

Königswinkel 10 32825 Blomberg, Germany Phone: +49 (0) 52 35 / 95 00-0 Fax: +49 (0) 52 35 / 95 00-10 office@phoenix-testlab.de www.phoenix-testlab.de

Test Report

Report Number:

F220998E1 2nd version

Equipment under Test (EUT):

NEARFIP 2A R

Applicant:

PHOENIX CONTACT Electronics GmbH

Manufacturer:

PHOENIX CONTACT GmbH & Co.KG

References

- [1] ANSI C63.10: 2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
- [2] FCC CFR 47 Part 15 Radio Frequency Devices
- [3] RSS-210 Issue 10 (December 2019)
 Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment
- [4] RSS-Gen Issue 5 (February 2021) Amendment 2
 General Requirements for Compliance of Radio Apparatus

Test Result

The requirements of the tests performed as shown in the overview (clause 4) were fulfilled by the equipment under test. The complete test results are presented in the following. "Passed" indicates that the equipment under test conforms with the relevant limits of the testing standard without taking any measurement uncertainty into account as stated in clause 1.3 of ANSI C63.10 (2013). However, the measurement uncertainty is calculated and shown in this test report.

Tested by:	ОВО	
	Signature	
Written by:		
	Signature	
Reviewed and approved by:		
	Signature	

This test report is only valid in its original form.

Any reproduction of its contents in extracts without written permission of the accredited test laboratory PHOENIX TESTLAB GmbH is prohibited.

The test results herein refer only to the tested sample. PHOENIX TESTLAB GmbH is not responsible for any generalisations or conclusions drawn from these test results concerning further samples. Any modification of the tested samples is prohibited and leads to the invalidity of this test report. Each page necessarily contains the PHOENIX TESTLAB Logo and the TEST REPORT NUMBER.

Examiner: Wolfgang KASALOWSKY Report Number: F220998E1, 2nd version, 2nd version
Date of Issue: 07.12.2023 Order Number: 22-110998 Page 2 of 21

Co	nten	ts:	Page
1	Identif	ication	4
1	.1 Ar	pplicant	4
1	.2 Ma	anufacturer	4
1	.3 Te	est Laboratory	4
1	.4 El	JT (Equipment under Test)	5
1	.5 Te	chnical Data of Equipment	5
1	.6 Da	ates	6
2	Opera	tional States	6
3	Additio	onal Information	6
4	Overv	iew	7
5	Resul	ls	8
5		est setups	
	5.1.1	Radiated: Test fixture	
	5.1.2	Radiated: 9 kHz to 30 MHz	8
	5.1.2	.1 Preliminary measurement 9 kHz to 30 MHz	8
	5.1.2		
	5.1.3	Radiated: 30 MHz to 1 GHz	11
	5.1.3	.1 Preliminary and final measurement 30 MHz to 1 GHz	11
5	5.2 99	% bandwidth	13
	5.2.1	Test setup (99 % bandwidth)	13
	5.2.2	Test method (99 % bandwidth)	13
	5.2.3	Test results (99 % bandwidth)	13
5	5.3 Ra	adiated emissions	14
	5.3.1	Test setup (Maximum unwanted emissions)	14
	5.3.2	Test method (Maximum unwanted emissions)	14
	5.3.3	Test results (Maximum unwanted emissions)	
	5.3.3	.1 Test results preliminary measurement 9 kHz to 30 MHz	14
	5.3.3		
	5.3.3	.3 Test results (30 MHz – 1 GHz)	17
6	Meası	urement Uncertainties	19
7	Test E	quipment used for Tests	20
8	Test S	Site Verification	21
9	Repor	t History	21
10	l ist of	Δημονος	21

1 Identification

1.1 Applicant

Name:	PHOENIX CONTACT Electronics GmbH
Address:	Dringenauer Straße 30, 31812 Bad Pyrmont
Country:	Germany
Name for contact purposes:	Maik STEMME
Phone:	+49 5281 946 3381
eMail address:	mstemme@phoenixcontact.com
Applicant represented during the test by the following person:	-

