CTC I advanced member of RWTÜV group									
Bundesnetzagentur TEST REPORT Test report no.: 1-5326/17-01-03-C									
BNetzA-CAB-02/21-102									
Testing laboratory Applicant									
66117 Saarbruecken / G Phone: + 49 681 5 98 Fax: + 49 681 5 98 Internet: <u>http://www.ctc</u> e-mail: <u>mail@ctcadva</u> Accredited Testing Lat The testing laboratory according to DIN EN Deutsche Akkreditierung The accreditation is w	CTC advanced GmbHUntertuerkheimer Strasse 6 – 1066117 Saarbruecken / GermanyPhone:+ 49 681 5 98 - 0Fax:+ 49 681 5 98 - 0Fax:+ 49 681 5 98 - 9075Internet:http://www.ctcadvanced.come-mail:mail@ctcadvanced.come-mail:mail@ctcadvanced.comAccredited Testing Laboratory:The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with								
	Test star	ndard/s							
47 CFR Part 15	Title 47 of the Code of Federal devices	Regulations; Chapter I; Part 15 - Radio frequency							
RSS - 247 Issue 2	Digital Transmission Systems Licence - Exempt Local Area N	(DTSs), Frequency Hopping Systems (FHSs) and Network (LE-LAN) Devices							
RSS - Gen Issue 4	General Requirements and Inf	elecommunications Radio Standards Specifications - ormation for the Certification of Radio Apparatus							
For further applied test s	tandards please refer to section 3 of the	nis test report.							
	Test I	tem							
Kind of test item:	WLAN module								
Model name:	SX-PCEAN2								
FCC ID:	YG3-SXPCEAN2								
IC:	4720B-SXPCEAN2								
Frequency:	UNII bands: 5150MHz to 5250MHz & 5725M								
Technology tested:	WLAN (OFDM/a-; n HT20- & n HT4	40-mode)							

Marco Bertolino Lab Manager Radio Communications & EMC

Test report authorized:

2 external antennas

0°C to +60°C

the public keys can be requested at the testing laboratory.

2.805 V to 3.795 V DC, by Evaluation Board

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures,

Antenna:

Power supply:

Temperature range:

Test performed:

David Lang Lab Manager Radio Communications & EMC

Test report no.: 1-5326/17-01-03-C

1 Table of contents

1	Table o	f contents	2
2	Genera	l information	3
	2.2 A	lotes and disclaimer Application details est laboratories sub-contracted	3
3	Test sta	andard/s and references	4
4	Test en	vironment	4
5	Test ite	m	5
		General description	
6	Descrip	tion of the test setup	6
		Shielded fully anechoic chamber Conducted measurements with peak power meter & spectrum analyzer	
7	Measur	ement uncertainty	9
8	Summa	ry of measurement results	10
9	Additio	nal comments	11
10	Meas	urement results	14
	10.1 10.2	Testability check Identify worst case data rate	
	10.3	Antenna gain	
	10.4	Duty cycle	
	10.5	Maximum output power	
	10.5.1	Maximum output power according to FCC requirements	
	10.5.2	Maximum output power according to IC requirements	
	10.6 10.7	Emissions in restricted frequency bands < 30MHz (radiated) Emissions in restricted frequency bands > 30 MHz (conducted)	
11	Obse	rvations	
Anr	nex A	Glossary	98
Anr	nex B	Document history	99
Anr	nex C	Accreditation Certificate	99

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-5326/17-01-03-B and dated 2018-07-06.

2.2 Application details

Date of receipt of order:	2017-11-21
Date of receipt of test item:	2017-11-21
Start of test:	2017-11-21
End of test:	2018-05-16
Person(s) present during the test:	-/-

2.3 Test laboratories sub-contracted

None

Test standard/s and references 3

Test standard	Date	Description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus

Guidance	Version	Description
UNII: KDB 789033 D02	v02r01	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices
KDB 662911 D01	v02r01	Emissions Testing of Transmitters with Multiple Outputs in the Same Band
KDB 412172 D01	V01r01	Guidelines for determining the effective radiated power (erp) and equivalent isotopically radiated power (eirp) of an RF transmitting system

4 **Test environment**

Temperature		T _{nom} T _{max} T _{min}	+22 °C during room temperature tests No testing under extreme conditions required! No testing under extreme conditions required!
Relative humidity content	:		42 %
Barometric pressure	:		Not relevant for testing
Power supply	:	V _{nom} V _{max} V _{min}	24.0 V DC by external power supply No testing under extreme conditions required! No testing under extreme conditions required!

5 Test item

5.1 General description

Kind of test item :	WLAN module						
Type identification :	SX-PCEAN2						
HMN :	-/-						
PMN :	SX-PCEAN2						
HVIN :	SX-PCEAN2						
FVIN :	1.0.3.0.2						
S/N serial number :	Rad. M7086839; Cond. M7086839						
HW hardware status :	ZXE03263 (separation of	of HW by changing of order	· code)				
SW software status :	RF test software						
Frequency band :	UNII bands: 5150MHz to 5250MHz 8	UNII bands: 5150MHz to 5250MHz & 5725MHz to 5850MHz					
Type of radio transmission : Use of frequency spectrum :	OFDM						
Type of modulation :	(D)BPSK, (D)QPSK, 16	– QAM, 64 – QAM					
Number of channels :	5 GHz 21 (802.11 a/n20), 9 (802.11 n40)					
	2 external antennas The device is equipped with two external antenna ports and will be sold with a variant of Omni-directional and Directional Antennas:						
	Antenna name	Туре	Gain [dBi]				
	ANT-OMNI-2459-02	Rod Antenna	2.5 @ 2.4 GHz 5 @ 5 GHz				
A	ANT-OMNI-5900-01	Rod Antenna	5 @ 5 GHz				
Antenna :	ANT-DIR-2459-01	Directional	9 @ 2.4 GHz 9 @ 5 GHz				
	For the purpose of testing the antenna with the highest gain for any type of antenna is considered: - Rod Antenna (5 dBi) - Directional Antenna (9 dBi)						
Power supply :	2.805 V to 3.795 V DC, by Evaluation Board						
Temperature range :	0°C to +60°C						

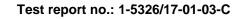
5.2 Additional information

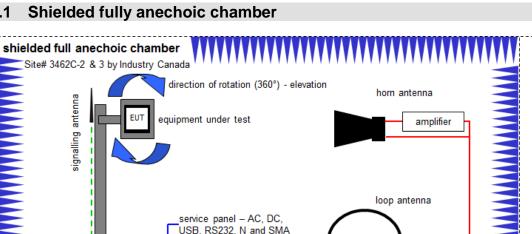
The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

1-5326/17-01-01_AnnexA 1-5326/17-01-01_AnnexB 1-5326/17-01-01_AnnexD

6 Description of the test setup


Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).


In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

USB, RS232, N and SMA turntable

RAM - radiation absorbent material

Measurement distance: horn antenna 3 meter; loop antenna 3 meter

direction of rotation (360°) - azimuth

FS = UR + CA + AF(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

6.1

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	07.07.2017	06.07.2019
2	А	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04590	300001041	vIKI!	14.12.2017	13.12.2020
3	А	Band Reject Filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	26	300003792	ne	-/-	-/-
4	А	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
5	A	Computer	Intel Core i3 3220/3,3 GHz, Prozessor		2V2403033A54 21	300004591	ne	-/-	-/-
6	А	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
7	Α	Anechoic chamber		TDK		300003726	ne	-/-	-/-
8	А	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	k	14.12.2017	13.12.2018
9	А	RF Amplifier	AFS4-00100800-28- 20P-4-R	MITEQ	2008992	300005204	ne	-/-	-/-

CTC I advanced

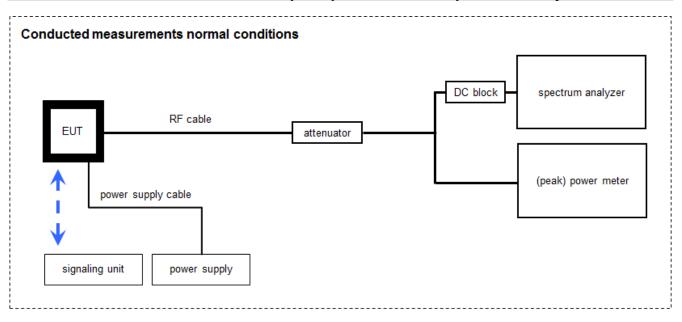
member of RWTÜV group

control room

EMI receiver

audio & video system

relay switch unit


power supply

optional signaling

unit

turntable / antenna controller

6.2 Conducted measurements with peak power meter & spectrum analyzer

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Kind of Lab/ Last Next No. Equipment Manufacturer Serial No. INV. No. Туре Calibration Calibration Item Calibration NRP 101367 1 Α Power Meter R&S 300003678 k 18.12.2017 17.12.2018 Leistungsmeßkopf + 2 Dämpfungsglied 30 NRP-Z22 300003686 А R&S 100227 k 11.12.2017 10.12.2018 dB DC Power Supply 0 3 A,B,C 1108-32 Heiden Elektronik 001702 300001392 vIKI! 26.01.2017 25.01.2020 – 32V Intel Core i3 2V2403033A45 4 В PC-WLAN Tester 3220/3,3 GHz, 300004589 -/--/ne 23 Prozessor Teststand Custom National Instruments 5 в 300004590 -/--/-Teststand ne Sequence Editor GmbH ST18/SMAm/SMAm/ Batch no. RF-Cable 6 В Huber & Suhner 400001181 -/--/ev 60 606844 DC-Blocker 0.1-40 7 B+C 8141A 400001185 -/--/-Inmet ev GHz MCL BW-K10-Coax Attenuator 10 Mini Circuits 8 В 400001186 -/--/ev dB 2W 0-40 GHz 2W44+ Signal Analyzer 40 9 FSV40 300004819 12.12.2017 11.12.2019 В R&S 101353 k GHz **RF-Cable WLAN-**ST18/SMAm/SMAm/ Batch no. 1273777 в Huber & Suhner 400001249 10 ev -/--/-Tester Port 1 48 PXA Spectrum N9030A PXA Signal С Analyzer 3Hz to US51350267 300004338 05.03.2018 04.03.2019 11 Agilent Technologies k Analyzer 50GHz

Equipment table:

7 Measurement uncertainty

Measurement uncertainty							
Test case	Uncertainty						
Antenna gain	± 3 dB						
Power spectral density	± 1.5 dB						
Spectrum bandwidth	± 100 kHz (depends on the used RBW)						
Occupied bandwidth	± 100 kHz (depends on the used RBW)						
Maximum output power	± 1.5 dB						
Minimum emissions bandwidth	± 100 kHz (depends on the used RBW)						
Spurious emissions conducted	± 3 dB						
Spurious emissions radiated below 30 MHz	± 3 dB						
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB						
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB						
Spurious emissions radiated above 12.75 GHz	± 4.5 dB						
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB						

Test report no.: 1-5326/17-01-03-C

Summary of measurement results 8

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
\square	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

CTC I advanced

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS 247, Issue 2	See table	2018-08-24	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	с	NC	NA	NP	Remark
-/-	Output power verification (cond.)	Nominal	Nominal	-/-			-/-	
-/-	Antenna gain	Nominal	Nominal		As per da	ata sheet!		-/-
U-NII Part 15	Duty cycle	Nominal	Nominal		-	/-		-/-
§15.407(a) RSS – 247 (6.2.1.1) RSS – 247 (6.2.2.1) RSS – 247 (6.2.3.1) RSS – 247 (6.2.3.1)	Maximum output power (conducted & radiated)	Nominal	Nominal	\boxtimes				-/-
§15.407(a) RSS – 247 (6.2.1.1) RSS – 247 (6.2.2.1) RSS – 247 (6.2.3.1) RSS – 247 (6.2.3.1)	Power spectral density	Nominal	Nominal				\boxtimes	-/-
RSS – 247 (6.2.4.1)	Spectrum bandwidth 6dB bandwidth	Nominal	Nominal				\boxtimes	-/-
§15.407(a) RSS – 247 (6.2.1.2)	Spectrum bandwidth 26dB bandwidth	Nominal	Nominal				\boxtimes	-/-
RSS Gen clause 6.6	Spectrum bandwidth 99% bandwidth	Nominal	Nominal		-	/-		-/-
§15.205 RSS – 247 (6.2.1.2) RSS – 247 (6.2.2.2) RSS – 247 (6.2.3.2) RSS – 247 (6.2.3.2)	Band edge compliance	Nominal	Nominal	\boxtimes				*2
\$15.407(b) RSS - 247 (6.2.1.2) RSS - 247 (6.2.2.2) RSS - 247 (6.2.3.2) RSS - 247 (6.2.3.2)	TX spurious emissions	Nominal	Nominal	\boxtimes				*2
§15.109 RSS-Gen	RX spurious emissions radiated	Nominal	Nominal				\boxtimes	*1
§15.209(a) RSS-Gen	Spurious emissions < 30 MHz	Nominal	Nominal	\boxtimes				-/-
§15.107(a) §15.207	Spurious emissions conducted emissions < 30 MHz	Nominal	Nominal				\boxtimes	*1
§15.407 RSS – 247 (6.3)	DFS	Nominal	Nominal				\boxtimes	*3

Notes:

C: Com	pliant NC:	Not compliant	NA:	Not applicable	NP:	Not performed	
--------	------------	---------------	-----	----------------	-----	---------------	--

*1 As per module report
*2 Restricted band measurements are performed in a conducted way.
*3 Only non-DFS channels supported by the device.

