode.

The device is slave equipment and has not radar detection and not ad-hoc operation in the DFS band. Another information please refer to user's manual.

The major change filed under this application is:

Add the frequency band from 5250-5350MHz and 5470 – 5725MHz by software.


1.3. Tested System Datails

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Product		Manufacturer	Model No.	Serial No.	Power Cord
1	Test Fixture	N/A	N/A	N/A	N/A
2	Test Fixture	N/A	N/A	N/A	N/A
3	Notebook PC	DELL	PP18L	36119001664	Non-Shielded, 1.8m

	Signal Cable Type	Signal cable Description	
А	Test Fixture Control Cable	Non-Shielded, 0.2m	
В	USB to RS-232 Cable	Non-Shielded, 1.5m	

1.4. Configuration of tested System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.4.
- (2) Execute the UART program on the EUT
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Press "OK" to start the continuous Transmitter.
- (5) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual	
Temperature (°C)	15-35	20-35	
Humidity (%RH)	25-75	50-65	
Barometric pressure (mbar)	860-1060	950-1000	

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site : <u>http://www.quietek.com/tw/ctg/cts/accreditations.htm</u>

The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : http://www.quietek.com/

Site Description: File on

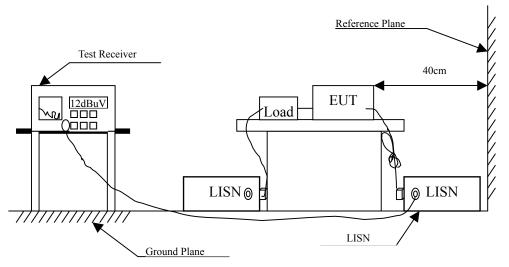
Federal Communications Commission FCC Engineering Laboratory 7435 Oakland Mills Road Columbia, MD 21046 Registration Number: 92195

Accreditation on NVLAP NVLAP Lab Code: 200533-0

Site Name: Quietek Corporation Site Address: No. 5-22, Ruei-Shu Valley, Ruei-Ping Tsuen, Lin-Kou Shiang, Taipei, Taiwan, R.O.C. TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789 E-Mail : <u>service@quietek.com</u>

FCC Accreditation Number: TW1014

2. Conducted Emission


2.1. Test Equipment

The following test equipment are used during the conducted emission test:

Item	Instrument	Manufacturer	Type No./Serial No	Last Cal.	Remark
1	Test Receiver	R & S	ESCS 30/825442/17	May, 2010	
2	L.I.S.N.	R & S	ESH3-Z5/825016/6	May, 2010	EUT
3	L.I.S.N.	Kyoritsu	KNW-407/8-1420-3	May, 2010	Peripherals
4	Pulse Limiter	R & S	ESH3-Z2	May, 2010	
5	No.1 Shielded Room			N/A	

Note: All equipments are calibrated every one year.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit									
Frequency	Lir	nits							
MHz	QP	AV							
0.15 - 0.50	66-56	56-46							
0.50-5.0	56	46							
5.0 - 30	60	50							

Remarks : In the above table, the tighter limit applies at the band edges.

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

The EUT was setup to ANSI C63.4, 2003; tested to DTS test procedure of Aug 2002 DA 02-2138 for compliance to FCC 47CFR Subpart E requirements.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product	:	Full HD Video Wireless Transmitter Module
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 1: Transmitter - 40BW (5270MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
LINE 1					
Quasi-Peak					
0.189	9.714	35.250	44.964	-19.922	64.886
0.537	9.640	23.040	32.680	-23.320	56.000
1.314	9.670	23.710	33.380	-22.620	56.000
2.240	9.680	24.400	34.080	-21.920	56.000
4.584	9.700	23.770	33.470	-22.530	56.000
7.627	9.780	26.950	36.730	-23.270	60.000
Average					
0.189	9.714	23.850	33.564	-21.322	54.886
0.537	9.640	19.560	29.200	-16.800	46.000
1.314	9.670	21.750	31.420	-14.580	46.000
2.240	9.680	21.390	31.070	-14.930	46.000
4.584	9.700	19.950	29.650	-16.350	46.000
7.627	9.780	20.730	30.510	-19.490	50.000

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	: Full HD Video Wireless Transmitter Module						
Test Item	: Conduc	ted Emission Test					
Power Line	: Line 2						
Test Mode	: Mode 1	Mode 1: Transmitter - 40BW (5270MHz)					
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV	dB	dBuV		
LINE 2							
Quasi-Peak							
0.193	9.721	36.420	46.141	-18.630	64.771		
0.443	9.645	28.830	38.475	-19.154	57.629		
0.740	9.658	25.360	35.018	-20.982	56.000		
1.279	9.670	23.440	33.110	-22.890	56.000		
4.177	9.700	24.080	33.780	-22.220	56.000		
7.572	9.770	26.470	36.240	-23.760	60.000		
Average							
0.193	9.721	28.370	38.091	-16.680	54.771		
0.443	9.645	25.630	35.275	-12.354	47.629		
0.740	9.658	22.550	32.208	-13.792	46.000		
1.279	9.670	19.730	29.400	-16.600	46.000		
4.177	9.700	19.550	29.250	-16.750	46.000		
7.572	9.770	21.490	31.260	-18.740	50.000		

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	: Full HD Video Wireless Transmitter Module								
Test Item	: Conduct	: Conducted Emission Test							
Power Line	: Line 1								
Test Mode	: Mode 1	Transmitter - 40E	3W (5550MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV	dB	dBuV				
LINE 1									
Quasi-Peak									
0.193	9.711	28.250	37.961	-26.810	64.771				
0.505	9.640	29.240	38.880	-17.120	56.000				
0.947	9.670	21.450	31.120	-24.880	56.000				
1.505	9.679	21.520	31.199	-24.801	56.000				
3.244	9.690	18.890	28.580	-27.420	56.000				
7.396	9.760	21.640	31.400	-28.600	60.000				
Average									
0.193	9.711	15.460	25.171	-29.600	54.771				
0.505	9.640	25.640	35.280	-10.720	46.000				
0.947	9.670	18.760	28.430	-17.570	46.000				
1.505	9.679	17.710	27.389	-18.611	46.000				
3.244	9.690	14.910	24.600	-21.400	46.000				
7.396	9.760	19.390	29.150	-20.850	50.000				

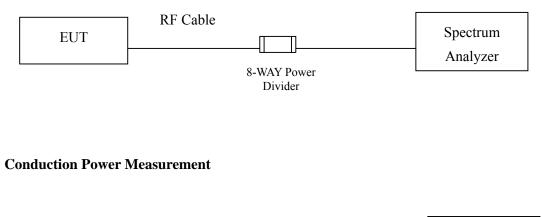
- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