1.2 Manufacturer

Name:	PHOENIX CONTACT GmbH & Co.KG
Address:	Flachsmarktstr. 8, 32825 Blomberg
Country:	Germany
Name for contact purposes:	Maik STEMME
Phone:	+49 5281 946 3381
eMail address:	mstemme@phoenixcontact.com
Manufacturer represented during the test by the following person:	-

1.3 Test Laboratory

The tests were carried out by: PHOENIX TESTLAB GmbH

Königswinkel 10 32825 Blomberg Germany

Accredited by Deutsche Akkreditierungsstelle GmbH (DAkkS) in compliance with DIN EN ISO/IEC 17025 under Reg. No. D-PL-17186-01-06 and D-PL-17186-01-05, FCC Test Firm Designation Number DE0004, FCC Test Firm Registration Number 469623, CAB Identifier DE0003 and ISED# 3469A.

Examiner: Wolfgang KASALOWSKY Report Number: F220998E1, 2nd version, 2nd version

Date of Issue: 07.12.2023 Order Number: 22-110998 Page 4 of 21

1.4 EUT (Equipment under Test)

Test object: *	Energy and data coupler (Remote)
Model name: *	NEARFI P 2A R
Article number: *	1234229
Serial number: *	203605587
PCB identifier: *	1184502_03 (Data PCB), 30007751 (Interface PCB), 30007726 (Energy PCB)
FCC ID: *	YG3P2AR
ISED certification number: *	4720B-P2AR
PMN: *	NEARFI P 2A R
HVIN: *	1234229
FVIN: *	N/A

^{*} Declared by the applicant

One EUT was used for all tests.

Note: PHOENIX TESTLAB GmbH does not take samples. The samples used for tests are provided

exclusively by the applicant.

1.5 Technical Data of Equipment

General				
Power supply EUT: *	Inductive from base by WPT			
Supply voltage EUT: *	$U_{nom} = U_{min} = U_{max} = -$			
Temperature range: *	-20 °C to +65 °C			
Lowest / highest internal frequency: *	100 kHz / 10 MHz			

Energy communication part	
Carrier frequency: *	10 MHz
Frequency range: *	8.95 MHz to 11.05 MHz
Type of modulation: *	OOK
Rated H-field: *	-20 dBμA/m @ 3 m distance

^{*} Declared by the applicant

Ports / Connectors					
Identification	Connector	Length	Shielding		
identinication	EUT	Ancillary	during test	(Yes / No)	
Power	5 pole M12 connector	4 mm laboratory plug	3.0 m	No	
-	-	-	-	-	
-	-	-	-	-	

 Examiner:
 Wolfgang KASALOWSKY
 Report Number:
 F220998E1, 2nd version, 2nd version

 Date of Issue:
 07.12.2023
 Order Number:
 22-110998

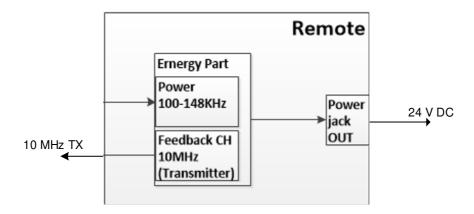
Page 5 of 21

1.6 Dates

Date of receipt of test sample:	13.06.2022
Start of test:	07.07.2022
End of test:	17.08.2022

2 Operational States

Description of function of the EUT:


The EUT is a device for receiving energy wireless from a source (NEARFI P 2A B) over a distance of a few mm. It is only receiving energy; the response to the source will be transmitted on 10 MHz. The source transfers the energy inductively on 138 kHz to the EUT. The EUT as well as the source device are intended to operate in industrial environment only.

The following states were defined as the operating conditions:

The EUT is the remote coupler on a stand-alone basis. Since no energy is transferred inductively in this operational state, the EUT is supplied from a laboratory power supply.

For testing purposes, the operating voltage of 24 V was applied to the power output of the EUT.

The system was setup as follows:

3 Additional Information

The EUT was not labeled as required by FCC / IC.