9 Additional comments

Reference documents:	Module Report: F161629E1_2ndVersion.pdf issued by Phoenix TESTLAB, 2017-04-18.
	Antenna specification: ANT-DIR-2459-01-2701186_expanded ANT-OMNI-2459-02–2701408_Datasheet Radiation Pattern – Preliminary ANT-OMNI-5900-01-2701347_expanded RAD-ISM-2400-ANT-OMNI-2-1-RSMA-2701362 RAD-ISM-2400-ANT-OMNI-6-0-2885919 RAD-ISM-2400-ANT-VAN-3-0-RSMA – 2701358
Special test descriptions:	For conducted measurements two operating modes are considered: OP1: Single antenna operation (for 9dBi Directional-Antenna) OP2: Dual antenna operation (for two 5dBi Omni-Antennas)
	For unwanted emission measurements a correction factor of 9dB is considered to account for both antenna configurations. Hence, with regards to OP2, the results correspond to an overestimation of 1dB (5 dBi + $10*\log(2) = 8 \text{ dBi}$).
	Radiated measurements were performed with the directional antenna (ANT- DIR-2459-01-2701186) and the omni-antenna (ANT-OMNI-5900-01- 2701347_expanded) to represent the worst case configuration for each antenna type/structure with regards to the antenna gain.
	De la Ostilia de Dete Dete la Francisca

Center Frequency [MHz]											
Mode	5180	5240	5260	5300	5320	5500	5580	5700	5745	5785	5825
a-mode	12.5	12.5	-/-	-/-	-/-	-/-	-/-	-/-	12.5	12.5	12.5
n20-mode	13.5	13.5	-/-	-/-	-/-	-/-	-/-	-/-	13	13	13
	5190	5230	5310	5510	5630	5670	5755	5795			
n40-mode	11.5	11.5	-/-	-/-	-/-	-/-	11.0	11.0			

Configuration descriptions: Power Settings vs. Data Rate vs. Frequency

Provided channels:

Channels with 20 MHz channel bandwidth:

U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz) channel number & centre frequency						
channel	36	40	44	48		
f _c / MHz	f _c / MHz 5180 5200 5220 5240 -/-					

U-NII-3 (5725 MHz to 5850 MHz) channel number & centre frequency						
channel 149 153 157 161 165					165	
f _c / MHz	f _c / MHz 5745 5765 5785 5805 5825					

Channels with 40 MHz channel bandwidth:

U-NII-1 & U-NII-2A (5150 MHz to 5250 MHz) channel number & centre frequency						
channel	38	46	,			
f _c / MHz	f _c / MHz 5190 5230 -/-					

U-NII-3 (5725 MHz to 5850 MHz) channel number & centre frequency					
channel	151	159			
f _c / MHz	5755	5795			

CTC I advanced Test report no.: 1-5326/17-01-03-C Test mode: No test mode available. Iperf was used to ping another device with the largest support packet size \times Special software is used. EUT is transmitting pseudo random data by itself Antennas and transmit \mathbf{X} Operating mode 1 (single antenna) operating modes: Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used) \boxtimes Operating mode 2 (multiple antennas, no beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming. Operating mode 3 (multiple antennas, with beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming.

into account when performing the measurements.

In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken

Test report no.: 1-5326/17-01-03-C

10 Measurement results

10.1 Testability check

Description:

Comparison of the first assessment with the current product based on the performance and decision of the test ability.

Measurement:

Measurement parameters					
AVG Po	AVG Power Meter				
Test setup	See chapter 6.2 – A				
Measurement uncertainty	See chapter 8				

Limits:

Main re	port value -2 dB / +1 dB	
Internet in the second se		

Results:

a-mode, 9Mbit/s, UNII Band 1, Antenna 0

T _{nom}	V _{nom}	lowest channel	middle channel	highest channel		
	OFDM (20MHz mode (Antenna 0)					
Conducted power / dBm Main report F161629E2 3 rd Version		10.8	10.9	10.3		
Conducted power / dBm Test ability check – delta sample		11.1	10.6	10.2		

a-mode, 9Mbit/s, UNII Band 3, Antenna 0

T _{nom}	V _{nom}	lowest channel	middle channel	highest channel		
	OFDM (20MHz mode (Antenna 0)					
Conducted power / dBm Main report F161629E2 3 rd Version		10.1	10.4	9.9		
Conducted power / dBm Test ability check – delta sample		10.0	10.0	9.5		

Test report no.: 1-5326/17-01-03-C

a-mode, 9Mbit/s, UNII Band 1, Antenna 1

T _{nom}	V _{nom}	lowest channel	middle channel	highest channel	
	OFDM (20MHz mode (Antenna 1)				
Conducted power / dBm Main report F161629E2 3 rd Version		11.9	12.1	12.1	
Conducted power / dBm Test ability check – delta sample		11.2	11.6	11.7	

10.2 Identify worst case data rate

Worst case data rate as specified in referential test report (see section 9).

Results:

	Modulation scheme / bandwidth							
OFDM – mode	U-NII-1 & U-NII-2A		U-NII-2C		U-NII-3			
	Low channel	high channel	Low channel	high channel	Low channel	high channel		
a – mode	9Mbit/s	9Mbit/s			9Mbit/s	9Mbit/s		
n/ac HT20 – mode	13Mbit/s	13Mbit/s	-/- 13Mbit/s 26Mbit/s		13Mbit/s	13Mbit/s		
n/ac HT40 – mode	26Mbit/s	26Mbit/s			26Mbit/s	2Mbit/s		

10.3 Antenna gain

As specified by the manufacturer (see section 5.1 & 9).

Limit:

Antenna Gain

6 dBi / > 6 dBi output power and power density reduction required

10.4 Duty cycle

Description:

The duty cycle is necessary to compute the maximum power during an actual transmission. The shown plots and values are to show an example of the measurement procedure. The real value is measured direct during the power measurement or power density measurement. The correction value is shown in each plot of these measurements.

Measurement:

Measurement parameter							
According to: KDB789033 D02, B.							
Detector:	Peak						
Sweep time:	Auto						
Resolution bandwidth:	10 MHz						
Video bandwidth:	10 MHz						
Span:	Zero						
Trace mode:	Video trigger / view / single sweep						
Used test setup:	See chapter 6.2 – B						
Measurement uncertainty:	See chapter 8						

Results:

Duty cycle and correction factor:

	Calculation method							
OFDM – mode	T _{on} (D2 _{plot}) * 100 / T _{complete} (D3 _{plot}) = duty cycle 10 * log(duty cycle) = correction factor							
	T _{on} (D2 _{plot})	T _{complete} (D3 _{plot})	Duty cycle	Correction factor				
a – mode	913 µs	954 µs	95.8 %	0.2 dB				
n/ac HT20 – mode	1276 µs	1316 µs	97.0 %	0.1 dB				
n/ac HT40 – mode	634.6 µs	664.5 µs	95.5 %	0.2 dB				

Plots:

Duty cycle and correction factor (example for one channel & one antenna port):

Plot 1: duty cycle of the transmitter; a – mode

Spect	rum												
	vel 2	3.54 dBm		_	BW 10 MHz								
Att			🔵 SWT 2.9) ms 😑 🗸	BW 10 MHz								
SGL Co		/1	TDF										
⊖1Pk Cl													
20 dBm	-				1			1[1]					10.73 dBm
<mark>መምርትጫው</mark> 10 dBm·	Malan	whitner	Johnsmindhe	-hohoryallphare	uppendbauchensuch	04/1 ₀	zhrudulan D	1000-04 2[1]	Nellachtyljoheth	nyyundy	NAMINATINA	fra	長石7,20,共長 -26.31 dB 913.18 µs
0 dBm—													
-10 dBm	۱					DP							
-20 dBm					_	Δ.					կ	1	
-30 dBm	<u>ا</u> ل-۱												
-40 dBm	ו												
-50 dBm	<u>ا</u> –۱												
-60 dBm	۱ <u> </u>												
-70 dBm	ו—ר												
CF 5.1	B GHz	:			1000) pts	;					2	86.88 µs/
Marker													
Туре	Ref	Trc	X-value		Y-value		Func	tion		Fund	tion Re	esult	
M1 D2	M1	1		77.2 µs 3.18 µs	10.73 dE -26.31								
D2 D3	M1 M1	1		3.18 µs 3.38 µs	-26.31								
)[) R	te a d y			1,70		5.04.2018

Date: 5.APR.2018 11:36:45

Plot 2: duty cycle of the transmitter; n/ac HT20 – mode

Spect	rum													
Ref Le	vel 2	3.95 dBr	n		RBV	/ 10 MHz								\
Att		40 d	в 🕳 SWT 3.9	9 ms 🕳	νвν	V 10 MHz								
SGL Co	unt 1	/1	TDF											
●1Pk Cl	rw													······
20 dBm								M	1[1]					11.85 dBm
ALL NUM	Librarit	سالحصير	مالاستان ماليات	بالبداء كتب	b.e-	A., MilaNatooha	بالمعالية	aund an	and a la	يتح المتاتيات	Ju.	tout la	letter day	JUN 2016155.US
10 dBm	- Porto	00.1.0.400.001	LAD II are remotified a.	e e a colleto	1,000	Should a to be	1.0.1	D:	2[1]	0 - 00-0 01		- Ibm	-0 -p00	_ሥ ላ- የፈፅ-፬ 5-ዞ -29.54 dB
10 0011														1.27612 ms
0 dBm-					_									
-10 dBm														
					D						Ιl	J		
-20 dBm	i		_		A	· · · · · · · · · · · · · · · · · · ·						v		
-30 dBm	∩													
-40 dBm	∩													
-50 dBm														
co do a														
-60 dBm														
-70 dBm														
-70 UBI														
CF 5.1	3 GHz	:				1000	pts				_			394.69 µs/
Marker							-							
Type	Ref	Trc	X-value	•	1	Y-value	1	Func	tion	1		Fun	ction Res	ult (
M1		1	276	5.56 µs		11.85 dB	m							
D2	M1	1		612 ms		-29.54 (
D3	M1	1	1.31	563 ms		-0.15 (dB							
		Π							teady	1			4,40	05.04.2018

Date: 5.APR.2018 12:17:10

Plot 3: duty cycle of the transmitter; n/ac HT40 – mode

M1[1] 6.09 dBm 0 dBm 0 dBm -20 dBm -20 dBm -30 dBm	Spectrur	n						E
SGL Count 1/1 TDF 1Pk Clrw M1[1] 6.09 dBm 10 dBm 100 dBm 100 dBm 634.65 µs -10 dBm 1 1 1 1 -20 dBm 1 1 1 1 1 -10 dBm 1 1 100 pts 1 28.97 dB 1 <	Ref Level	19.59 dBr	n 🖷 RB	W 10 MHz				
1 Pk Clrw M1[1] 6.09 dBn 1 gr dBto work and an 1, and a grad db and a grad db and and db and db and db and and db and db and	Att	35 d	8 👄 SWT 2 ms 👄 VB	W 10 MHz				
M1[1] 6.09 dBm 0 dBm 0 -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -40 dBm -60 dBm -40 dBm -70 dBm -40 dBm	SGL Count	t 1/1	TDF					
Jge determine Image determine Jge determine Jg	∋1Pk Clrw							
Jge determine Image determine Jge determine Jg					M1[1]			6.09 dBm
0 dBm 634.65 µ -10 dBm 634.65 µ -20 dBm	-		والمتعادية والمتعادية والمتعادية	an diamandrik das		ana ana sa shadaa dha ahaa		812.35.05
-10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70	Poly and the second	MARON AL AV	an de anone and deservance (مبرا P3 المباليس يوسلوني	D2[1]	halledd mater a new ff affallega oef	ע <i>וויייירי א</i> ין א	20101 40
-10 dBm	0 dBm							634.65 μs
-20 dBm								
Image: second secon	-10 dBm							
Image: second secon								
-30 dBm	-20 dBm—	1 ht		- DE			Jali	
-40 dBm		4~		21			~04	
-50 dBm	-30 dBm—							
-50 dBm	10.10							
-60 dBm -70	-40 aBm—							
-60 dBm -70	50 d8m-							
-70 dBm	-30 ubiii							
-70 dBm	-60 dBm							
CF 5.19 GHz 1000 pts 198.75 µs/ Marker Type Ref Trc X-value Function Function Result M1 1 312.35 µs 6.09 dBm D2 M1 1 634.65 µs -28.97 dB	00 000							
Marker Yolu Function Function Result M1 1 312.35 µs 6.09 dBm D2 M1 1 634.65 µs -28.97 dB	-70 dBm—							
Marker Yolu Function Function Result M1 1 312.35 µs 6.09 dBm D2 M1 1 634.65 µs -28.97 dB								
Marker Yolu Function Function Result M1 1 312.35 µs 6.09 dBm D2 M1 1 634.65 µs -28.97 dB	CE 5 10 C			1000 pt			- 1	09.75.05/
Type Ref Trc X-value Y-value Function Function Result M1 1 312.35 µs 6.09 dBm D2 M1 1 634.65 µs -28.97 dB		112		1000 pt:	3		1	50.75 µS7
M1 1 312.35 µs 6.09 dBm D2 M1 1 634.65 µs -28.97 dB		af Tro	Y-ualuo	Y-ualuo	Function	Fund	tion Pocult	. 1
D2 M1 1 634.65 μs -28.97 dB					runction	Func	tion Result	
							4.365	15.04.2018

Date: 5.APR.2018 12:43:31

10.5 Maximum output power

10.5.1 Maximum output power according to FCC requirements

Description:

Measurement of the maximum output power conducted

Measurement:

Measurement parameter							
According to: KDB789033 D02, E.2.e.							
Detector:	RMS						
Sweep time:	≥10*(swp points)*(total on/off time)						
Resolution bandwidth:	1 MHz						
Video bandwidth:	3 MHz						
Span:	> EBW						
Trace mode:	Max hold						
Analyzer function	Band power / channel power Interval > 26 dB EBW						
Used test setup:	See chapter 6.2 – B						
Measurement uncertainty:	See chapter 8						

Limits: Single Chain Mode (9dBi Antenna consideration)

Radiated output power	Conducted output power for indoor/outdoor access point
Conducted power + 6 dBi antenna gain	5.150-5.250 GHz: 1W or 30dBm (30dBm – 3 dB = 27dBm)
	5.725-5.85 GHz: 1W or 30dBm (30dBm – 3 dB = 27dBm)

Note: Limit is reduced by 3 dB to consider a 9dBi antenna.