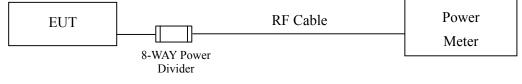
Product	: Full HD Video Wireless Transmitter Module								
Test Item	: Conduc	Conducted Emission Test							
Power Line	: Line 2	Line 2							
Test Mode	: Mode 1	: Transmitter - 40H	3W (5550MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV	dB	dBuV				
LINE 2									
Quasi-Peak									
0.197	9.719	29.690	39.409	-25.248	64.657				
0.380	9.650	27.410	37.060	-22.369	59.429				
0.505	9.640	29.720	39.360	-16.640	56.000				
1.005	9.670	22.770	32.440	-23.560	56.000				
2.365	9.680	20.230	29.910	-26.090	56.000				
6.654	9.740	20.670	30.410	-29.590	60.000				
Average									
0.197	9.719	26.470	36.189	-18.468	54.657				
0.380	9.650	24.230	33.880	-15.549	49.429				
0.505	9.640	26.220	35.860	-10.140	46.000				
1.005	9.670	20.060	29.730	-16.270	46.000				
2.365	9.680	17.510	27.190	-18.810	46.000				
6.654	9.740	19.030	28.770	-21.230	50.000				

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

3. Peak Transmit Power

3.1. Test Equipment


	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2010
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun, 2010
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2010
Х	8-WAY Power Divider	JFW	50PD-647 / 526770 0916	Apr., 2010
ЪT				


Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

3.2. Test Setup

26dBc Occupied Bandwidth

3.3. Limits

- (1) For the band 5.15-5.25 GHz, the peak transmit power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antenna of directional gain greater than 6 dBi are used, the peak transmit power shall be reduced by the amount in dB that directional gain of the antenna exceeds 6 dBi.
- (2) For the band 5.25-5.35 GHz, the peak transmit power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antenna of directional gain greater than 6 dBi are used, the peak transmit power shall be reduced by the amount in dB that directional gain of the antenna exceeds 6 dBi.
- (3) For the band 5.725-5.825 GHz, the peak transmit power over the frequency band of operation shall not exceed the lesser of 1W or 17 dBm + 10log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antenna of directional gain greater than 6 dBi are used, the peak transmit power shall be reduced by the amount in dB that directional gain of the antenna exceeds 6 dBi.

3.4. Test Procedur

As an alternative to DA 02-2138, the EUT peak power was measured with a peak power meter employing a video bandwidth greater than 6dB BW of the emission under test. Peak output power was read directly from the meter across all data rates, and across three channels within each sub-band. Special care was used to make sure that the EUT was transmitting in continuous mode. This method exceeds the limitations of DA 02-2138, and provides more accurate measurements.

3.5. Uncertainty

± 1.27 dB

3.6. Test Result of Peak Transmit Power

Product	:	Full HD Video Wireless Transmitter Module
Test Item	:	Peak Transmit Power
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter - 40BW

Channel No.	Frequency	Measurement	Required Limit	Result
	(MHz)	(dBm)		
54	5270	15.52	<24dBm	Pass
62	5310	16.69	<24dBm	Pass
102	5510	15.87	<24dBm	Pass
110	5550	16.00	<24dBm	Pass
134	5670	15.42	<24dBm	Pass

Note: Peak Power Output Value =Reading value on peak power meter + cable loss

Channel No	Frequency Range	26dB Bandwidth	Output Power	Output Power Limit		Result
	(MHz)	(MHz)	(dBm)	(dBm)	dBm+10log(BW)	
54	5270	39.8	15.52	24	27.00	Pass

26dBc Occupied Bandwidth:

								r - Swept SA	Analyzer	trum	ent Spec	Agi
Save As	M Aug 09, 2010		ALIGNAUTO	#Aug 1	ENSE:INT	AC SI		000000	-	50 \$	E .	
	PE MMWWWW ET P S N N N N	TYP	: -11.0 dB	_		Trig: Fre #Atten: 3	GHZ PNO: Fast IFGain:Low	1000000 Input: RF		eq	ier Fr	en
Sav	85 GHz 08 dBm		Mkr					0 dBm	f 20.00	Ref	3/div	
File/Folde Lis	3	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, men	Ymm	~~~~	1 ^	n n	2			og 10.0 0.00
File name	-15.37 abri									1	1	20.0 20.0 20.0
Save A typ												i0.0 i0.0 i0.0
🏂 Up Or Lev	0.00 MHz 1001 pts)	500 ms (#Sweep		-	W 1.0 MHz	#VE	2 ×		300	er 5.2 8 BW 3	Re
		ronone		No no n	IBm	10.63 c -16.10 c	8 05 GHz 0 05 GHz	5.25		f	N 1 N 1	1
Create Ne					Bm	-16.08 d	9 85 GHz	5.28		f	N 1	3 4 5 6
Canc												7 9 0 1
			STATUS		1					1		2

Channel No	Frequency Range	26dB Bandwidth	Output Power	Output Power Limit		Result
	(MHz)	(MHz)	(dBm)	(dBm)	dBm+10log(BW)	
62	5310	39.65	16.69	24	26.98	Pass

26dBc Occupied Bandwidth:

m Analyzer - Swept SA	
O.Q AC SENSE:INT ALIGNAUTO 12:26:19 PM Aug 09, 2010 5.310000000 GHz #Avg Type: Log-Pwr Trace I 12 34 5 6 Innut: BE PN0: East Trig: Free Run Tree Run	Save As
IFGain:Low #Atten: 30 dB Ext Gain: -11.0 dB DET SNNN Mkr3 5.329 75 GHz	Save
ef 20.00 dBm -17.73 dBm	File/Folder
2 3	File/Folde Lis
-17.35 dBm	File name
	Save As type
00 GHz Span 50.00 MHz 0 kHz #VBW 1.0 MHz #Sweep 500 ms (1001 pts)	🏂 Up On
CL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 5.323 85 GHz 8.65 dBm 5.290 10 GHz -18.15 dBm 6	Leve
7 5.329 75 GHz -17.73 dBm	Create Nev Folde
	Cance
STATUS	

Channel No	Frequency Range	26dB Bandwidth	Output Power	Outpu	t Power Limit	Result
	(MHz)	(MHz)	(dBm)	(dBm)	dBm+10log(BW)	
102	5510	39.65	15.87	24	26.98	Pass

26dBc Occupied Bandwidth:

50 Q	A	C SENSE:INT	ALIGN AUTO	02:41:57 PM Aug 09, 2010	
ter Freq 5.5100000] Trig: Free Run #Atten: 30 dB	#Avg Type: Log-Pwr Ext Gain: -11.0 dB	TRACE 1 2 3 4 5 6 TYPE MMWWWW DET P S N N N N	Save As
B/div Ref 30.00 dBr			Mkr	3 5.529 80 GHz -16.74 dBm	Sa
					File/Fol
home	mmatinen		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
				-16.48 dBm	File nar
Martin -					
					Save ty
ter 5.51000 GHz s BW 300 kHz	#VBW	1.0 MHz	#Sweep	Span 50.00 MHz 500 ms (1001 pts)	sh 🔥 Up C
N 1 f	X 5.492 50 GHz	9.519 dBm	JNCTION FUNCTION WIDTH	FUNCTION VALUE	Le
	5.490 15 GHz 5.529 80 GHz	-16.73 dBm -16.74 dBm			Create N Fol
					Car