Examiner: Wolfgang KASALOWSKY Report Number: F220998E1, 2nd version, 2nd version

Date of Issue: 07.12.2023 Page 6 of 21

Page 6 of 21

Page 7 of 21

4 Overview

Application	Frequency range [MHz]	FCC 47 CFR Part 15 section [2]	RSS-Gen, Issue 5 [4] and RSS-210, Issue 10 [3]	Tested EUT	Status
Conducted emissions on supply line	0.15 – 30	15.207 (a)	8.8 [4]	-	Not applicable
Radiated emissions	0.009 – 1000 **	15.205 (a) 15.209 (a)	8.9 and 8.10 [4] 7.1 and 7.3 [3]	1	Passed
99 % bandwidth	10	-	6.7 [4]	1	Passed
Antenna requirement	-	15.203 [2]	6.8 [4]	1	Passed *

Integrated antenna only, requirement fulfilled.

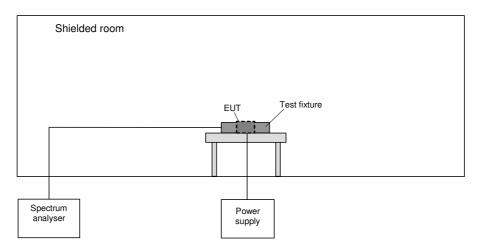
Examiner: Wolfgang KASALOWSKY Date of Issue: 07.12.2023

Report Number: F220998E1, 2nd version, 2nd version Order Number: 22-110998

As declared by the applicant the highest radio clock frequency is 10 MHz.

Therefore the radiated emission measurement must be carried out up to 1 GHz.

The EUT is not intended to be connected to an external power supply, it will be supplied via WPT.



5 Results

5.1 Test setups

5.1.1 Radiated: Test fixture

The test is carried out in a shielded chamber. Table-top devices are set up on a table and the spectrum analyser is connected to a test fixture / loop antenna, which is placed around / on top of the EUT.

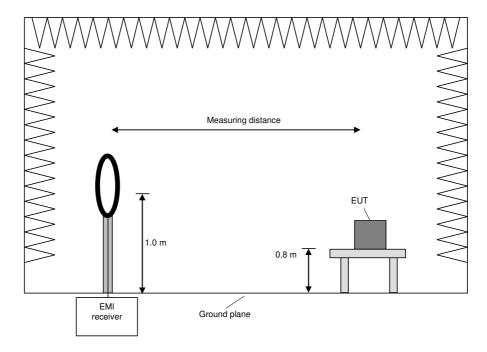
5.1.2 Radiated: 9 kHz to 30 MHz

5.1.2.1 Preliminary measurement 9 kHz to 30 MHz

In the first stage a preliminary measurement is performed in a semi-anechoic chamber at a measuring distance of 3 meters. Table-top devices are set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices are placed directly on the turntable / ground plane. The setup of the equipment under test is in accordance with [1].

The frequency range 9 kHz to 30 MHz is monitored with an EMI receiver while the system and its cables are manipulated to find out the configuration with the maximum emission levels if applicable. The EMI receiver is set to MAX hold mode. The EUT and the measuring antenna are rotated around their vertical axis to find the maximum emission levels.

The resolution bandwidth of the EMI receiver is set to the following values:


Frequency range	Resolution bandwidth
9 kHz to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz

 Examiner:
 Wolfgang KASALOWSKY
 Report Number:
 F220998E1, 2nd version, 2nd version

 Date of Issue:
 07.12.2023
 Order Number:
 22-110998
 Page 8 of 21

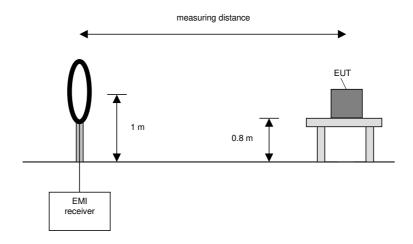
Page 9 of 21

Procedure preliminary measurement:

Pre-scans are performed in the frequency range 9 kHz to 150 kHz and 150 kHz to 30 MHz. The following procedure is used:

- 1) Monitor the frequency range with the measuring antenna facing the EUT and an EUT / turntable azimuth of 0 °.
- 2) Manipulate the system cables to produce the maximum levels of emissions.
- 3) Rotate the EUT by 360 ° to maximize the detected signals.
- 4) Measure the frequencies of the highest detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency values.
- 5) If the EUT is portable or ceiling mounted, repeat steps 1 to 4 with other orientations (x,y,z) of the EUT.
- 6) Rotate the measuring antenna and repeat steps 1 to 5.