Limits: Dual Chain Mode (5dBi antenna consideration)

Radiated output power	Conducted output power for indoor/outdoor access point				
Conducted power + 6 dBi antenna gain	5.150-5.250 GHz: 1W or 30dBm				
	5.725-5.85 GHz: 1W or 30dBm				

Results: a – mode / Antenna 0

	Maxim	num output power conducted	[dBm]					
	U-NII-1 (5150 MHz to 5250 MHz)							
	Lowest channel	Middle channel	Highest channel					
	10.1	10.1	9.9					
	υ	-NII-2A (5250 MHz to 5350 MHz	z)					
	Lowest channel	Middle channel	Highest channel					
а	-/-	-/-	-/-					
	U-NII-2C (5470 MHz to 5725 MHz)							
	Lowest channel	Middle channel	Highest channel					
	-/-	-/-	-/-					
	L	J-NII-3 (5725 MHz to 5850 MHz						
	Lowest channel	Middle channel	Highest channel					
	8.5	8.6	8.1					

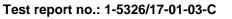
Results: n/ac HT20 - mode / Antenna 0

	Maxin	num output power conducted	[dBm]					
	U-NII-1 (5150 MHz to 5250 MHz)							
	Lowest channel	Middle channel	Highest channel					
	11.1	11.1	10.9					
	U	-NII-2A (5250 MHz to 5350 MHz	z)					
	Lowest channel	Middle channel	Highest channel					
n/ac HT20	-/-	-/-	-/-					
	U-NII-2C (5470 MHz to 5725 MHz)							
	Lowest channel	Middle channel	Highest channel					
	-/-	-/-	-/-					
	l	J-NII-3 (5725 MHz to 5850 MHz)					
	Lowest channel	Middle channel	Highest channel					
	8.9	8.9	8.5					

Results: n/ac HT20 – mode / Antenna 0

	Maxim	num output pov	ver conducted	[dBm]			
	U-NII-1 (5150 MHz to 5250 MHz)						
	Lowest channel			Highest channel			
	9.5			9.6			
	U	-NII-2A (5250 M	Hz to 5350 MHz	z)			
	Lowest channel		Highest channel				
n/ac HT40	-/-		-/-				
	U	U-NII-2C (5470 MHz to 5725 MHz)					
	Lowest channel	Middle	channel	Highest channel			
	-/-	-/	/_	-/-			
	L	J-NII-3 (5725 MI	Hz to 5850 MHz	z to 5850 MHz)			
	Lowest channel		Highest channel				
	6.7			6.8			

Results: a – mode / Antenna 1


	Maximum output power conducted [dBm]			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel	Middle channel	Highest channel	
	8.8	9.0	8.4	
	U-NII-2A (5250 MHz to 5350 MHz)			
	Lowest channel	Middle channel	Highest channel	
а	-/-	-/-	-/-	
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Middle channel	Highest channel	
	-/-	-/-	-/-	
	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel	Middle channel	Highest channel	
	8.2	8.4	8.2	

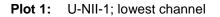
Results: n/ac HT20 - mode / Antenna 1

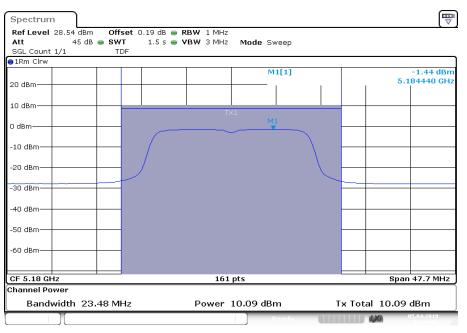
	Maximum output power conducted [dBm]			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel	Middle channel	Highest channel	
	9.8	9.9	9.6	
	U-NII-2A (5250 MHz to 5350 MHz)			
	Lowest channel	Middle channel	Highest channel	
n/ac HT20	-/-	-/-	-/-	
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Middle channel	Highest channel	
	-/-	-/-	-/-	
	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel	Middle channel	Highest channel	
	8.6	8.8	8.6	

Results: n/ac HT40 – mode / Antenna 1

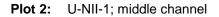
	Maximum output power conducted [dBm]			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel		Highest channel	
	8.6			7.4
	U-NII-2A (5250 MHz to 5350 MHz)			
	Lowest channel		Highest channel	
n/ac HT40	-/-		-/-	
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Middle	channel	Highest channel
	-/-	-/	/_	-/-
	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel		Highest channel	
	7.1		6.8	

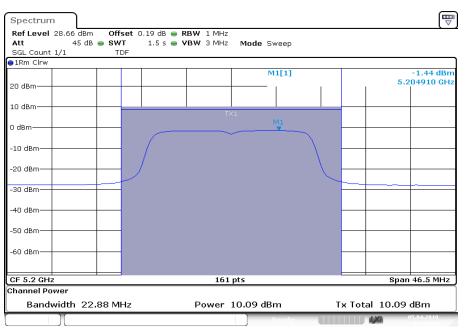
	Maximum output power conducted [dBm]			
	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel	Middle channel	Highest channel	
	13.5	13.6	13.3	
	U-NII-2A (5250 MHz to 5350 MHz)			
	Lowest channel	Middle channel	Highest channel	
n/ac HT20	-/-	-/-	-/-	
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Middle channel	Highest channel	
	-/-	-/-	-/-	
	U-NII-3 (5725 MHz to 5850 MHz)			
	Lowest channel	Middle channel	Highest channel	
	11.8	11.9	11.6	

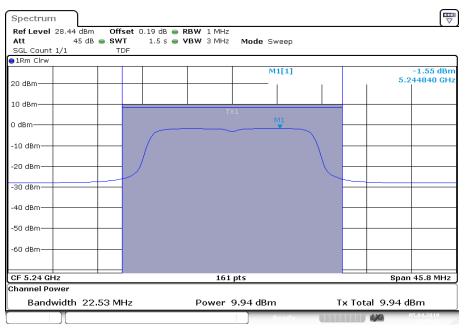

Results: n/ac HT20 - mode / Antenna 0&1 (Dual Chain Mode - Calculated Sum Power)

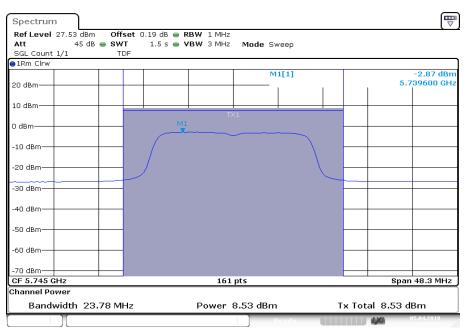

Results: n/ac HT40 – mode / Antenna 0&1 (Dual Chain Mode – Calculated Sum Power)

	Maximum output power conducted [dBm]				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel		Highest channel		
	12.1		11.6		
	U-NII-2A (5250 MHz to 5350 MHz)				
	Lowest channel	el		Highest channel	
n/ac HT40	-/-		-/-		
	U-NII-2C (5470 MHz to 5725 MHz)				
	Lowest channel	Middle channel		Highest channel	
	-/-	-/	/_	-/-	
	U-NII-3 (5725 MHz to 5850 MHz)				
	Lowest channel			Highest channel	
	9.9		9.8		