Channel No	Frequency Range	26dB Bandwidth	Output Power	Outpu	t Power Limit	Result
	(MHz)	(MHz)	(dBm)	(dBm)	dBm+10log(BW)	
110	5550	40.25	16	24	27.05	Pass

26dBc Occupied Bandwidth:

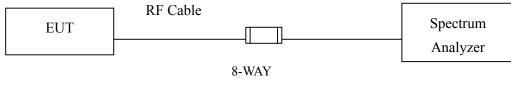
Agilent Spectrum An	alyzer - Swept SA					
50 Q	55000000 CU-		NSE:INT	ALIGNAUTO	02:59:52 PM Aug 09, 2010 TRACE 1 2 3 4 5	
enter Freq 5.	550000000 GHz Input: RF PNO: IFGain	Fast 😱 Trig: Free	Run	Gain: -11.0 dB		4
	1.00 dBm			Mkr	3 5.569 85 GHz -19.04 dBm	
	man man	n 1	mmmm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	File/Folde
00 3					-18.58 dBm	Lis
					-10.50 UBM	File name
9.0						
9.0						Save A
enter 5.55000	247				Span 50.00 MH	
Res BW 300 kH		#VBW 1.0 MHz		#Sweep	500 ms (1001 pts	🛉 🍌 🛛 Up On
R MODE TRC SCL 1 N 1 f 2 N 1 f	× 5.548 10 0 5.529 60 0			FUNCTION WIDTH	FUNCTION VALUE	Leve
B N 1 f 4	5.569 85 0					Create Nev Folde
7 3 9 0 1						Canc
2				STATUS		

Channel No	Frequency Range	26dB Bandwidth	Output Power	Outpu	t Power Limit	Result
	(MHz)	(MHz)	(dBm)	(dBm)	dBm+10log(BW)	
134	5670	40	15.42	24	27.02	Pass

26dBc Occupied Bandwidth:

)Ω		AC SENSE:	INT	ALIGN AUTO	04:50:24 Pf	M Aug 09, 2010	
enter Freq	5.67000000 Input: RF	PNO: Fast 🕞	Trig: Free Ru #Atten: 30 dB	un 🖉	ype: Log-Pwr in: -11.0 dB	TRAC	E 1 2 3 4 5 6 E MAWWW T P S S N N N	Save As
	ef 20.00 dBm	IFGain:Low	#Atten: 50 de			3 5.689	95 GHz 19 dBm	Sa
9	human	m	h	my m	······	m		File/Fold L
							3 -20.37 dBm	File nan
0 0 0								Save ty
nter 5.670 es BW 300 MODE TRE SO) kHz	#VBV	/ 1.0 MHz Y 5.627 dBm		#Sweep	500 ms (🍏 Up O Le
N 1 f	5.6	57745 GHZ 54995 GHz 58995 GHz	-21.39 dBm -21.19 dBm					Create N Fole
								Can

4. Peak Power Spectral Density


4.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2010
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2010
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr.,2010
Х	8-WAY Power Divider	JFW	50PD-647 / 526770 0916	Apr., 2010

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. The power combiner is used for measure 11n mode.

4.2. Test Setup

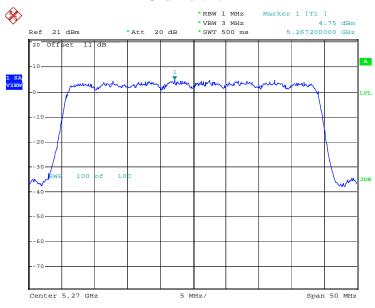
Power Divider

4.3. Limits

- (4) For the band 5.15-5.25 GHz, the peak power spectral density shall not exceed 4 dBm in any 1-MHz band. If transmitting antenna of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that directional gain of the antenna exceeds 6 dBi.
- (5) For the band 5.25-5.35 GHz, the peak power spectral density shall not exceed 11 dBm in any 1-MHz band. If transmitting antenna of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that directional gain of the antenna exceeds 6 dBi.
- (6) For the band 5.725-5.825 GHz, the peak power spectral density shall not exceed 17 dBm in any 1-MHz band. If transmitting antenna of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that directional gain of the antenna exceeds 6 dBi.

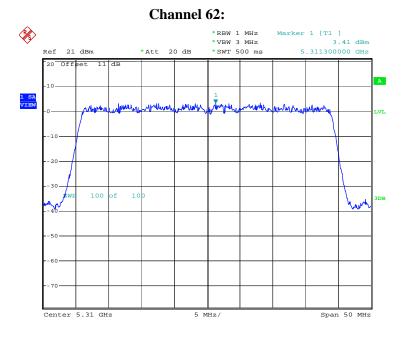
4.4. Test Procedure

The EUT was setup to ANSI C63.4, 2003; tested to DTS test procedure of Aug 2002 DA 02-2138 for compliance to FCC 47CFR Subpart E requirements.

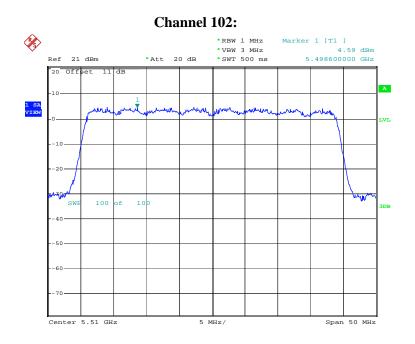

4.5. Uncertainty

± 1.27 dB

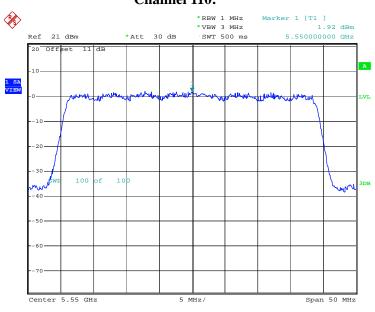
4.6. Test Result of Peak Power Spectral Density

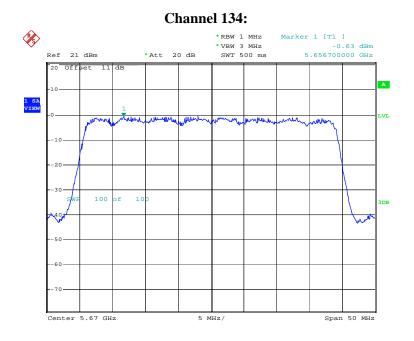

Product	:	Full HD Video Wireless Transmitter Module
Test Item	:	Peak Power Spectral Density
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter - 40BW

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
54	5270	4.750	<11	Pass
62	5310	3.410	<11	Pass
102	5510	4.590	<11	Pass
110	5550	1.920	<11	Pass
134	5670	-0.630	<11	Pass



Channel 54:


5190 Date: 16.AUG.2010 04:20:45


5190 Date: 16.AUG.2010 04:23:59

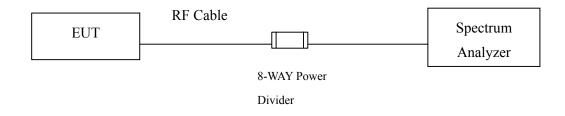
5190 Date: 16.AUG.2010 04:30:25

5190 Date: 16.AUG.2010 04:34:04

5190 Date: 16.AUG.2010 04:43:42

5. Peak Excursion

5.1. Test Equipment


	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2010
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2010
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr.,2010
Х	8-WAY Power Divider	JFW	50PD-647 / 526770 0916	Apr.,2010

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. The power combiner is used for measure 11n mode.