Examiner: Wolfgang KASALOWSKY Report Number: F220998E1, 2nd version, 2nd version
Date of Issue: 07.12.2023 Order Number: 22-110998


5.1.2.2 Final measurement 9 kHz to 30 MHz

In the second stage a final measurement is performed on an open area test site with no conducting ground plane at a measuring distance of 3 m, 10 m, or 30 m. If the standard requires larger measuring distances for a given frequency, the results are extrapolated according to section 15.31 (f) (2) [2]. The final measurement is performed with an EMI receiver set to Quasi-Peak detector, except for the frequency bands 9 kHz to 90 kHz and 110 kHz to 490 kHz where an Average detector is used according section 15.209 (d) [2].

At the frequencies, which were detected during the preliminary measurements, the final measurement is performed while rotating the EUT and the measuring antenna in the range of 0 ° to 360 ° around their vertical axis until the maximum level value is found.

The resolution bandwidth of the EMI receiver is set to the following values:

Frequency range	Resolution bandwidth	Measuring time
9 kHz to 150 kHz	200 Hz	1 s
150 kHz to 30 MHz	9 kHz	1 s

Procedure final measurement:

The following procedure is used:

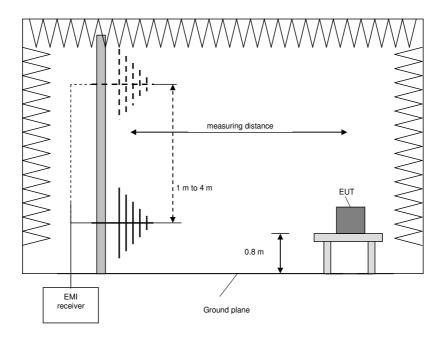
- 1) Monitor the selected frequencies from the preliminary measurement with the measuring antenna facing the EUT and an EUT azimuth of 0° .
- 2) Rotate the EUT by 360 ° to maximize the detected signals.
- 3) Rotate the measuring antenna and repeat steps 1 to 2 until the maximum value is found and note it.
- 4) If the EUT is portable or ceiling mounted, repeat steps 1 to 3 with other orientations (x,y,z) of the EUT.

 Examiner:
 Wolfgang KASALOWSKY
 Report Number:
 F220998E1, 2nd version, 2nd version

 Date of Issue:
 07.12.2023
 Order Number:
 22-110998

Page 10 of 21

5.1.3 Radiated: 30 MHz to 1 GHz


5.1.3.1 Preliminary and final measurement 30 MHz to 1 GHz

The preliminary and final measurements are performed in a semi-anechoic chamber with a metal ground plane at a measuring distance of 3 meters. Table-top devices are set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices are placed directly on the turntable / ground plane. The setup of the equipment under test is in accordance with [1].

During the tests the EUT is rotated in the range of 0 $^{\circ}$ to 360 $^{\circ}$, the measuring antenna is set to horizontal and vertical polarization and raised and lowered in the range from 1 m to 4 m to find the maximum level of emissions.