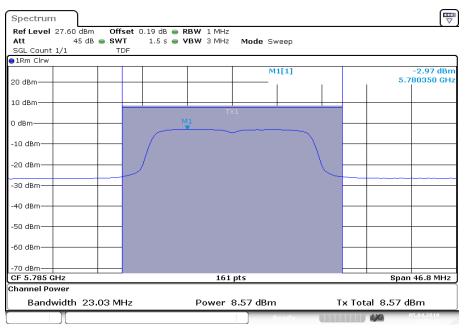



Plots: a - mode / Antenna 0

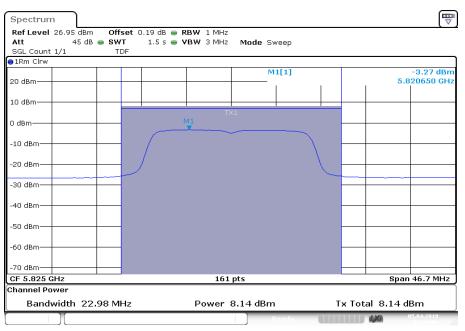

Date: 5.APR.2018 11:36:57


Date: 5.APR.2018 11:38:45

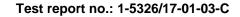
Plot 3: U-NII-1; highest channel


Date: 5.APR.2018 11:40:29

Plot 4: U-NII-3; lowest channel

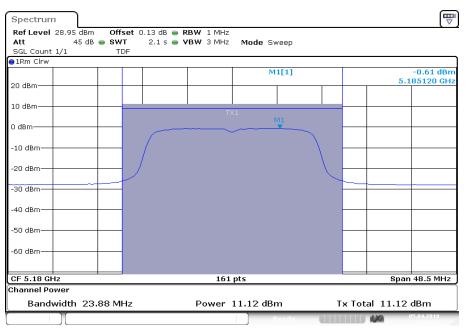

Date: 5.APR.2018 11:52:23

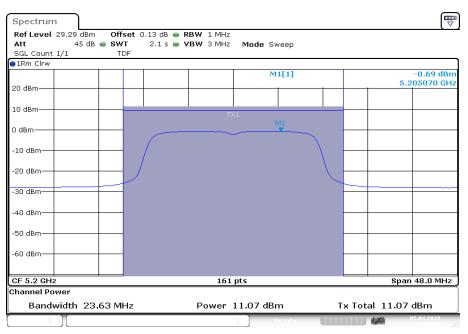
Plot 5: U-NII-3; middle channel



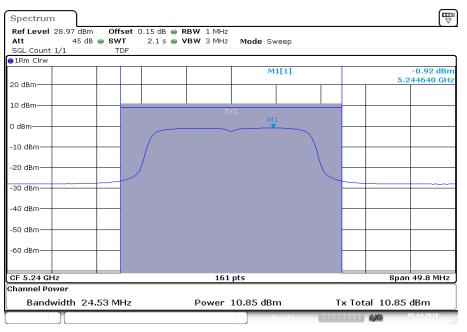
Date: 5.APR.2018 11:54:15

Plot 6: U-NII-3; highest channel

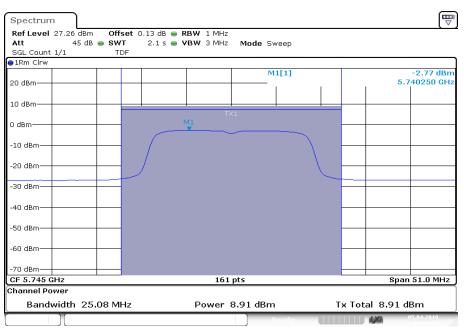

Date: 5.APR.2018 11:56:09


Plots: n/ac HT20 - mode / Antenna 0

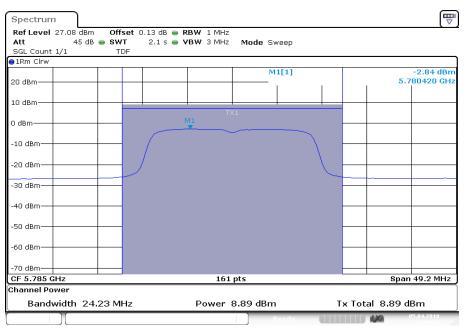
Plot 1: U-NII-1; lowest channel


Date: 5.APR.2018 12:17:22

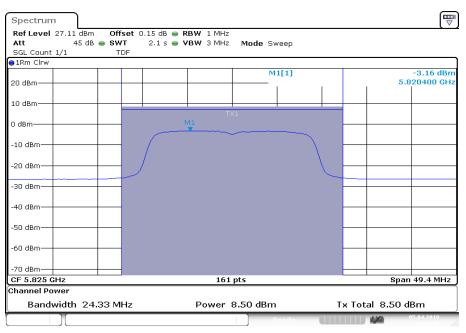
Plot 2: U-NII-1; middle channel


Date: 5.APR.2018 12:19:07

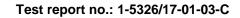
Plot 3: U-NII-1; highest channel


Date: 5.APR.2018 12:20:50

Plot 4: U-NII-3; lowest channel

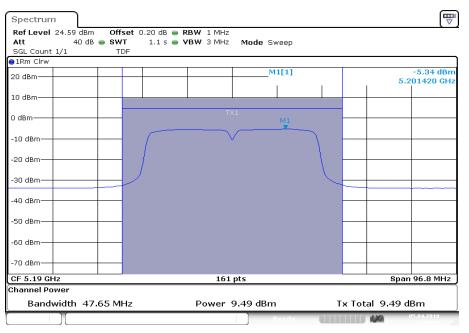

Date: 5.APR.2018 12:37:59

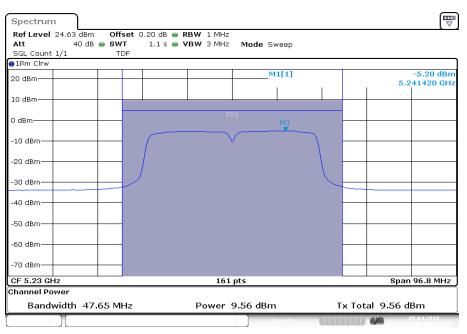
Plot 5: U-NII-3; middle channel



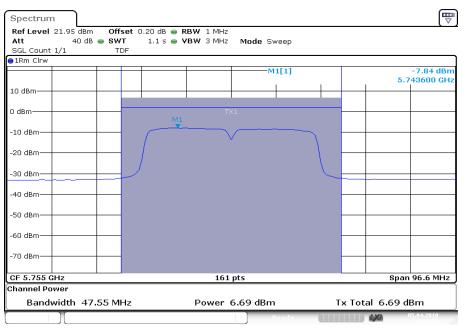
Date: 5.APR.2018 12:39:51

Plot 6: U-NII-3; highest channel

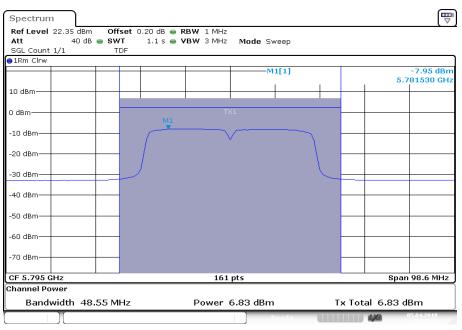

Date: 5.APR.2018 12:41:46


Plots: n/ac HT40 - mode / Antenna 0

Plot 1: U-NII-1; lowest channel


Date: 5.APR.2018 12:43:42

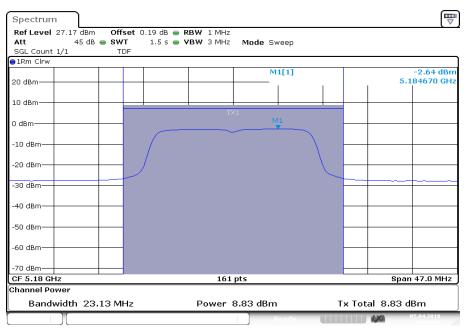
Plot 2: U-NII-1; highest channel


Date: 5.APR.2018 12:45:27

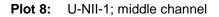
Plot 3: U-NII-3; lowest channel

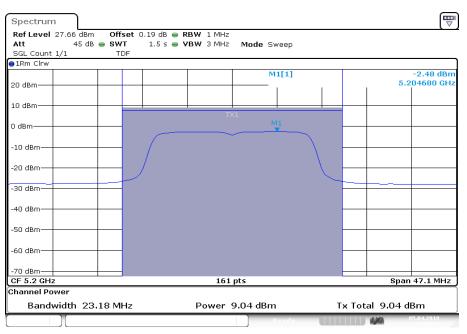
Date: 5.APR.2018 12:53:47

Plot 4: U-NII-3; highest channel

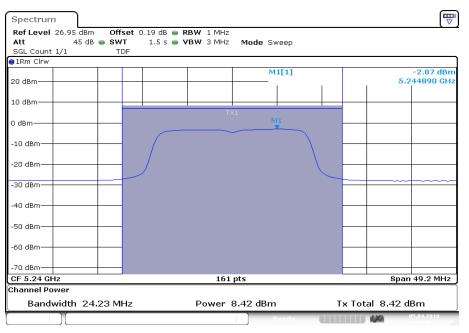


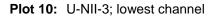
Date: 5.APR.2018 12:55:33

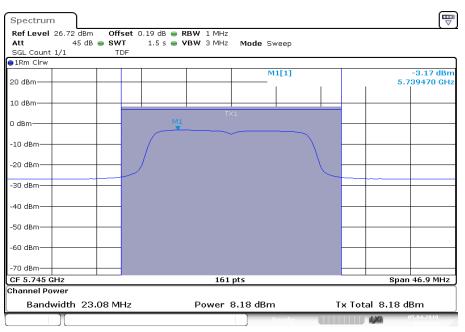



Plots: a - mode / Antenna 1

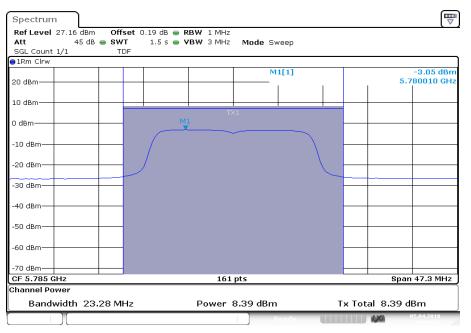
Plot 7: U-NII-1; lowest channel

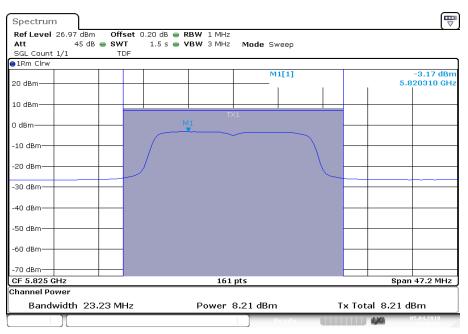

Date: 5.APR.2018 09:30:54



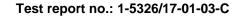

Date: 5.APR.2018 09:36:25

Plot 9: U-NII-1; highest channel


Date: 5.APR.2018 09:40:12

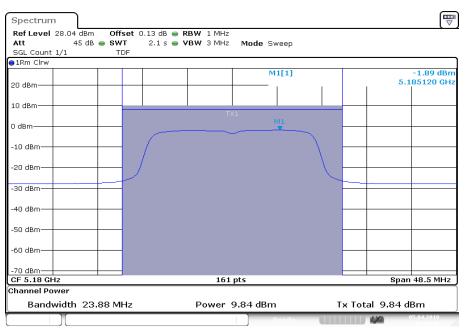

Date: 5.APR.2018 09:52:29

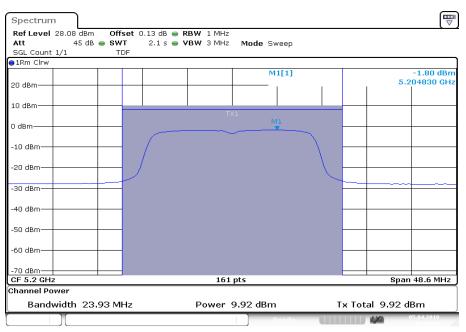
Plot 11: U-NII-3; middle channel



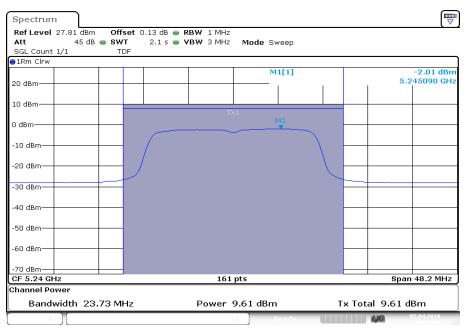
Date: 5.APR.2018 09:54:23

Plot 12: U-NII-3; highest channel

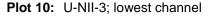

Date: 5.APR.2018 09:56:19

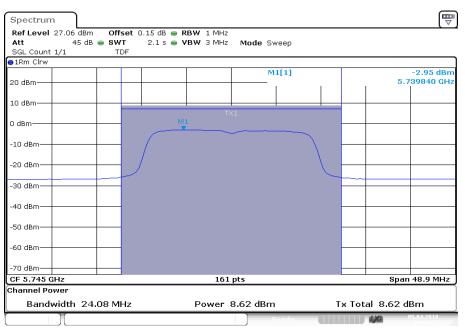

Plots: n/ac HT20 - mode / Antenna 1

Plot 7: U-NII-1; lowest channel

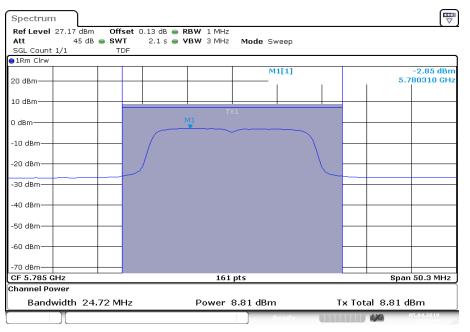

Date: 5.APR.2018 10:10:47

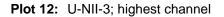
Plot 8: U-NII-1; middle channel

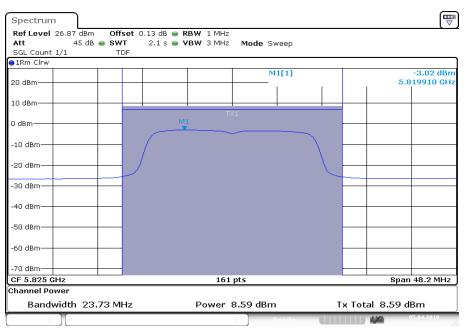



Date: 5.APR.2018 10:12:34

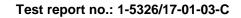
Plot 9: U-NII-1; highest channel


Date: 5.APR.2018 10:14:19



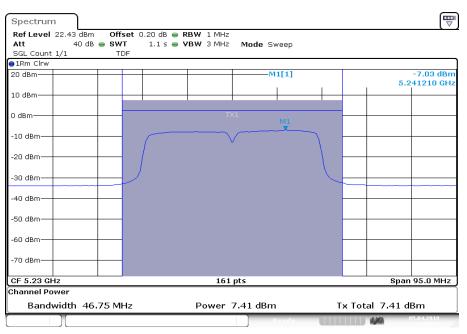

Date: 5.APR.2018 11:01:13

Plot 11: U-NII-3; middle channel

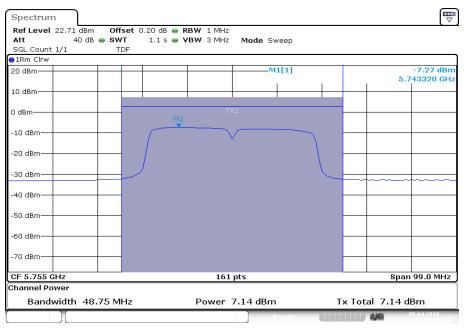


Date: 5.APR.2018 11:03:06

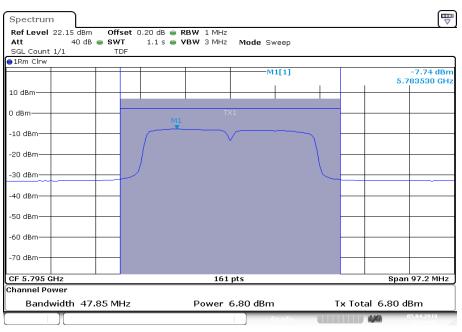
Date: 5.APR.2018 11:05:01


Plots: n/ac HT40 - mode / Antenna 1

Plot 5: U-NII-1; lowest channel


Date: 5.APR.2018 11:12:01

Plot 6: U-NII-1; highest channel


Date: 5.APR.2018 11:10:16

Plot 7: U-NII-3; lowest channel

Date: 5.APR.2018 11:29:29

Plot 8: U-NII-3; highest channel

Date: 5.APR.2018 11:31:16

10.5.2 Maximum output power according to IC requirements

Description:

Measurement of the maximum output power conduced + radiated

Measurement:

Measurement parameter			
Detector:	RMS		
Sweep time:	≥10*(swp points)*(total on/off time)		
Resolution bandwidth:	1 MHz		
Video bandwidth:	≥ 3 MHz		
Span:	> EBW		
Trace mode:	Max hold		
Analyzer function	Band power / channel power Interval > 99% OBW		
Used test setup:	See chapter 6.2 – B		
Measurement uncertainty:	See chapter 8		

Limits:

Radiated output power	Conducted output power for devices, other than devices installed in vehicles
The lesser one of 200 mW (23.0dBm) or 10 dBm + 10 log Bandwidth 5.150- 5.250 GHz	5.725-5.85 GHz: 1W or 30dBm (30dBm – 3 dB = 27dBm)
Conducted power + 6dBi antenna gain 5.725-5.825 GHz	

Note:

The conducted limit is reduced by 3 dB to consider a 9dBi antenna.

E.i.r.p results in single chain mode are calculated using the highest allowed gain of 9dBi.

E.i.r.p. results in dual chain mode are calculated using the highest allowed gain of 5dBi.