5.2. Test Setup

Conduction Power Measurement

5.3. Limits

The ratio of the peak excursion of the modulation envelope (measured suing a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

5.4. Test Procedure

The EUT was setup to ANSI C63.4, 2003; tested to DTS test procedure of Aug 2002 DA 02-2138 for compliance to FCC 47CFR Subpart E requirements.

5.5. Uncertainty

± 1.27 dB

5.6. Test Result of Peak Excursion

Product	:	Full HD Video Wireless Transmitter Module
Test Item	:	Peak Excursion
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter - 40BW

Channel	1 5	Measurement Level	Required Limit	Result
No.	(MHz)	(dB)	(dB)	
54	5270	7.69	<13	Pass
62	5310	7.71	<13	Pass
102	5510	7.12	<13	Pass
110	5550	8.01	<13	Pass
134	5670	5.92	<13	Pass

Channel 54:

	AC SENSE:INT			Save As
	Trig: Free Run #Atten: 30 dB	#Avg Type: Log-Pwr Ext Gain: -11.0 dB	TYPE MMWWWW DET P S N N N N	
Bm		Mkr	2 5.270 00 GHz 7.907 dBm	Si
		a gained alternational ballings whereas we age	* John with	File/Fol L
			- Hourset	File nar
				Save ty
				🏂 Up C
5.263 85 GHz 5.270 00 GHz	15.593 dBm 7.907 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	
				Create N Fol
				Can
	#VE	#VBW 3.0 MHz	20000 GHz #Avg Type: Log-Pwr ut: RF PN0: Fast Trig: Free Run IFGain:Low #Atten: 30 dB Ext Gain: -11.0 dB Bm 2 Mkr/ automa automa 2 automa automa 2 automa automa 4 automa automa 4 automa automa 2 automa automa 4 automa automa 4 <td>D0000 GHz ut: RF IFGain:Low Trig: Free Run #Atten: 30 dB #Avg Type: Log-Pwr Ext Gain: -11.0 dB Trace: 1:2:3 4 5 6 Type: MMWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAW</td>	D0000 GHz ut: RF IFGain:Low Trig: Free Run #Atten: 30 dB #Avg Type: Log-Pwr Ext Gain: -11.0 dB Trace: 1:2:3 4 5 6 Type: MMWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAW

-															
	gilent	Spect		Analyzer -	Swept SA										
LXI			50 \$	2			AC	SENSI	E:INT		ALIGN AUT		PM Aug 09, 2010	s	ave As
							T	rig: Free F		Avg	Гуре: Log-Pw	r IRA	CE 1 2 3 4 5 6 PE MMWMMM		
				In		PNO: Fast FGain:Lov		Atten: 30 d		Evt G	ain: -11.0 dB		PSNNNN		
						-Gain:Luv	V #7	htten. oo a		LAU					Save
											MM	(r2 5.325	00 GHz		Save
10 c	lB/div	v	Ref	30.00	dBm							6.8	45 dBm		
Lõg				00100						-					
20.0			_			_							*		File/Folder
40.4				مودر کر اللہ م	the second	مسيم	men or	and a	1. A The			2			
10.0	-1			(and the second se	Hand Hand	AN HAPPENNA	HIN WELLIN		the distribution of the di	with the second second	and the second secon	A A A A A A A A A A A A A A A A A A A			List
0.0	- 1		-4	<i>f</i>		_				_					
-10.0		. D III	nr∦″										ų,		
													Ν.,		
-20.0)		17-			-							HALL DM		File name:
-30.0	1 2 2		ſ										Vilverand		
													1940-0-0		
-40.0) —					-									
-50.0						_									Save As
															type:
-60.0	-														type.
_	Ļ														
				0 GHz									50.00 MHz		
#Re	es B'	W 1	.0 F	ИHz		#V	BW 3.0) MHz			#Swee	p 500 ms i	(1001 pts)		Up One
	MODE		Leci		×			v	-	NCTION	FUNCTION WID	THE FUNCT	ION VALUE		Level
1	N	1	f			25 GHz	1.	4.557 dBr		NUTION	FUNCTION WID	FONCT	UN VALUE		
2	N	2	f			20 GHZ		5.845 dBr							
3		-	'		0.020	00 0112		<u></u>							
4														l 🤧 🖌	Create New
5															Folder
6															
7		-	<u> </u>						-					<u> </u>	
8		+							+						
10		-	<u> </u>												Cancel
11															
12															
MSG											STAT	2115			
mod											STAT				

Channel 62:

Channel 102:

D Agilent Spect	rum Analyzer - Swept SA							
Center Fre	^{50 Ω} ag 5.510000000		AC SENSE:	#Avg	ALIGNAUTO	TRAC	Aug 09, 2010	Save As
	Input: RF	PNO: Fast 🗣 IFGain:Low	Trig: Free Ru #Atten: 30 dE		ain: -11.0 dB	DE	EMMWWWW TPSNNNN	Carra
10 dB/div	Ref 30.00 dBm				Mkr		45 GHz 77 dBm	Save
20.0		^ 1				2	*	File/Folder
10.0	parties and the second	C. C. C. L. L. C. C. L. L. C.			Looperated a	all and the second		List
-10.0	Å					X		
-20.0	Ø							File name:
-30.0							- Walter	
-50.0								Save As
-60.0								type:
Center 5.51 #Res BW 1		#VBW	3.0 MHz		#Sweep		0.00 MHz 1001 pts)	🔺 Up One
MKR MODE TRC			Y	FUNCTION	FUNCTION WIDTH	FUNCTIC		Level
1 N 1 2 N 2	f 5.50 f 5.52	01 80 GHz 24 45 GHz	13.890 dBm 6.77 dBm					
3 4 5								Create New Folder
6								i older
8								Canaal
10 11 12								Cancel
MSG	L L			1	STATUS			

D Agi	lent S	ipect	rum .	Analyzer -	Swept SA			(A))						
w Mar	ker	2 :	50 s	643000)00000 G	GHZ NO: Fast		rig: Free		_	ALIGNAUTO Type: Log-Pwr	TRAC	M Aug 09, 2010 2 1 2 3 4 5 6 PE MMWWWW	Save As
<u> </u>					IF)	Gain:Low	/ #A	Atten: 30	dB	Ext G	ain: -11.0 dB			Save
	0 dB/div Ref 20.00 dBm 4.46 dBm													
Log 10.0					1		applies to	THE POLY	-		why will what	2	*	File/Folder
0.00			1	(And the second se	war		C. C. Barr	10. TAL	A	Here I a c	1999 B. 199 B	mar mund		List
-10.0			Å		÷									
-20.0	.		1										Turner	- 3.
-30.0 -40.0	sait	why?											James and	File name:
-50.0														
-60.0			-											Save As
-70.0	-				5									type:
				0 GHz									0.00 MHz	
#Re				/IHz		#V	BW 3.0) MHz				500 ms (🁌 Up One
MKR 1	NODE	TRC 1	SCL f		× 5.538 0	5 GHz	12	Y 2.473 dE		INCTION	FUNCTION WIDTH	FUNCTI	DN VALUE	Level
2	Ν	2	f		5.564 3	0 GHz		4.46 dE	Bm					🛶 Create New
4	_		_											Folder
6		_												
8														
10 11														Cancel
12														
MSG											STATU	S		