The resolution bandwidth of the EMI receiver is set to the following values:

Test	Test Frequency range		Resolution bandwidth	Measuring time	Detector
Preliminary measurement	1 .3U MH2 to 1 (3H2 1 .3U kH2		120 kHz	-	Peak Average
Frequency peak search	· · · + /		120 kHz	1 s	Peak
Final 30 MHz to 1 GHz measurement		-	120 kHz	1 s	QuasiPeak

 Examiner:
 Wolfgang KASALOWSKY
 Report Number:
 F220998E1, 2nd version, 2nd version

 Date of Issue:
 07.12.2023
 Order Number:
 22-110998

Page 11 of 21

Procedure preliminary measurement:

The following procedure is used:

- 1) Set the measuring antenna to 1 m height.
- 2) Monitor the frequency range at horizontal polarization of the measuring antenna and an EUT / turntable azimuth of 0 °.
- 3) Rotate the EUT by 360° to maximize the detected signals.
- 4) Repeat steps 2 to 3 with the vertical polarization of the measuring antenna.
- 5) Increase the height of the measuring antenna for 0.5 m and repeat steps 2 to 4 until the final height of 4 m is reached.
- 6) The highest values for each frequency are saved by the software, including the measuring antenna height and polarization and the turntable azimuth for that value.

Procedure final measurement:

The following procedure is used:

- 1) Select the highest frequency peaks (lowest margin to the limit) for the final measurement.
- 2) The software determines the exact peak frequencies by doing a partial scan with reduced step size of the pre-scan of the selected peaks.
- 3) If the EUT is portable or ceiling mounted, find the worst-case EUT orientation (x,y,z) for the final test.
- 4) The worst-case measuring antenna height is found via varying the height by +/- 0.5 m from the value obtained in the preliminary measurement while monitoring the emission level.
- 5) The worst-case turntable position is found via varying the turntable azimuth by +/- 30° from the value obtained in the preliminary measurement while monitoring the emission level.
- 6) The final measurement is performed at the worst-case measuring antenna height and the worst-case turntable azimuth.
- 7) Steps 2 to 6 are repeated for each frequency peak selected in step 1.

 Examiner:
 Wolfgang KASALOWSKY
 Report Number:
 F220998E1, 2nd version, 2nd version

 Date of Issue:
 07.12.2023
 Order Number:
 22-110998

5.2 99 % bandwidth

5.2.1 Test setup (99 % bandwidth)

	Test setup (99 % bandwidth)								
Used	Setup	See sub-clause	Comment						
\boxtimes	Radiated: Test fixture	5.1.1	-						
	Test setup (antenna port conducted)	-	-						

5.2.2 Test method (99 % bandwidth)

	Test method (99 % bandwidth)								
Used	Sub-Clause [1]	Name of method	Applicability	Comment					
	6.9.3	Occupied bandwidth – power bandwidth (99%) measurement procedure	-	-					

5.2.3 Test results (99 % bandwidth)

Ambient temperature:	22 °C		
Relative humidity:	62 %		

Date:	17.08.2022			
Tested by:	W. Kasalowsky			

F∟	Fυ	BW (F _U - F _L)		
8.983 MHz	11.086 MHz	2.103 MHz		

Test result: Passed

Test equipment (please refer to chapter 7 for details)
11, 16, 17

Examiner: Wolfgang KASALOWSKY Report Number: F220998E1, 2nd version, 2nd version
Date of Issue: 07.12.2023 Order Number: 22-110998 Page 13 of 21

5.3 Radiated emissions

5.3.1 Test setup (Maximum unwanted emissions)

	Test setup (Maximum unwanted emissions)								
Used	Setup	See sub-clause	Comment						
	Radiated: 9 kHz to 30 MHz / 30 MHz to 1 GHz / 1 GHz to 40 GHz	5.1.2 / 5.1.3	-						

5.3.2 Test method (Maximum unwanted emissions)

☐ Test method (radiated) see sub-clause 5.1.2 / 5.1.3 as described herein

5.3.3 Test results (Maximum unwanted emissions)

5.3.3.1 Test results preliminary measurement 9 kHz to 30 MHz

Ambient temperature:	23 °C	Date:	07.07.2022
Relative humidity:	51 %	Tested by:	W. Kasalowsky

Position of EUT: For tests for f between 9 kHz to 30 MHz, the EUT was set-up on a table with a height

of 80 cm. The distance between EUT and antenna was 3 m.

Cable guide: For detail information of test set-up and the cable guide refer to the pictures in the

annex A of this test report.