Results: a – mode / Antenna 0

		Maximum output power [dBm]		
	l	J-NII-1 (5150 MHz to 5250 MHz)	
	Lowest channel	Middle channel	Highest channel	
		Conducted		
10.2		9.9	9.9	
	Radiated	(calculated – see chapter anter	nna gain)	
	19.2	18.9	18.9	
	U	-NII-2A (5250 MHz to 5350 MHz	z)	
	Lowest channel	Middle channel	Highest channel	
		Conducted		
	-/-	_/-	-/-	
		l (calculated – see chapter anter	2 ,	
а	-/-		-/-	
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Middle channel	Highest channel	
		Conducted		
	_/-	_/-	-/-	
		l (calculated – see chapter anter	j,	
	-/-	_/-	-/-	
		J-NII-3 (5725 MHz to 5850 MHz	-	
	Lowest channel	Middle channel	Highest channel	
		Conducted		
	8.5	8.6	8.1	
	Radiated (calculated – see chapter antenna gain)			
	17.5	17.6	17.1	

	ι	J-NII-1 (5150 MHz to 5250 MHz)
	Lowest channel	Middle channel	Highest channel
		Conducted	
	11.2	10.9	10.8
	Radiated	l (calculated – see chapter anter	ina gain)
	20.2	19.9	19.8
	U	-NII-2A (5250 MHz to 5350 MHz	z)
	Lowest channel	Middle channel	Highest channel
	Conducted		
	-/-	-/-	-/-
	Radiated (calculated – see chapter antenna gain)		
n/ac HT20	-/-	-/-	-/-
	U-NII-2C (5470 MHz to 5725 MHz)		
	Lowest channel	Middle channel	Highest channel
Conducted			
	-/-	-/-	-/-
	Radiated	l (calculated – see chapter anter	ina gain)
	/	-/-	-/-
U-NII-3 (5725 MHz to 5850 MHz))
	Lowest channel	Middle channel	Highest channel
		Conducted	
	8.8	8.8	8.4
		l (calculated – see chapter anter	
	17.8	17.8	17.4

Maximum output power [dBm]

Results: n/ac - mode / Antenna 0

Test report no.: 1-5326/17-01-03-C

© CTC advanced GmbH

	Radiated	(calculated - se	ee chapter anten	ina gain)
	18.5			18.5
	U-	NII-2A (5250 M	Hz to 5350 MHz	2)
	Lowest channel			Highest channel
	Conducted			
	-/-			-/-
	Radiated	(calculated - se	ee chapter anten	ina gain)
n/ac HT40	_/-			-/-
	U-NII-2C (5470 MHz to 5725 MHz)			2)
	Lowest channel	nannel Middle channel Highest		Highest channel
		Conducted		
	-/-	-/	/_	-/-
	Radiated	(calculated - se	ee chapter anten	ina gain)
	-/-	-/	/_	-/-
	U	-NII-3 (5725 MI	Hz to 5850 MHz	
	Lowest channel			Highest channel
		Conducted		
	6.7			6.8
	Radiated	(calculated - se	ee chapter anten	ina gain)
	15.7			15.8

Maximum output power [dBm] U-NII-1 (5150 MHz to 5250 MHz)

Conducted

Results: n/ac HT40 – mode / Antenna 0

Lowest channel

9.5

Highest channel

9.5

© CTC advanced GmbH

		Maximum output power [dBm]	
	U-NII-1 (5150 MHz to 5250 MHz)		
	Lowest channel	Middle channel	Highest channel
		Conducted	
	8.7	9.1	8.4
	Radiate	ed (calculated – see chapter anter	ina gain)
	17.7	18.1	17.4
		U-NII-2A (5250 MHz to 5350 MHz	z)
	Lowest channel	Middle channel	Highest channel
		Conducted	
	-/-	-/-	-/-
	Radiated (calculated – see chapter antenna gain)		
а	-/-	-/-	-/-
		U-NII-2C (5470 MHz to 5725 MHz	z)
	Lowest channel	Middle channel	Highest channel
		Conducted	
	-/-	-/-	-/-
	Radiated (calculated – see chapter antenna gain)		
	-/-	-/-	-/-
		U-NII-3 (5725 MHz to 5850 MHz	
	Lowest channel	Middle channel	Highest channel

Conducted

8.3

Radiated (calculated - see chapter antenna gain) 17.3

Results: a – mode / Antenna 1

8.1

17.1

8.2

17.2

	U-NII-1 (5150 MHz to 5250 MHz)			
	Lowest channel	Middle channel	Highest channel	
		Conducted		
	9.9	10.1	9.5	
	Radiated (calculated – see chapter antenna gain)			
	18.9	19.1	18.5	
	U	-NII-2A (5250 MHz to 5350 MHz	z)	
	Lowest channel	Middle channel	Highest channel	
		Conducted		
	-/-	-/-	-/-	
Radiated (calculated – see chapter antenna gain)				
n/ac HT20	-/-	-/-	-/-	
	U-NII-2C (5470 MHz to 5725 MHz)			
	Lowest channel	Middle channel	Highest channel	
		Conducted		
	-/-	-//-		
	Radiated	(calculated – see chapter anter	ina gain)	
	_/-	-/-	-/-	
	(J-NII-3 (5725 MHz to 5850 MHz	5850 MHz)	
	Lowest channel	Middle channel	Highest channel	
		Conducted		
	8.5	8.7	8.5	
		(calculated – see chapter anter		
	17.5	17.7	17.5	

Maximum output power [dBm]

Results: n/ac - mode / Antenna 1

Test report no.: 1-5326/17-01-03-C

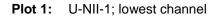
Results: n/ac HT40 - mode / Antenna 1

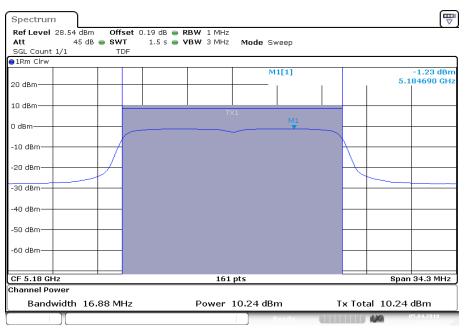
	Maximum output power [dBm]				
	U-NII-1 (5150 MHz to 5250 MHz)				
	Lowest channel			Highest channel	
	Conducted				
	8.5			7.5	
	Radiated	l (calculated – se	ee chapter anter	nna gain)	
	17.5			16.5	
	U	-NII-2A (5250 M	Hz to 5350 MH	z)	
	Lowest channel			Highest channel	
		Cond	ucted		
	-/- -/- Radiated (calculated – see chapter antenna gain) -/- -/- -/- U-NII-2C (5470 MHz to 5725 MHz) -/-		-/-		
			nna gain)		
n/ac HT40				,	
			/		
	Lowest channel	Middle		Highest channel	
		Conducted			
	_/-	-/		_/-	
		l (calculated – se	•	j,	
	-/-	-/		-/-	
		J-NII-3 (5725 MI	Hz to 5850 MHz		
	Lowest channel			Highest channel	
		Cond	ucted		
	7.3			6.8	
		Radiated (calculated – see chapter antenna gain)			
	16.3			15.8	

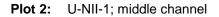
	Maximum output power [dBm]		
	L	J-NII-1 (5150 MHz to 5250 MHz	
	Lowest channel	Middle channel	Highest channel
		Conducted	
	13.6	13.5	13.2
	Radiatec	l (calculated – see chapter anter	nna gain)
	18.6 18.5 18.2		18.2
	U	-NII-2A (5250 MHz to 5350 MHz	z)
	Lowest channel	Middle channel	Highest channel
		Conducted	
	-/-	-/-	-/-
	Radiated (calculated – see chapter antenna gain)		
n/ac HT20	-/-	-/-	-/-
	U-NII-2C (5470 MHz to 5725 MHz)		
	Lowest channel	Middle channel	Highest channel
		Conducted	
	-/-	-/-	-/-
	Radiated	(calculated – see chapter anter	na gain)
	-/-	-/-	-/-
	l	J-NII-3 (5725 MHz to 5850 MHz)
	Lowest channel	Middle channel	Highest channel
		Conducted	
	11.7	11.8	11.5
	Radiated	(calculated – see chapter anter	na gain)
	16.7	16.8	16.5

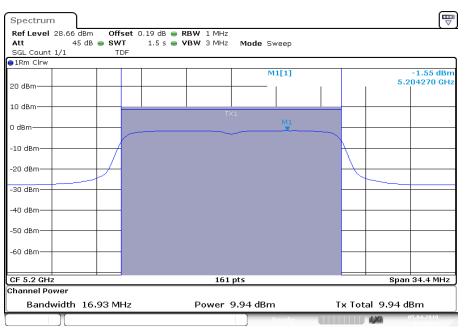
Results: n/ac - mode / Antenna 0&1 (Dual Chain Mode - Calculated Sum Power)

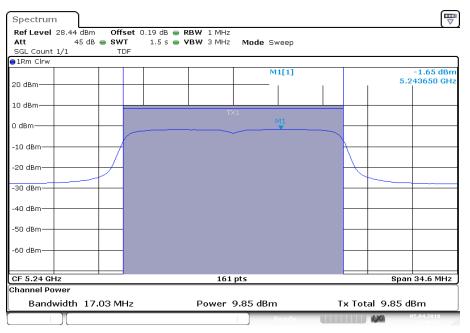
			ut power [ubiii]	
	U-NII-1 (5150 MHz to 5250 MHz))
	Lowest channel			Highest channel
		Cond	ucted	
	12.0	11.6		11.6
	Radiated	(calculated - se	e chapter anter	ina gain)
	17.0		16.6	
	U-NII-2A (5250 MHz to 5350 MHz)			z)
	Lowest channel Highest channel		Highest channel	
		Cond	ucted	
	-//-		-/-	
	Radiated (calculated – see chapter antenna gain)			ina gain)
n/ac HT40	-/-			-/-
	U	-NII-2C (5470 M	Hz to 5725 MHz	z)
	Lowest channel	Middle	channel	Highest channel
		Cond	ucted	
	-/-	-/	-	-/-
	Radiated	(calculated - se	ee chapter anter	ina gain)
	-/-	-/		-/-
	L	J-NII-3 (5725 MI	Hz to 5850 MHz)
	Lowest channel			Highest channel
		Cond	ucted	
	10.0			9.8
		(calculated - se	ee chapter anter	ina gain)
	15.0			14.8

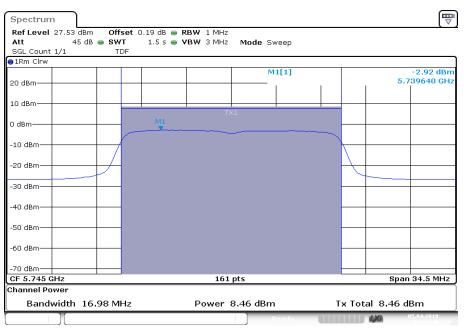

Maximum output power [dBm]


Results: n/ac HT40 – mode / Antenna 0&1 (Dual Chain Mode – Calculated Sum Power)