Channel 110:

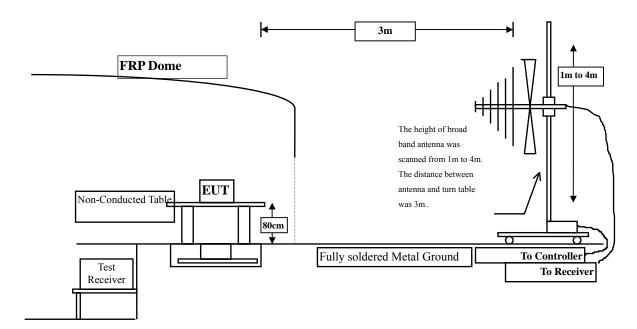
Channel 134:

Agrieffit 5	50 5	Analyzer -	Swept SA		AC	SENSE:INT		ALIGN AUTO	04·10·37P	M Aug 09, 2010	
		740500		GHZ PNO: Fast (Gain:Low	7	ree Run		Type: Log-Pwr ain: -11.0 dB	TRAC	ET P S S N N N	Save As
) dB/div	Ref	20.00	dBm					Mkr		05 GHz 19 dBm	Sa
o.0		for the second states	Way we shall be a star	valion from the form	now with the little of	produce 1	2 May Armillorni	- will would the state	formation to	*	File/Fold Li
0.0									ľ		_
).0).0 p^{la}wg	- ALA									Manufur M	File nan
0.0											Save
0.0			6								typ
	5.6700 N 1.0 N			#VB	W 3.0 MH	Iz		#Sweep		0.00 MHz 1001 pts)	🏠 Up O
1 N	TRC SCL 1 f			50 GHz		dBm	UNCTION	FUNCTION WIDTH	FUNCTIO	DN VALUE	Le
2 N 3	2 f		5.674	05 GHz	8.19	dBm					😋 Create N
5											Fold
3		5									
2 1											Can
				100				STATUS			

6. Radiated Emission

6.1. Test Equipment

The following test equipments are used during the radiated emission test:


Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	X Bilog Antenna		Schaffner Chase	CBL6112B/2673	Sep., 2009
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2009
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2010
	X Pre-Amplifier		Agilent	8447D/2944A09549	Sep., 2009
	Х	Pre-Amplifier	HP	8449B/3008A01123	July., 2010
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2010
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2009
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2010
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

6.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15	FCC Part 15 Subpart C Paragraph 15.209(a) Limits								
Frequency MHz	uV/m @3m	dBuV/m@3m							
30-88	100	40							
88-216	150	43.5							
216-960	200	46							
Above 960	500	54							

Remarks: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

6.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to FCC Public Notice DA 02-2138 test procedure for compliance to FCC 47CFR 15. 407 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The measurement frequency range form 30MHz - 10th Harmonic of fundamental was investigated.

6.5. Uncertainty

- ± 3.8 dB below 1GHz
- ± 3.9 dB above 1GHz

6.6. Test Result of Radiated Emission

Product Test Item Test Site	 Full HD Video Wireless Transmitter Module Harmonic Radiated Emission Data No.3 OATS 						
Test Mode							
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10540.000	14.151	38.620	52.770	-21.230	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10540.000	14.829	41.500	56.328	-17.672	74.000		
Average							
Detector:							
10540.000	14.829	36.450	51.278	-2.722	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.
- 8. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Full HD Video Wireless Transmitter Module						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OA	ATS					
Test Mode	: Mode 1	: Mode 1: Transmitter - 40BW (5310MHz)					
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10620.000	14.623	38.640	53.263	-20.737	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
10620.000	14.970	39.600	54.570	-19.430	74.000		
Average							
Detector:							
10620.000	14.970	34.170	49.140	-4.860	74.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.
- 8. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Full HD Video Wireless Transmitter Module					
Test Item	: Harmon	: Harmonic Radiated Emission Data				
Test Site	: No.3 OA	: No.3 OATS				
Test Mode	: Mode 1:	: Mode 1: Transmitter - 40BW (5510MHz)				
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
11020.000	16.474	35.050	51.523	-22.477	74.000	
Average						
Detector:						
Vertical						
Peak Detector:						
11020.000	17.224	36.150	53.374	-20.626	74.000	
Average						
Detector:						

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.
- 8. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Full HD Video Wireless Transmitter Module					
Test Item	: Harmon	: Harmonic Radiated Emission Data				
Test Site	: No.3 OA	: No.3 OATS				
Test Mode	: Mode 1:	: Mode 1: Transmitter - 40BW (5550MHz)				
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
11100.000	16.681	35.220	51.901	-22.099	74.000	
Average						
Detector:						
Vertical						
Peak Detector:						
11100.000	17.523	36.370	53.893	-20.107	74.000	
Average						
Detector:						

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.
- 8. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Full HD Video Wireless Transmitter Module					
Test Item	: Harmon	: Harmonic Radiated Emission Data				
Test Site	: No.3 O	: No.3 OATS				
Test Mode	: Mode 1	: Transmitter - 40I	3W (5670MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
11340.000	16.408	36.820	53.227	-20.773	74.000	
Average						
Detector:						
Vertical						
Peak Detector:						
11340.000	17.167	40.070	57.237	-16.763	74.000	
Average						
Detector:						
11340.000	17.167	34.880	52.047	-1.953	54.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 7. The average measurement was not performed when the peak measured data under the limit of average detection.
- 8. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Full HD Video Wireless Transmitter Module						
Test Item	: General Radiated Emission						
Test Site	: No.3 O	: No.3 OATS					
Test Mode	: Mode 1	: Transmitter - 40B	SW (5270MHz)				
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector							
303.540	-3.074	32.795	29.721	-16.279	46.000		
460.680	1.589	24.609	26.198	-19.802	46.000		
679.900	2.870	29.868	32.738	-13.262	46.000		
761.380	4.345	37.010	41.355	-4.645	46.000		
840.920	5.191	31.873	37.064	-8.936	46.000		
881.660	6.307	29.396	35.703	-10.297	46.000		
Vertical							
Peak Detector							
109.540	-0.418	28.789	28.371	-15.129	43.500		
344.280	-3.171	28.252	25.082	-20.918	46.000		
520.820	-0.298	27.605	27.307	-18.693	46.000		
679.900	1.000	27.381	28.381	-17.619	46.000		
761.380	2.335	34.504	36.839	-9.161	46.000		
840.920	2.961	29.067	32.028	-13.972	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- The radiated emissions below 1GHz of the lowest, middle, highest frequency are pretested. Only the worst case is shown on the report.