Test record: The measurement value was already corrected by 40 dB/decade as described in 47

CFR 15.31(f)(2) regarding to the measurement distance as requested in 47 CFR

15.209(a)

Remark: All 3 orthogonal planes were tested separately

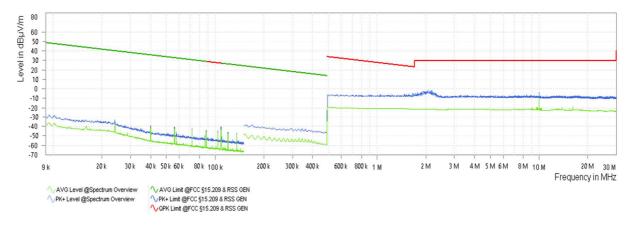
Calculations:

Result @ norm. dist. $[dB\mu V/m] =$ Reading $[dB\mu V] + AF [dB/m] + Distance corr. fact. <math>[dB\mu V/m]$

Result @ norm. dist. [dB μ A/m] = Result @ norm. dist. [dB μ V/m] – 20 x log₁₀ (377 Ω)

Margin [dB] = Limit [dB(μ V| μ A)/m] - Result [dB(μ V| μ A)/m]

 Examiner:
 Wolfgang KASALOWSKY
 Report Number:
 F220998E1, 2nd version, 2nd version


 Date of Issue:
 07.12.2023
 Order Number:
 22-110998

Page 14 of 21

Worst case plot:

Spurious emissions from 9 kHz to 30 MHz:

During the preliminary measurement, the following emissions were found:

2.054 MHz and 9.985 MHz

On these frequencies a final measurement on an outdoor test site has to be carried out, the results of the final measurement are presented in the following.

Test equipment (please refer to chapter 7 for details)

3 - 5, 7 - 11

Examiner: Wolfgang KASALOWSKY Report Number: F220998E1, 2nd version, 2nd version
Date of Issue: 07.12.2023 Page 15 of 21

5.3.3.2 Test results final measurement 9 kHz to 30 MHz

Ambient temperature:	23 °C		
Relative humidity:	51 %		

Date:	07.07.2022				
Tested by:	W. Kasalowsky				

Page 16 of 21

The results of the standard subsequent measurement on the outdoor test site are indicated in the table below. The limits as well as the measured results (levels) refer to the above-mentioned standard while taking account of the specified requirements for a 3 m measuring distance.

	Results 9 kHz - 30 MHz											
Frequency	Reading @ measuring distance	Result @ norm. distance	Result @ norm. distance	Limit acc. 15.209	Limit acc. RSS-Gen Table 6	Margin	Detector	Antenna factor	Measuring distance	Normative distance	Distance correction factor	Position
[MHz]	[dB(µV)]	[dB(µV/m)]	[dB(µA/m)]	[dB(µV/m)]	[dB(µA/m)]	[dB]		[dB/m]	[m]	[m]	[dB]	#
2.054	3.7	-16.1	-67.6	29.5	-21.9	45.6	QP	20.2	3	30	-40	1
9.983	10.8	-8.9	-60.4	29.5	-21.9	38.8	QP	20.3	3	30	-40	1

Test result: Passed

Test equipment (please refer to chapter 7 for details)

3, 11, 18, 20

Examiner: Wolfgang KASALOWSKY Report Number: F220998E1, 2nd version, 2nd version
Date of Issue: 07.12.2023 Order Number: 22-110998

5.3.3.3 Test results (30 MHz - 1 GHz)

Ambient temperature:	23 °C
Relative humidity:	51 %

Date: 07.07.2022
Tested by: W. Kasalowsky

Position of EUT: For tests for f between 30 MHz to 1 GHz, the EUT was set-up on a table with a height

of 80 cm. The distance between EUT and antenna was 3 m.

Cable guide: For detail information of test set-up and the cable guide refer to the pictures in the

annex A of this test report.

Test record: Plots for each frequency range are submitted below.