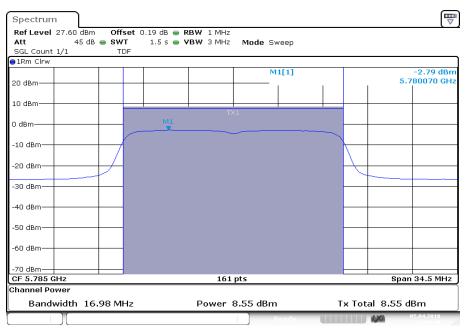



Plots: a - mode / Antenna 0

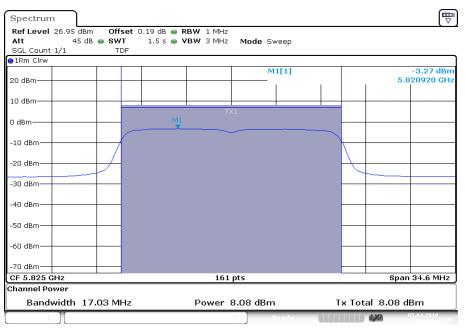

Date: 5.APR.2018 11:37:26


Date: 5.APR.2018 11:39:12

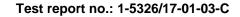
Plot 3: U-NII-1; highest channel


Date: 5.APR.2018 11:40:54

Plot 4: U-NII-3; lowest channel

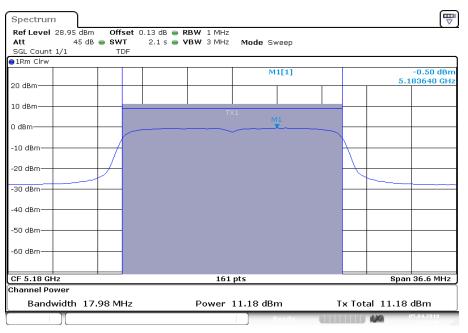

Date: 5.APR.2018 11:52:48

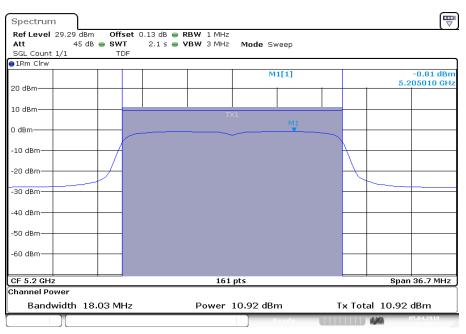
Plot 5: U-NII-3; middle channel



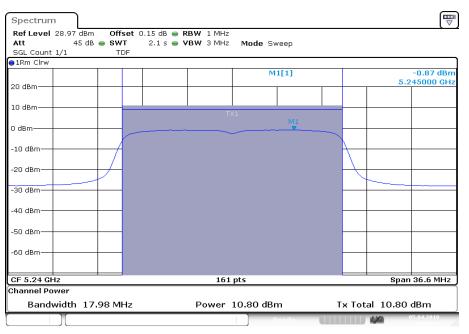
Date: 5.APR.2018 11:54:41

Plot 6: U-NII-3; highest channel

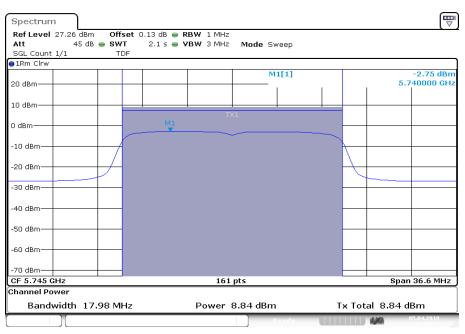

Date: 5.APR.2018 11:56:34


Plots: n/ac HT20 - mode / Antenna 0

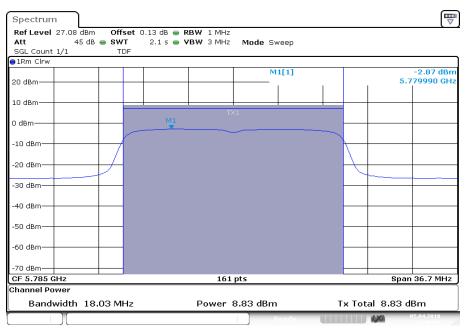
Plot 1: U-NII-1; lowest channel


Date: 5.APR.2018 12:17:49

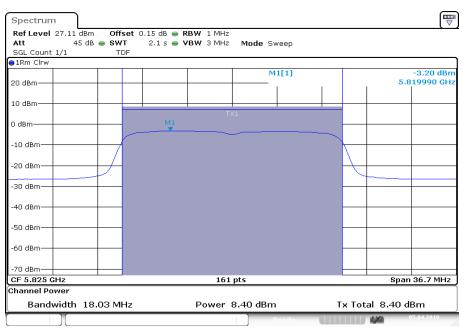
Plot 2: U-NII-1; middle channel


Date: 5.APR.2018 12:19:33

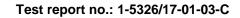
Plot 3: U-NII-1; highest channel


Date: 5.APR.2018 12:21:13

Plot 4: U-NII-3; lowest channel

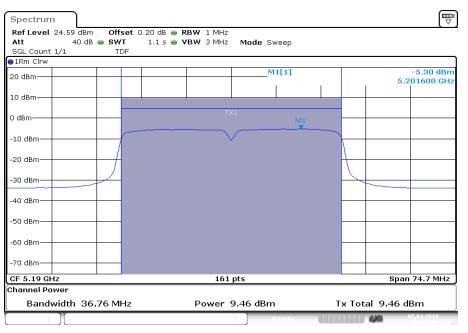

Date: 5.APR.2018 12:38:23

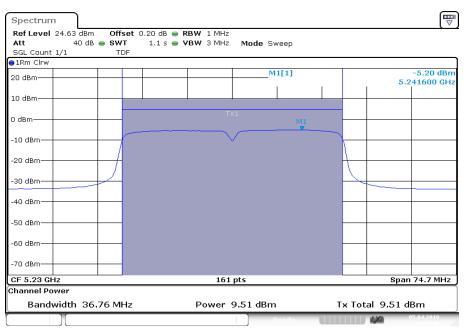
Plot 5: U-NII-3; middle channel



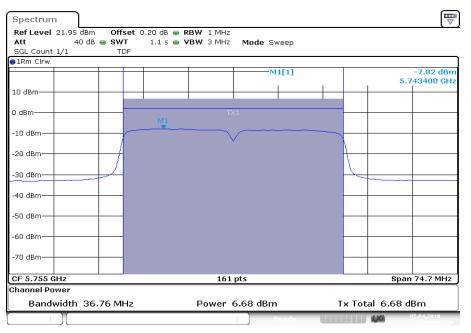
Date: 5.APR.2018 12:40:17

Plot 6: U-NII-3; highest channel

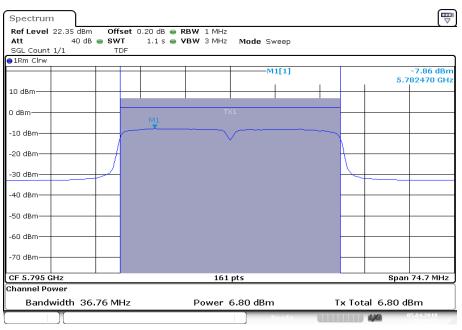

Date: 5.APR.2018 12:42:10


Plots: n/ac HT40 - mode / Antenna 0

Plot 1: U-NII-1; lowest channel


Date: 5.APR.2018 12:44:07

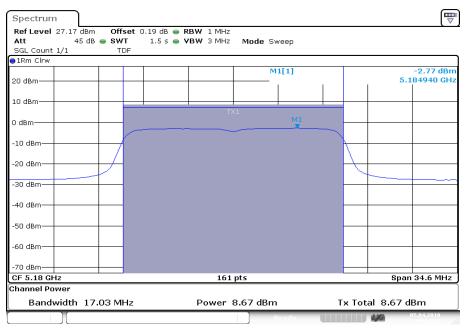
Plot 2: U-NII-1; highest channel


Date: 5.APR.2018 12:45:50

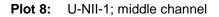
Plot 3: U-NII-3; lowest channel

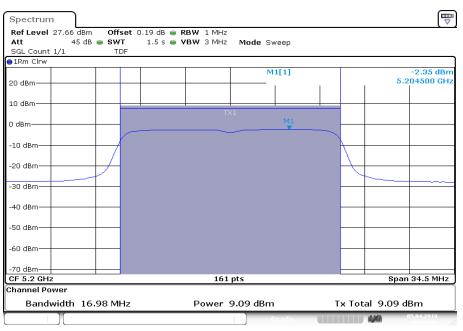
Date: 5.APR.2018 12:54:07

Plot 4: U-NII-3; highest channel

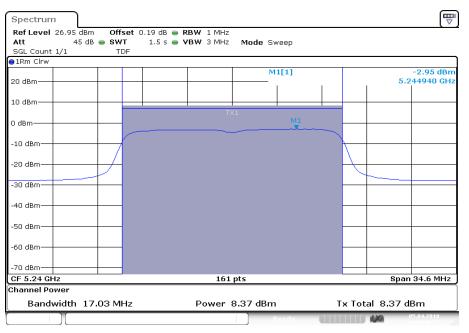


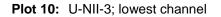
Date: 5.APR.2018 12:55:53

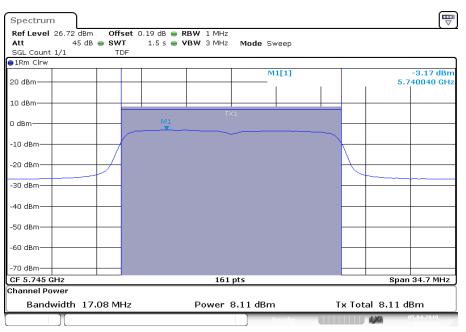



Plots: a - mode / Antenna 1

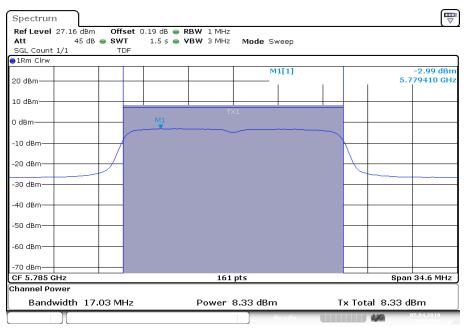
Plot 7: U-NII-1; lowest channel

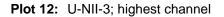

Date: 5.APR.2018 09:31:28

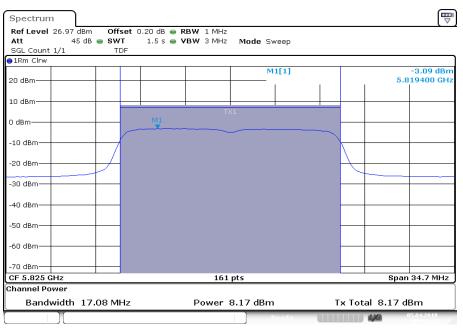



Date: 5.APR.2018 09:36:57

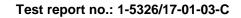
Plot 9: U-NII-1; highest channel


Date: 5.APR.2018 09:40:38

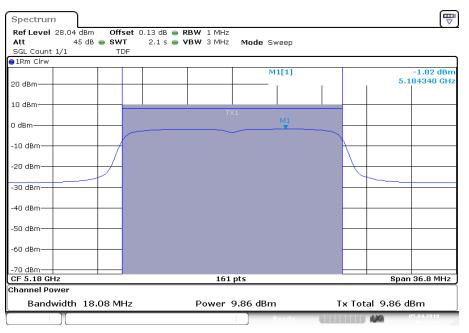


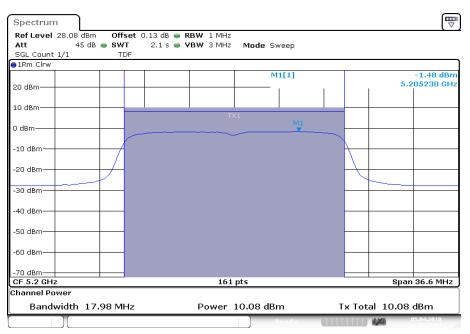

Date: 5.APR.2018 09:52:55

Plot 11: U-NII-3; middle channel

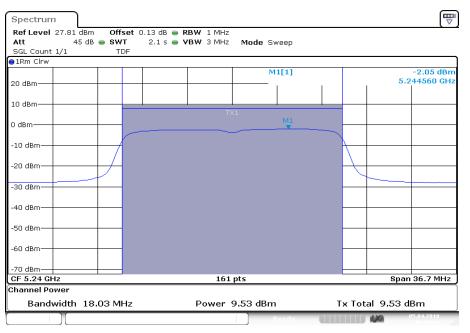


Date: 5.APR.2018 09:54:50

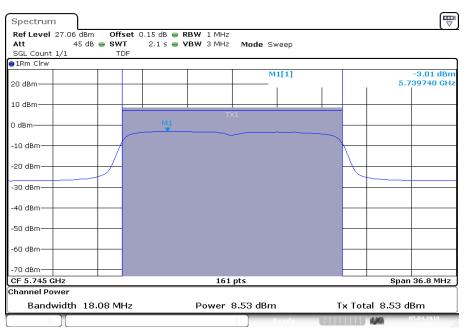

Date: 5.APR.2018 09:56:44


Plots: n/ac HT20 - mode / Antenna 1

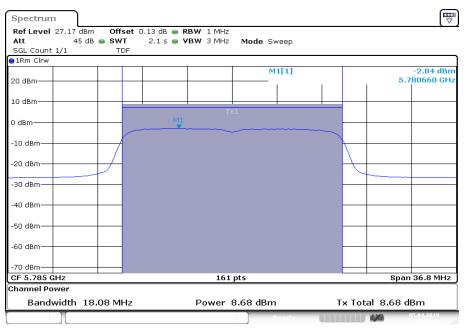
Plot 7: U-NII-1; lowest channel


Date: 5.APR.2018 10:11:15

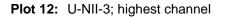
Plot 8: U-NII-1; middle channel

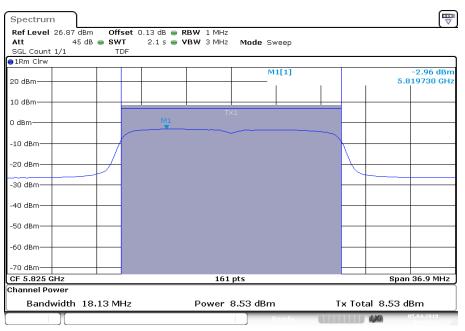

Date: 5.APR.2018 10:13:00

Plot 9: U-NII-1; highest channel

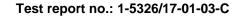

Date: 5.APR.2018 10:14:42

Plot 10: U-NII-3; lowest channel

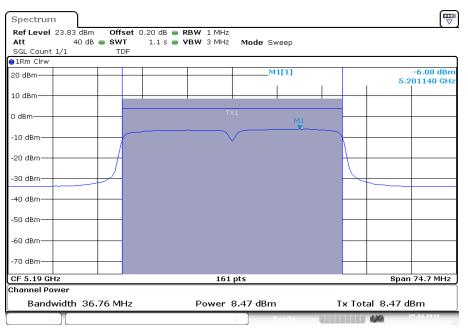


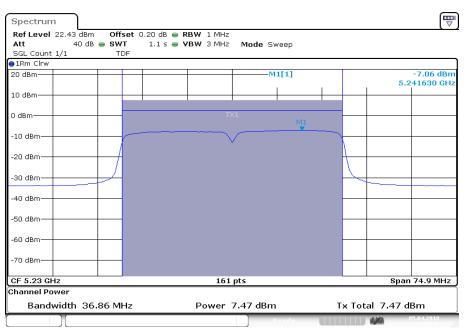

Date: 5.APR.2018 11:01:38

Plot 11: U-NII-3; middle channel

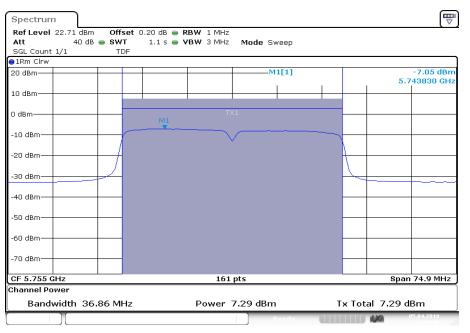


Date: 5.APR.2018 11:03:32

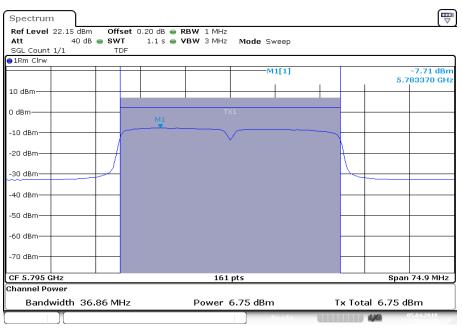

Date: 5.APR.2018 11:05:25


Plots: n/ac HT40 - mode / Antenna 1

Plot 5: U-NII-1; lowest channel


Date: 5.APR.2018 11:12:26

Plot 6: U-NII-1; highest channel


Date: 5.APR.2018 11:10:39

Plot 7: U-NII-3; lowest channel

Date: 5.APR.2018 11:29:50

Plot 8: U-NII-3; highest channel

Date: 5.APR.2018 11:31:36

10.6 Emissions in restricted frequency bands < **30MHz** (radiated)

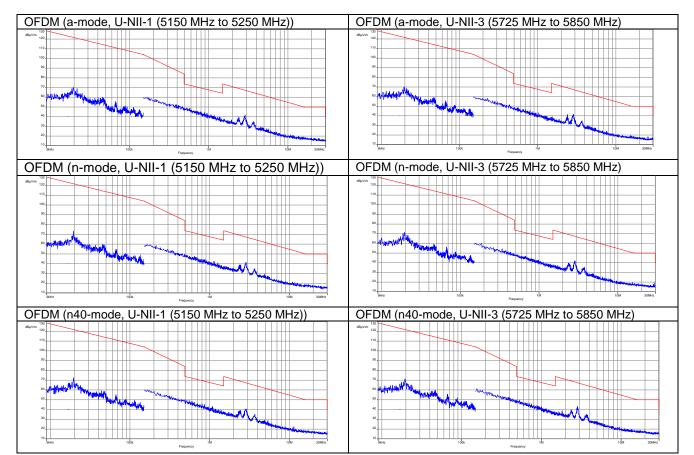
Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at lowest, middle and highest channel.