Product Test Item Test Site Test Mode	 Full HD Video Wireless Transmitter Module General Radiated Emission No.3 OATS Mode 1: Transmitter - 40BW (5550MHz) 				
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector					
303.540	-3.074	32.646	29.572	-16.428	46.000
600.360	3.977	26.372	30.349	-15.651	46.000
679.900	2.870	30.716	33.586	-12.414	46.000
761.380	4.345	38.097	42.442	-3.558	46.000
840.920	5.191	31.417	36.608	-9.392	46.000
881.660	6.307	29.833	36.140	-9.860	46.000
Vertical					
Peak Detector					
111.480	-0.954	29.566	28.612	-14.888	43.500
344.280	-3.171	28.091	24.921	-21.079	46.000
520.820	-0.298	27.272	26.974	-19.026	46.000
761.380	2.335	34.490	36.825	-9.175	46.000
840.920	2.961	28.953	31.914	-14.086	46.000
881.660	2.557	29.241	31.798	-14.202	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- The radiated emissions below 1GHz of the lowest, middle, highest frequency are pretested. Only the worst case is shown on the report.

7. Band Edge

7.1. Test Equipment

RF Conducted Measurement

The following test equipments are used during the band edge tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2010
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2010
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr.,2010
Х	8-WAY Power Divider	JFW	50PD-647 / 526770 0916	Apr.,2010

Note:

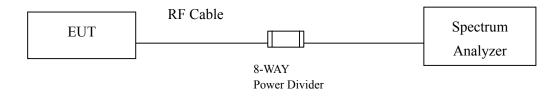
- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

3. The power combiner is used for measure 11n mode.

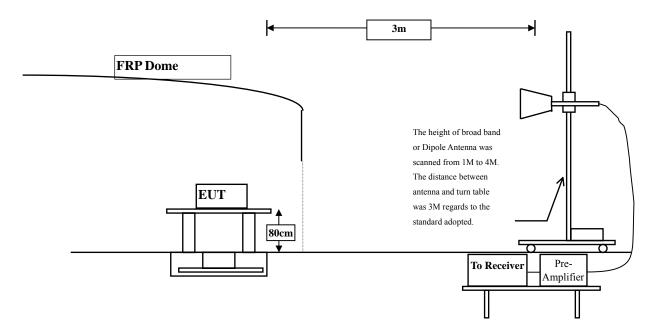
RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Site # 3Bilog Antenna		Schaffner Chase	ffner Chase CBL6112B/2673	
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2009
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2010
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2009
	Х	Pre-Amplifier	HP	8449B/3008A01123	July., 2010
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2010
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2009
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2010
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A


Note:

1. All instruments are calibrated every one year.


2. The test instruments marked by "X" are used to measure the final test results.

7.2. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

7.3. Limits

The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209:

FCC Part 15 Subpart C Paragraph 15.209 Limits					
Frequency MHz	uV/m @3m	dBuV/m@3m			
30-88	100	40			
88-216	150	43.5			
216-960	200	46			
Above 960	500	54			

Remarks : 1. RF Voltage $(dBuV) = 20 \log RF$ Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

7.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4:2003 on radiated measurement.

The bandwidth below 1GHz setting on the field strength meter is 120 kHz, above 1GHz are 1 MHz. The EUT was setup to ANSI C63.4, 2003; tested to DTS test procedure of Aug 2002 DA 02-2138 for compliance to FCC 47CFR Subpart E requirements.

7.5. Uncertainty

- \pm 3.8 dB below 1GHz
- ± 3.9 dB above 1GHz

7.6. Test Result of Band Edge

Product	:	Full HD Video Wireless Transmitter Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter - 40BW -Channel 54

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5270	5250.70	>5250	PASS

NOTE: Accordance with 15.215 requirement.

	3 PM Jul 28, 2010	08:40:13	ALIGNAUTO		ISE:INT	.C SEN		Swept SA	<mark>Analyzer</mark> - Ω	pectrur 50	ilent S
Save As	ACE 1 2 3 4 5 5 YPE A WWWWWW DET S N N N N N	TRAC	e:Log-Pwr -10.5 dB	#Avg Typ Ext Gain		Trig: Free #Atten: 40	HZ NO: Fast 🕞 Gain:Low			Freq	iter
Sav	50 7 GHz .41 dBm		Mk						f 30.00 (R	B/div
File/Fold											
File nam	-24.81 dBm			an han a part of an	arnord yarna an	mydray	2				
Save / typ	\$***}*\$**\$****************************	and the second	مىلىدىن مەرىكىيى مەرىكىيى مىلىدىن مەرىكىيى				/	Younger Caseler	ydayygar dagerthaw	1.017-820-54.00	errep.it
🏂 Up Or Lev	100.0 MHz (1001 pts)	500 ms (#Sweep	CTION FI	FUN	1.0 MHz Y	#VBW	×		5.270 V 300 TRC S0	s Bl
Create Ne Fold		TONCTIC			m	-4.809 dE -28.41 dE	8 GHz 7 GHz			1 f	Ν
Cano											
			STATUS								

Product	:	Full HD Video Wireless Transmitter Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter - 40BW -Channel 62

Fundamental Filed Strength

Antenna	Frequency	Reading Level	Correction Factor	Emission Level	Detector
Pole	[MHz]	[dB(uV)] [dB/m]		[dB(uV/m)]	
Horizontal	5310	35.655	67.46	103.116	Peak
Horizontal	5310	35.655	54.06	89.716	Average
Vertical	5310	37.553	64.48	102.033	Peak
Vertical	5310	37.553	51.26	88.813	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

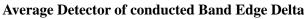
Average detector: RBW=1MHz, VBW=10Hz

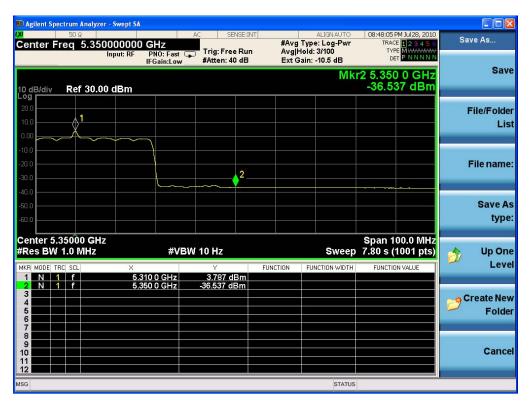
Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Requiqment Limit (dBuV/m)	Detector
Horizontal	5350	103.116	36.664	66.452	74.000	Peak
Horizontal	5350	89.716	40.324	49.392	54.000	Average
Vertical	5350	102.033	36.664	65.369	74.000	Peak
Vertical	5350	88.813	40.324	48.489	54.000	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:


Band Edge field Strength = $F - \Delta$


F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

Peak Detector of conducted Band Edge Delta

Product	:	Full HD Video Wireless Transmitter Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter - 40BW -Channel 102