Remark: All 3 orthogonal planes were tested separately

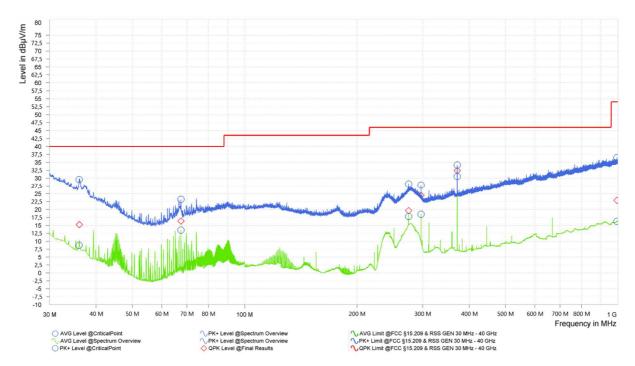
Calculations:

Result $[dB\mu V/m]$ = Reading $[dB\mu V]$ + Correction $[dB\mu V/m]$

Correction $[dB\mu V/m] = AF [dB/m] + Cable attenuation [dB] + optional preamp gain [dB]$

Margin [dB] = Limit [dB μ V/m] - Result [dB μ V/m]

 Examiner:
 Wolfgang KASALOWSKY
 Report Number:
 F220998E1, 2nd version, 2nd version


 Date of Issue:
 07.12.2023
 Order Number:
 22-110998

Page 17 of 21

Worst case plot:

Spurious emissions from 30 MHz to 1 GHz:

Result tables:

Frequency	Result (QP)	Limit	Margin	Readings	Correction	Height	Azimuth	Pol.	Position
[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV]	[dB/m]	[m]	[deg]	(H/V)	#
36.060	15.2	40.0	24.8	-7.2	22.4	1.00	327	V	1
67.500	16.4	40.0	23.6	2.2	14.2	1.77	321	V	1
275.070	19.6	46.0	26.4	1.3	18.3	1.00	247	Н	1
297.030	24.5	46.0	21.5	5.5	19.0	2.75	335	V	1
371.280	32.4	46.0	13.6	11.2	21.2	1.00	171	V	1
995.040	22.9	54.0	31.1	-7.9	30.8	4.25	21	Н	1

Test result: Passed

Test equipment (please refer to chapter 7 for details)	
rest equipment (please refer to chapter 7 for details)	
1, 2,4 – 11	

 Examiner:
 Wolfgang KASALOWSKY
 Report Number:
 F220998E1, 2nd version, 2nd version

 Date of Issue:
 07.12.2023
 Order Number:
 22-110998

Page 18 of 21

Page 19 of 21

6 Measurement Uncertainties

Conducted measurements						
Measurement method	Standard used for calculating measurement uncertainty	Expanded measurement uncertainty (95 %) Ulab				
Frequency error	ETSI TR 100 028	4.5×10 ⁻⁸				
Bandwidth measurements	-	9.0×10 ⁻⁸				
Conducted emissions from 150 kHz to 30 MHz with LISN	CISPR 16-4-2	2.8 dB				

	Radiated measurements	
Frequency error		
(Semi-) Anechoic chamber	ETSI TR 100 028	4.5×10 ⁻⁸
OATS	ETSI TR 100 028	4.5×10 ⁻⁸
Test fixture	ETSI TR 100 028	4.5×10 ⁻⁸
Bandwidth measurements	·	
(Semi-) Anechoic chamber	-	9.0×10 ⁻⁸
OATS	-	9.0×10 ⁻⁸
Test fixture	-	9.1×10 ⁻⁸
Radiated field strength M20	·	
CBL6112B @ 3 m 30 MHz – 1 GHz	CISPR 16-4-2	5.3 dB
R&S HL050 @ 3 m		
1 – 6 GHz	CISPR 16-4-2	5.1 dB
6 – 18 GHz	CISPR 16-4-2	5.4 dB
Flann Standard Gain Horns 18 – 40 GHz	-	5.9 dB
Radiated field strength M276	·	
R&S HL562E @ 3 m 30 MHz – 1 GHz	CISPR 16-4-2	4.8 dB
R&S HL050 @ 3 m	-	
1 – 6 GHz	CISPR 16-4-2	5.1 dB
6 – 18 GHz	CISPR 16-4-2	5.4 dB
Flann Standard Gain Horns 18 – 40 GHz	-	5.9 dB
OATS		
Field strength measurements below 30 MHz on OATS without ground plane	-	4.4 dB