Measurement:

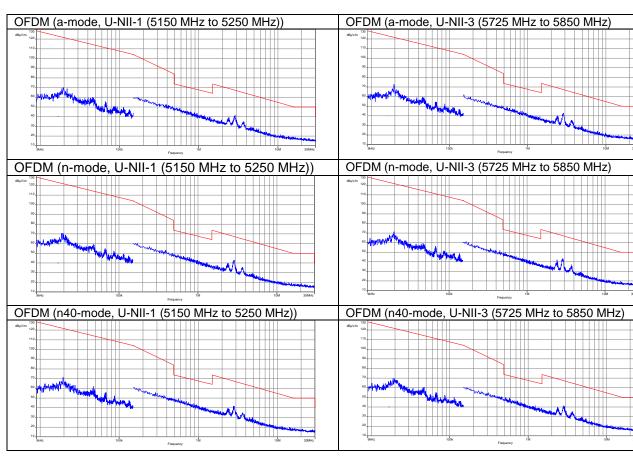
Measurement parameter								
Detector:	Peak / Quasi Peak							
Sweep time:	Auto							
Resolution bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz							
Video bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz							
Span:	9 kHz to 30 MHz							
Trace mode:	Max Hold							
Test setup:	See sub clause 6.1 – B							
Measurement uncertainty:	See sub clause 8							

Limits:

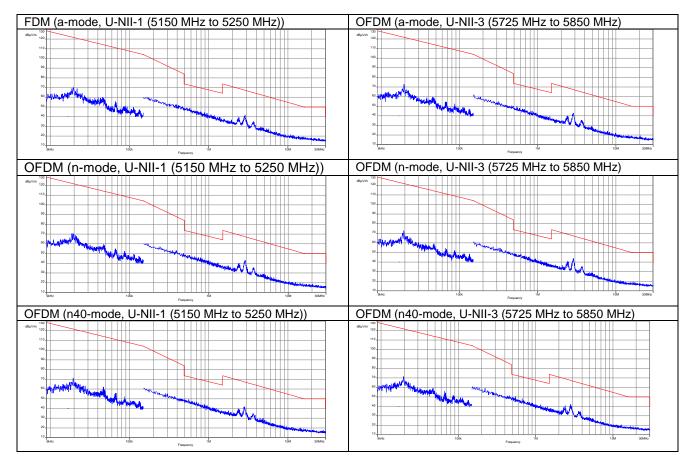

TX Spurious Emissions Radiated								
§15.209								
Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance						
30 – 88	30.0	10						
88 – 216	33.5	10						
216 – 960	36.0	10						
Above 960	54.0	3						
	§15.407							
Outside the restricted bands!	-27 dBn	n / MHz						

Results:

TX spurious emissions radiated < 30 MHz / (dBµV / m) @ 3 m						
Frequency / MHz	Detector	Level / (dBµV / m)				
All detect	ed peaks are more than 20 dB below	the limit.				


Note: Peak Emissions detected are more than 20dB below the limit on all tested channels, data rates and antenna configurations. Therefore, only one plot per modulation, UNII-band and antenna configuration is reported.

CTC I advanced


Plots: ANT-DIR-2459-01, single-chain, Antenna 0

CTC I advanced

Plots: ANT-DIR-2459-01, single-chain, Antenna 1

CTC I advanced

Plots: ANT-OMNI5900-01, dual-chain, Antenna 0&1

10.7 Emissions in restricted frequency bands > 30 MHz (conducted)

Description:

The UNII Test Procedures specify that emissions which fall into restricted frequency bands shall comply with the general radiated emission limits.

Measurement:

Measurement parameter								
According to UNII Test Procedures KDB clause II.G.4.b. & II.G.6.c)								
Detector	Peak / RMS (Power AVG)							
Sweep time	Auto							
Resolution bandwidth	30 MHz > F > 1 GHz: 1 GHz > F > 40 GHz:	100 kHz 1 MHz						
Video bandwidth	3x RBW							
Span	30 MHz to 40 GHz							
Trace mode	Max Hold / Trace Average							
Test setup	See chapter 6.2 – B (<1GHz); See sub clause 6.2 – C (>1GHz)							
Measurement uncertainty	See chapter 8							

Limits:

	FCC		IC						
Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).									
As per UNII Test Procedures KDB clause II.G.1. d) i) the field strength limit as specified in §15.209(a) is converted to an EIRP limit by the formula EIRP = E + 20log D – 104.8									
where:		•							
E = electric field s	trength in dBµV/m,								
EIRP = equivalent	isotropic radiated power	in dBm							
D = specified mea	surement distance in met	ers.							
Frequency / MHz	Field Strength Limit / (dBµV / m)	Distance / m	Ground Reflection Factor / dB	EIRP Limit / dBm					
30 – 88	40.0	3	4.7	-60.0					
88 – 216	43.5	3	4.7	-56.4					
216 – 960	46.0	3	4.7	-53.9					
960 - 1000	53.9	3	4.7	-46.0					
Above 1000	53.9	3	0	-41.3					

Note: The EIRP Limit is further reduced to account for the Ground Reflection Factor. Antenna gain as well as antenna multiplication factor* (if applicable) is considered in the Ref.Level Offset.

*Antenna multiplication factor = 10 log (n)

where:

n = number of antenna chains

The EIRP Limit is reduced further to account for the Ground Reflection Factor.

A **9dB** Offset is used to account for the maximum gain of the directional antenna (ANT-DIR-2459-01) in single-chain mode.

The 9dB Offset is also used to account for the 5dBi antennas (ANT-OMNI-2459-02, ANT-OMNI5900-01) in dualchain mode ($5dBi + 10 \log (2) = 8dB$). The overrating by 1 dB can be seen as an additional safety budget or worst case consideration respectively.

As per UNII Test Procedures II.G.6.c, an additional offset of 0.2dB is considered to account for the Duty Cycle Correction when Average Detector is used.

The number of sweeps was increased to consider the lowest duty cycle as specified in section 10.4. when Average Detector is used.

Results: 20 MHz channel bandwidth / Antenna 0

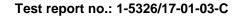
	TX Spurious Emissions Radiated [dBµV/m] / dBm										
U-NII-1 (5150 MHz to 5250 MHz)											
Lowest channel Middle channel Highest channel								el			
F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]			
37.1	Peak	-73.6	10403.0	AVG	-51.5	4981.2	AVG	-47.5			
4992.9	AVG	-46.7	-/-	-/-	-/-	10482.2	AVG	-50.0			
5150.0	AVG	-42.1				-/-	-/-	-/-			
10362.0	AVG	-50.3									

	TX Spurious Emissions Radiated [dBµV/m] / dBm										
U-NII-3 (5725 MHz to 5850 MHz)											
Lowest channel			M	iddle chann	el	Hi	ighest chann	el			
F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]			
165.0	Peak	-68.8	3857.2	AVG	-49.4	171.6	Peak	-75.4			
3830.7	AVG	-50.5	4992.1	AVG	-47.5	3884.1	AVG	-48.0			
4995.2	AVG	-48.9	11570.7	AVG	-48.9	4997.9	AVG	-48.5			
11488.3	AVG	-48.5	17355.6	AVG	-54.7	11650.6	AVG	-46.2			
17239.4	AVG	-55.1	-/-	-/-	-/-	17475.3	AVG	-53.9			

Results: 40 MHz channel bandwidth / Antenna 0

TX Spurious Emissions Radiated [dBµV/m] / dBm										
U-NII-1 (5150 MHz to 5250 MHz)										
Lowest channel Middle channel Highest channel							el			
F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]		
173.0	Peak	-75.7				171.4	Peak	-76.0		
5150.0	AVG	-41.8	-/-			4993.3	AVG	-50.1		
10403.0	AVG	-57.6				10459.3	AVG	-54.6		

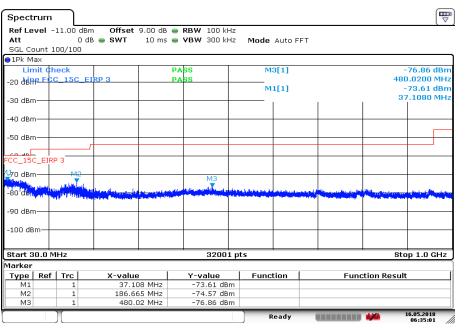
	TX Spurious Emissions Radiated [dBµV/m] / dBm										
U-NII-3 (5725 MHz to 5850 MHz)											
Lowest channel			Middle channel			Highest channel					
F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]			
4986.6	AVG	-51.5			3864.2	AVG	-50.0				
11509.8	AVG	-53.3	-/-			11589.4	AVG	-52.1			


	TX Spurious Emissions Radiated [dBµV/m] / dBm										
U-NII-1 (5150 MHz to 5250 MHz)											
L	Lowest channel Middle channel Highest channel										
F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]			
5150.0	AVG	-45.6	5400.0	AVG	-41.6	5400.0	AVG	-42.9			
5400.0	AVG	-42.4	5460.0	AVG	-45.3	5440.6	AVG	-44.3			
5460.0	AVG	-44.7	10403.0	AVG	-49.1	5460.0	AVG	-47.7			
10362.4	AVG	-51.9	-/-	-/-	-/-	10482.2	AVG	-49.2			

	TX Spurious Emissions Radiated [dBµV/m] / dBm										
U-NII-3 (5725 MHz to 5850 MHz)											
L	owest chann.	el	Middle channel			Highest channel					
F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]			
5400.0	AVG	-44.0	3856.4	AVG	-54.5	5440.2	AVG	-42.2			
11494.2	AVG	-49.6	5400.0	AVG	-41.8	11649.1	AVG	-48.6			
17232.4	AVG	-54.2	11569.1	AVG	-47.8	-/-	-/-	-/-			

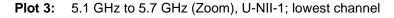
Results: 40 MHz channel bandwidth / Antenna 1

TX Spurious Emissions Radiated [dBµV/m] / dBm												
U-NII-1 (5150 MHz to 5250 MHz)												
Lowest channel			Middle channel			Highest channel						
F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]				
5150.0	AVG	-42.1	-/-			163.1	Peak	-75.2				
5400.1	AVG	-43.7				5440.1	AVG	-41.5				
5480.8	AVG	-42.2				-/-	-/-	-/-				
6920.7	AVG	-45.1										


TX Spurious Emissions Radiated [dBµV/m] / dBm												
U-NII-3 (5725 MHz to 5850 MHz)												
Lowest channel			Middle channel			Highest channel						
F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]				
11502.8	AVG	-54.3	/-			5400.8	AVG	-44.5				
25925.5	AVG	-54.0				11587.4	AVG	-53.3				

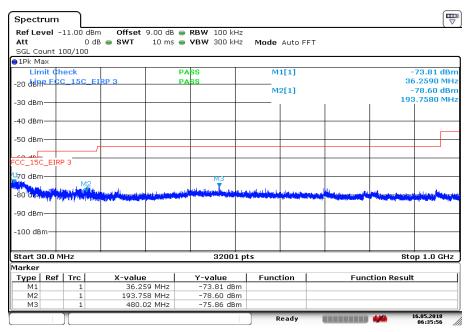
Plots: 20 MHz channel bandwidth / Antenna 0

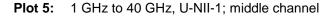
Plot 1: 30 MHz to 1 GHz, U-NII-1; lowest channel



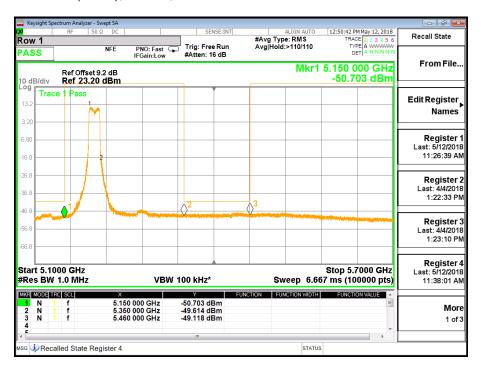
Date:16MAY.2018 06:35:01

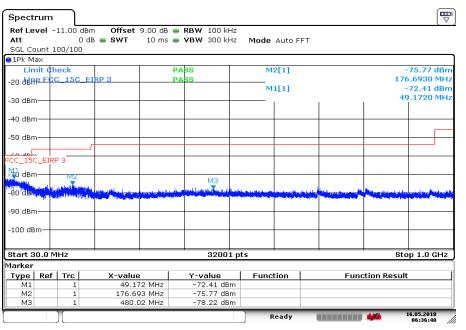
Plot 2: 1 GHz to 40 GHz, U-NII-1; lowest channel





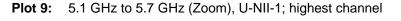
Plot 4: 30 MHz to 1 GHz, U-NII-1; middle channel