Fundamental Filed Strength

Antenna Pole	Frequency [MHz]	Reading LevelCorrection Factor[dB(uV)][dB/m]		Emission Level [dB(uV/m)]	Detector
Horizontal	5510	36.675	64.52	101.195	Peak
Horizontal	5510	36.675	58.88	95.555	Average
Vertical	5510	38.124	57.98	96.104	Peak
Vertical	5510	38.124	44.49	82.614	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Requiqment Limit (dBuV/m)	Detector
Horizontal	5460	101.195	45.158	56.037	74.000	Peak
Horizontal	5460	95.555	44.198	51.357	54.000	Average
Vertical	5460	96.104	45.158	50.946	74.000	Peak
Vertical	5460	82.614	44.198	38.416	54.000	Average
Horizontal	5470	101.195	43.833	57.362	68.220	Peak
Vertical	5470	96.104	43.833	52.271	68.220	Peak

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

								pt SA	nalyzer - Swe	ctrum	lent Sp	D Agi
Save As	PM Aug 02, 2010 ACE 1 2 3 4 5 6 YPE MWWWWWW	TRA	ALIGNAUTO e: Log-Pwr - 57/100	Avg Ty Avg Ho		SENS	A		5.460000	50 ន req	ter F	⊯ Cen
Save		D	-10.5 dB			#Atten: 30 d		RF PNO: Fa IFGain:Li	Input:			
	600 GH2 609 dBm							m	20.00 dB	Ref	3/div	10 di Log
File/Folder		m										10.0
List		/										0.00
				3								-20.0
File name:				hand		mannel	ward and	the stand and the stand stand stand		a		-30.0 -40.0
												-50.0
Save As type:												-60.0 -70.0
	100.0 MHz	Span 1							GHz	4600	ter 5.	Cen
ঠ Up One Level	(1001 pts)	500 ms (.0 MHz	¢VBW			1.0 N	s BW	#Re
Leve	TION VALUE	FUNCTI	INCTION WIDTH	CTION	n	Y 10.224 dBr 34.934 dBr		× 5.508 9 GH: 5.460 0 GH;		f	MODE T N 1	MKR 1 2
😝 Create New						33.609 dBr		5.470 0 GH			N Ý	3 4
Folder							-			-		5 6 7
												8
Cancel			1		-		-				_	10 11 12
			STATUS									MSG

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

enter Freg 5.460	000000 GHz nput: RF PNO: Fast C IEGain:Low	AC SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 3/100 Ext Gain: -10.5 dB	07:38:35 PM Aug 02, 2010 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Save As
dB/div Ref 20.00		#Atten: 30 dB		r2 5.460 0 GHz -46.585 dBm	Sa
					File/Fold
0.0 0.0 0.0		2			File nan
0.0 0.0					Save typ
enter 5.46000 GHz Res BW 1.0 MHz R MODE TRO SCL	×		Sweep	Span 100.0 MHz 7.80 s (1001 pts)	Dp O
1 N 1 f 2 N 1 f 3 4	5.510 0 GHz 5.460 0 GHz	-2.387 dBm -46.585 dBm			Create No. Fold
3 3 3 1					Can

Product	:	Full HD Video Wireless Transmitter Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter - 40BW -Channel 134

Fundamental Filed Strength

Antenna	Frequency	Reading Level Correction Factor		Emission Level	Detector
Pole	[MHz]	[dB(uV)]	[dB/m]	[dB(uV/m)]	
Horizontal	5670	36.26	71.55	107.81	Peak
Vertical	5670	37.683	60.23	97.913	Peak

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency	Fundamental	Δ (dB)	Band Edge Field Strength	Requiqment Limit	Detector
	(MHz)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
Horizontal	5725	107.81	43.427	64.383	68.220	Peak
Vertical	5725	97.913	43.427	54.486	68.220	Peak

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

	4 Aug 02, 2010		ALIGN AUTO		NSE:INT	AC SE				50 Ω		
Save As	E 1 2 3 4 5 6 E M WWWW	TYP	: Log-Pwr 40/100	Avg Ty Avg Hol	Run	Trig: Free	Hz NO: Fast (00000 G		eq 5	Fre	nter
	TPNNNNN	DE	-10.5 dB			#Atten: 30	Gain:Low	IFC	uh			
Sav	50 GHz 03 dBm		Mk					lBm	20.00 d	Ref	v	B/div
											∖1	
File/Fold Li									1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~	ምናቴ
LI												
	-											
File nam					2			║╢ ┟╄╈╣ᠮᡐᡟᢌ╾ _╼ ┵	7			
Therian	withthe sol	recourses in succession	transformation	مرواب منعد والارد	mashann		hore langes	t. Trati - A	2244			
Save A												
typ												
-31												
b Um O	00.0 MHz		#0						GHz			
Dp Or			#Sweep			/ 1.0 MHz	#VB		HZ	.0 M		_
Lev	N VALUE	FUNCTIO	NCTION WIDTH	ICTION		9.124 d	7 GHz	×		SCL	TRC	MODE
						-34.303 dl	0 GHz			f	1	N
对 Create Ne										8		
Create Ne					_							
Fold												

Peak Detector of conducted Band Edge Delta

Product	:	Full HD Video Wireless Transmitter Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmitter - 40BW

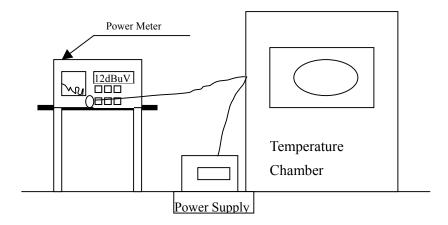
Frequency [MHz]	Measurement [Frequency at 20dB Bandwidth]	Limit [MHz]	Test Result
5500	<5600	<5600	PASS
5670	>5650	>5650	PASS

Note: The 5600~5650MHz band is not used in accordance with 15.215 requirement.

	M Oct 29, 2010		ALIGNAUTO		NSE:INT	AC SE			Q [50 1	
Save As	E 1 2 3 4 5 6 E A WWWWW T S N N N N N	TYP	e: Pwr(RMS) 100/100	#Avg Typ Avg[Hold		Trig: Free #Atten: 3	GHz PNO: Fast	000000 nput: RF		Freq	ter
Sa	00 GHz 95 dBm		Mkr2					dBm	f 20.00	Rei	Sídiv
Eile (E ele											
File/Fol									<u> </u>		
L											
	-16.00 dBm							1		correction of the second	
File nan											
F RC HAI							N.				N
					2		and and a second				
Save	and				fromme	and a second					
ty											
🁌 Up C	50.0 MHz 1001 pts)		#Sweep :			/ 1.0 MHz	#V8		0 GHz KHz	i.6000 V 300	
Le 🖉	IN VALUE	FUNCTIO	NCTION WIDTH	CTION FU		Y		Х		TRC SCL	
	[3.121 d -55.795 d	0 05 GHz 0 00 GHz			1 f 1 f	N N
🚕 Create N						-00.150 0		0.00		<u>'</u>	
											+
D Fol					_					_	_
🥟 Fol									1		
📁 Fol					_				L		
Can										+	+