Examiner: Wolfgang KASALOWSKY Report Number: F220998E1, 2nd version, 2nd version 22-110998

Page 20 of 21

7 Test Equipment used for Tests

No.	Test equipment	Туре	Manufacturer	Serial No.	PM. No.	Cal. Date	Cal Due
1	Attenuator 6 dB	WA2-6	Weinschel		482793	Calibration not	necessary
2	Ultralog Antenna	HL562E	Rohde & Schwarz	101079	482978	18.03.2021	03.2024
3	Loop antenna	HFH2-Z2	Rohde & Schwarz	832609/014	480059	22.02.2022	02.2024
4	RF Switch Matrix	OSP220	Rohde & Schwarz		482976	Calibration not	necessary
5	Turntable	TT3.0-3t	Maturo	825/2612/.01	483224	Calibration not	necessary
6	Antennasupport	BAM 4.5-P-10kg	Maturo	222/2612.01	483225	Calibration not	necessary
7	Controller	NCD	Maturo	474/2612.01	483226	Calibration not	necessary
8	Semi Anechoic Chamber M276	SAC5-2	Albatross Projects	C62128-A540- A138-10-0006	483227	Calibration not	necessary
9	Test software M276	Elektra V4.42	Rohde & Schwarz	101381	483755	Calibration not	necessary
10	EMI Testreceiver	ESW44	Rohde & Schwarz	101828	482979	08.12.2021	12.2023
11	Power Supply	TOE8852 (DC)	Toellner Electronic Inst.	51712	480233	Calibration not	necessary
12	V-LISN	NSLK8128RC	Schwarzbeck	0412	483186	15.02.2022	02.2024
13	Shielded chamber M155	SK3	Albatross Projects		482786	Calibration not	necessary
14	Software	EMC32	Rohde & Schwarz	100619	483182	Calibration not	necessary
15	EMI Testreceiver	ESR7	Rohde & Schwarz	101939	482558	15.02.2022	02.2024
16	Signal & Spectrum Analyzer	FSW43	Rohde & Schwarz	100586 & 100926	481720	19.11.2021	11.2022
17	Loop antenna	Loop antenna 22.5cm	PHOENIX TESTLAB GmbH	-	410085	Calibration not	necessary
18	EMI Receiver / Spectrum Analyser	ESR7	Rohde & Schwarz	101733	482330	02.06.2022	02.2024
19	Load resistor	600x65 - 27 SZZL	FRIZLEN GmbH u. Co KG.	36324	482420	Calibration not	necessary
20	Outdoor test site	-	PHOENIX TESTLAB GmbH	-	480293	Calibration not	necessary

Report Number: F220998E1, 2nd version, 2nd version Order Number: 22-110998 Examiner: Wolfgang KASALOWSKY Date of Issue: 07.12.2023

8 Test Site Verification

Test equipment	PM. No.	Frequency range	Type of validation	According to	Val. Date	Val Due
Shielded chamber M155	482784	9 kHz – 30 MHz	GND-Plane	ANSI C63.4-2014	25.09.2020	24.09.2022
OATS Outdoor	480293	9 kHz – 30 MHz	-	ANSI C63.4-2014	-	-
Semi anechoic chamber M276	483227	30 – 1000 MHz	NSA/RSM	CISPR 16-1-4 + Cor1:2010 + A1:2012 +A2:2017	03.03.2021	02.03.2023

9 Report History

Report Number	Date	Comment
F220998E1	02.06.2023	Initial Test Report
F220998E1, 2 nd version	07.12.2023	Change of HVIN and FVIN
-	-	-

10 List of Annexes

Annex A Test Setup Photos 5 pages

Examiner: Wolfgang KASALOWSKY Date of Issue: 07.12.2023 Report Number: F220998E1, 2nd version, 2nd version Order Number: 22-110998