								Swept SA	Inalyzer -		int Spec	Agile
Save As	M Oct 20, 2010 E 1 2 3 4 5 6 E A WWWWW	TRAC	ALIGNAUTO		NSE:INT		GHz	100000 G	5.6500	58 G Teq	er Fr	ent
Sa	SNNNNN	DE		Avg[Hold		¹ Trig: Free #Atten: 20	PNO: Fast ↔ FGain:Low		inj			
50	0 GHz 91 dBm		Mk					dBm	10.00 (Ref	ídiv	dB
			01									^g [
File/Fol			Ĭ									00
L		u duna id A i	way way and	man	للانحاقات		-).0
	-19.39 dBm	-th-start-in of	1	1	1					+		1.0
					2		_			_		1.0
File nar	٨) <u>^</u>	R.						1.0
	4					ļ H						1.0
	Martin Carlina					and the second	المجمعة المحمد المعلوم من					
								and a start of the second	₩₩₩₽₽₽₽₽₽₽ ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	and the second	and a start of the	1.0
Save										+		1.0
ty							+			-		1.0
	00.0.00	O							- - /-	500		L
- Up C	00.0 MHz		#Sweep			1.0 MHz	#\(D)(D GHz		er 5.0 BW :	
<u>~</u> .			•			1.0 19162	#404		λΠZ			
Le	IN VALUE	FUNCTIO	NETION WIDTH	CTION FL		Y		X			DDE TR	
						0.608 dl -41.791 dl	0 0 GHz 0 0 GHz			f	N 1 N 1	
												3
Fol					_					+	-	5
101												5
												2
											-	3
Can												0
											-	1
			STATUS									3

8. Frequency Stability


8.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2010
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2010
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr.,2010

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limits

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified

8.4. Test Procedure

The EUT was setup to ANSI C63.4, 2003; tested to DTS test procedure of Aug 2002 DA 02-2138 for compliance to FCC 47CFR Subpart E requirements.

8.5. Uncertainty

± 150 Hz

8.6. Test Result of Frequency Stability

Product	:	Full HD Video Wireless Transmitter Module
Test Item	:	Frequency Stability
Test Site	:	Temperature Chamber
Test Mode	:	Carrier Wave (for 802.11n-40MHz Channel)(Begining)

Test C	onditions	Channel	Frequency (MHz)	Spectrum Frequency (MHz)	△F (MHz)
		54	5270.00	5270.0015	-0.0015
		62	5310.00	5310.0089	-0.0089
Tnom (20) °C	Vnom (120)V	102	5510.00	5510.0100	-0.0100
		110	5550.00	5550.0095	-0.0095
		134	5670.00	5670.0095	-0.0095
	Vnom (120)V	54	5270.00	5270.0098	-0.0098
		62	5310.00	5310.0095	-0.0095
Tmax (70) °C		102	5510.00	5510.0100	-0.0100
		110	5550.00	5550.0100	-0.0100
		134	5670.00	5670.0098	-0.0098
		54	5270.00	5270.0098	-0.0098
		62	5310.00	5310.0091	-0.0091
Tmin (-10) °C	Vnom (120)V	102	5510.00	5510.0095	-0.0095
		110	5550.00	5550.0092	-0.0092
		134	5670.00	5670.0082	-0.0082

- Product : Full HD Video Wireless Transmitter Module
- Test Item : Frequency Stability
- Test Site : Temperature Chamber
- Test Mode : Carrier Wave (for 802.11n-40MHz Channel)(AFTER 2Min)

Test C	conditions	Channel	Frequency (MHz)	Spectrum Frequency (MHz)	△F (MHz)
		54	5270.00	5270.0085	-0.0085
		62	5310.00	5310.0097	-0.0097
Tnom (20) °C	Vnom (120)V	102	5510.00	5510.0100	-0.0100
		110	5550.00	5550.0100	-0.0100
		134	5670.00	5670.0095	-0.0095
	Vnom (120)V	54	5270.00	5270.0099	-0.0099
		62	5310.00	5310.0092	-0.0092
Tmax (70) °C		102	5510.00	5510.0100	-0.0100
		110	5550.00	5550.0100	-0.0100
		134	5670.00	5670.0095	-0.0095
		54	5270.00	5270.0098	-0.0098
		62	5310.00	5310.0099	-0.0099
Tmin (-10) °C	Vnom (120)V	102	5510.00	5510.0100	-0.0100
		110	5550.00	5550.0100	-0.0100
		134	5670.00	5670.0095	-0.0095

- Product : Full HD Video Wireless Transmitter Module
- Test Item : Frequency Stability
- Test Site : Temperature Chamber
- Test Mode : Carrier Wave (for 802.11n-40MHz Channel) (AFTER 5Min)

Test C	conditions	Channel	Frequency (MHz)	Spectrum Frequency (MHz)	△F (MHz)
		54	5270.00	5270.0098	-0.0098
		62	5310.00	5310.0099	-0.0099
Tnom (20) °C	Vnom (120)V	102	5510.00	5510.0100	-0.0100
		110	5550.00	5550.0100	-0.0100
		134	5670.00	5670.0095	-0.0095
	Vnom (120)V	54	5270.00	5270.0098	-0.0098
		62	5310.00	5310.0089	-0.0089
Tmax (70) °C		102	5510.00	5510.0100	-0.0100
		110	5550.00	5550.0100	-0.0100
		134	5670.00	5670.0099	-0.0099
		54	5270.00	5270.0098	-0.0098
		62	5310.00	5310.0089	-0.0089
Tmin (-10) °C	Vnom (120)V	102	5510.00	5510.0100	-0.0100
		110	5550.00	5550.0100	-0.0100
		134	5670.00	5670.0095	-0.0095

- Product : Full HD Video Wireless Transmitter Module
- Test Item : Frequency Stability
- Test Site : Temperature Chamber
- Test Mode : Carrier Wave (for 802.11n-40MHz Channel) (AFTER 10Min)

Test C	conditions	Channel	Frequency (MHz)	Spectrum Frequency (MHz)	△F (MHz)
		54	5270.00	5270.0098	-0.0098
		62	5310.00	5310.0099	-0.0099
Tnom (20) °C	Vnom (120)V	102	5510.00	5510.0100	-0.0100
		110	5550.00	5550.0100	-0.0100
		134	5670.00	5670.0095	-0.0095
	Vnom (120)V	54	5270.00	5270.0099	-0.0099
		62	5310.00	5310.0089	-0.0089
Tmax (70) °C		102	5510.00	5510.0100	-0.0100
		110	5550.00	5550.0100	-0.0100
		134	5670.00	5670.0095	-0.0095
		54	5270.00	5270.0098	-0.0098
		62	5310.00	5310.0096	-0.0096
Tmin (-10) °C	Vnom (120)V	102	5510.00	5510.0100	-0.0100
		110	5550.00	5550.0097	-0.0097
		134	5670.00	5670.0095	-0.0095

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.