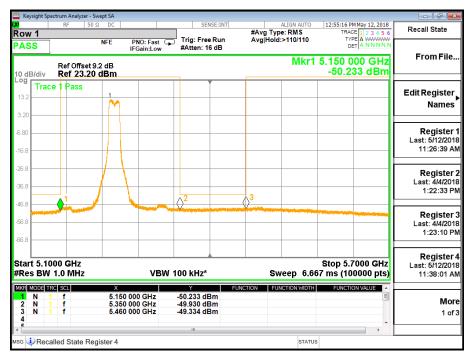

Date:16MAY.2018 06:35:56



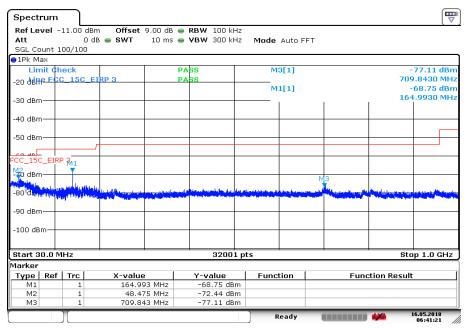
Plot 6: 5 GHz to 5.5 GHz (Zoom), U-NII-1; middle channel

Plot 7: 30 MHz to 1 GHz, U-NII-1; highest channel

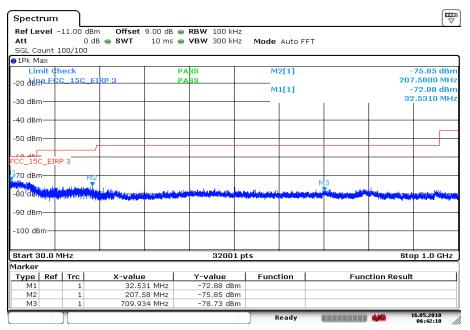



Date:16MAY.2018 06:36:48

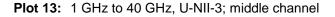
Plot 8: 1 GHz to 40 GHz, U-NII-1; highest channel



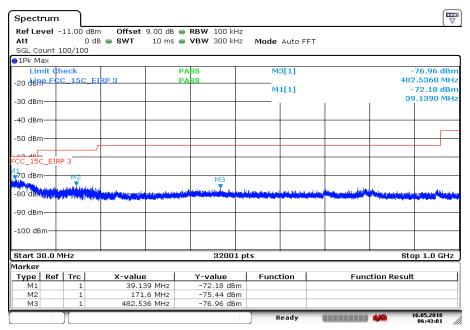
Plot 10: 30 MHz to 1 GHz, U-NII-3; lowest channel


Date:16MAY.2018 06:41:21

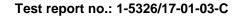
Plot 11: 1 GHz to 40 GHz, U-NII-3; lowest channel



Plot 12: 30 MHz to 1 GHz, U-NII-3; middle channel

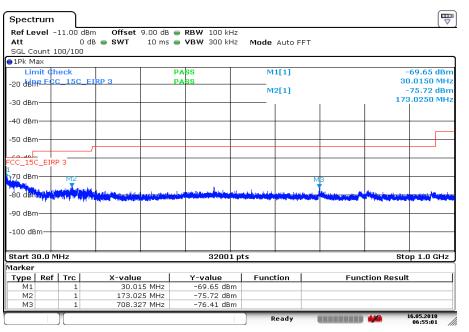

Date:16MAY.2018 06:42:17

Plot 14: 30 MHz to 1 GHz, U-NII-3; highest channel


Date:16MAY.2018 06:43:01

Keysight Spectrum Analyzer - Swept SA 01:13:14 PM May 12, 2018 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A NNNNN
 Marker 1
 11.650616506165
 GHz
 Trig: Free Run

 PASS
 NFE
 PN0: Fast
 #Atten: 16 dB
 #Avg Type: RMS Avg|Hold:>110/110 Save Mkr1 11.650 62 GHz -46.246 dBm State • Ref Offset 9.2 dB Ref 23.20 dBm 10 dB/diy Trace 11 Trace (+ State) 5.8 16.1 Data (Export) $\langle 0^3 \rangle$ 46.1 $\langle \rangle^4$ Screen Image Stop 40.00 GHz Sweep 66.67 ms (100000 pts) Start 1.00 GHz #Res BW 1.0 MHz #VBW 3.0 MHz* FUNCTION VALUE MKR MODE TRC SCL FUNCTION FUNCTION WIDTH x 11.650 62 GHz 4.997 93 GHz 3.884 08 GHz 17.475 32 GHz -46.246 dBm -48.474 dBm -47.991 dBm -53.923 dBm N N N 2 3 4 5 • STATUS SG

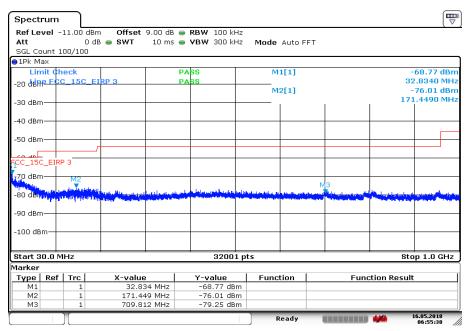

Plot 15: 1 GHz to 40 GHz, U-NII-3; highest channel

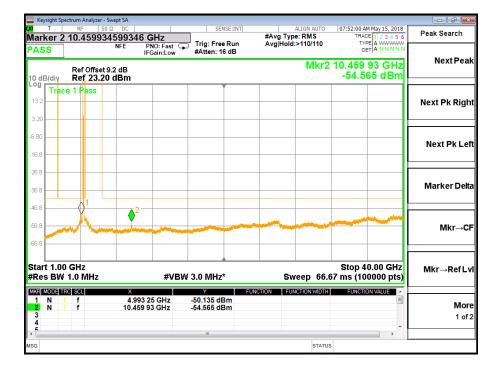
Plots: 40 MHz channel bandwidth / Antenna 0

Plot 16: 30 MHz to 1 GHz, U-NII-1; lowest channel

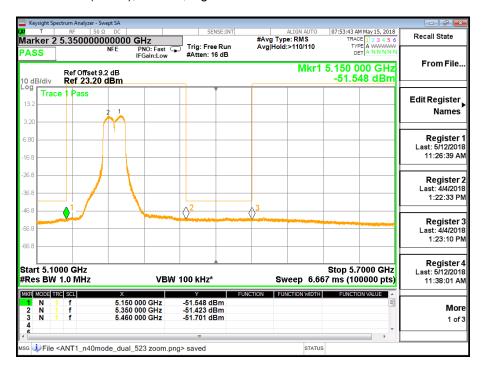
Date:16MAY.2018 06:55:01

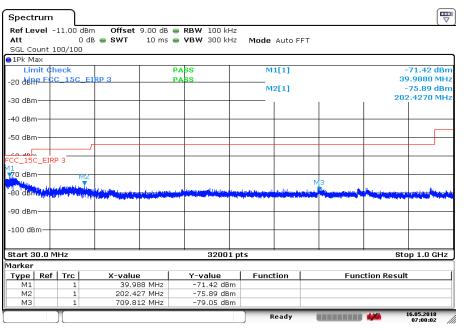
Plot 17: 1 GHz to 40 GHz, U-NII-1; lowest channel




Plot 18: 5.1 GHz to 5.7 GHz (Zoom), U-NII-1; lowest channel

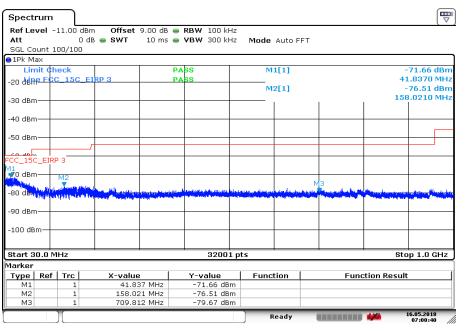
Plot 19: 30 MHz to 1 GHz, U-NII-1; highest channel


Date:16MAY.2018 06:55:38

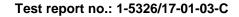

Plot 20: 1 GHz to 40 GHz, U-NII-1; highest channel

Plot 21: 5.1 GHz to 5.7 GHz (Zoom), U-NII-1; highest channel

Plot 22: 30 MHz to 1 GHz, U-NII-3; lowest channel

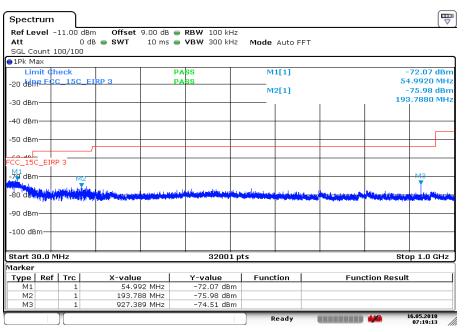

Date:16MAY.2018 07:00:02

Plot 23: 1 GHz to 40 GHz, U-NII-3; lowest channel


Plot 24: 30 MHz to 1 GHz, U-NII-3; highest channel

Date:16MAY.2018 07:00:40

Plot 25: 1 GHz to 40 GHz, U-NII-3; highest channel

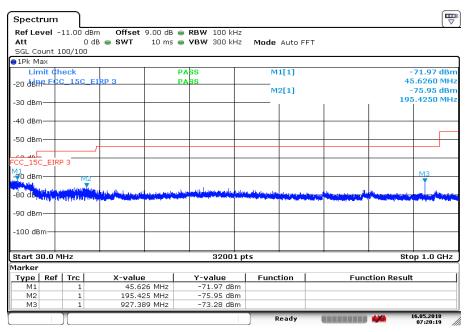


Plots: 20 MHz channel bandwidth / Antenna 1

Plot 26: 30 MHz to 1 GHz, U-NII-1; lowest channel

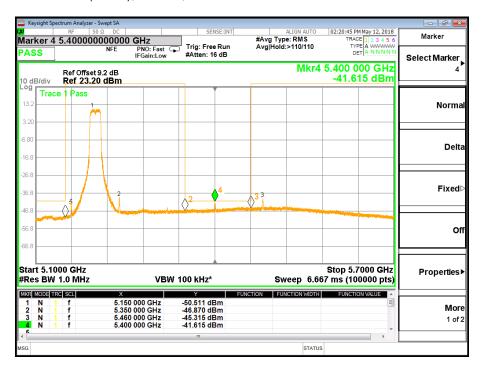
Date:16MAY.2018 07:19:13

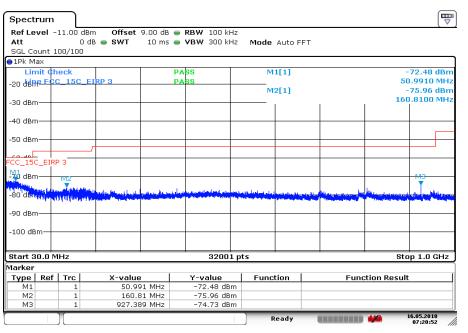
Plot 27: 1 GHz to 40 GHz, U-NII-1; lowest channel



Plot 28: 5.1 GHz to 5.7 GHz (Zoom), U-NII-1; lowest channel

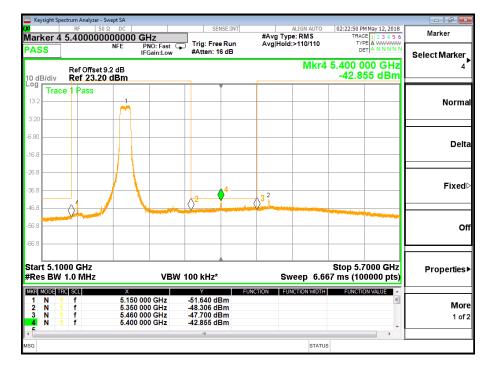
Plot 29: 30 MHz to 1 GHz, U-NII-1; middle channel


Date:16MAY.2018 07:20:20


Plot 30: 1 GHz to 40 GHz, U-NII-1; middle channel

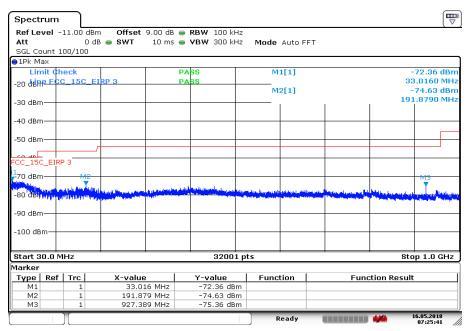
Plot 31: 5.1 GHz to 5.7 GHz (Zoom), U-NII-1; middle channel

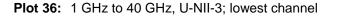
Plot 32: 30 MHz to 1 GHz, U-NII-1; highest channel



Date:16MAY.2018 07:20:52

Plot 33: 1 GHz to 40 GHz, U-NII-1; highest channel

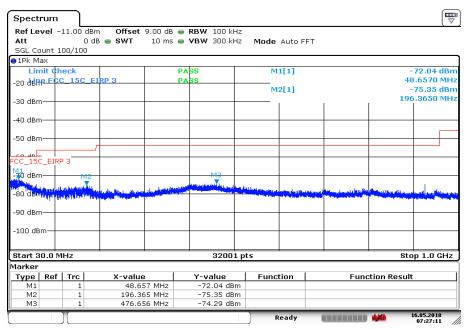



Plot 34: 5.1 GHz to 5.7 GHz (Zoom), U-NII-1; highest channel


Plot 35: 30 MHz to 1 GHz, U-NII-3; lowest channel

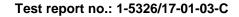

Date:16MAY.2018 07:25:41

Plot 37: 30 MHz to 1 GHz, U-NII-3; middle channel

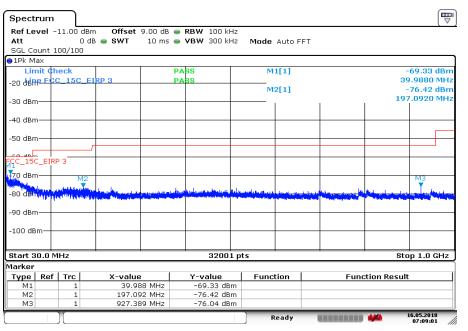

Date:16MAY.2018 07:26:17

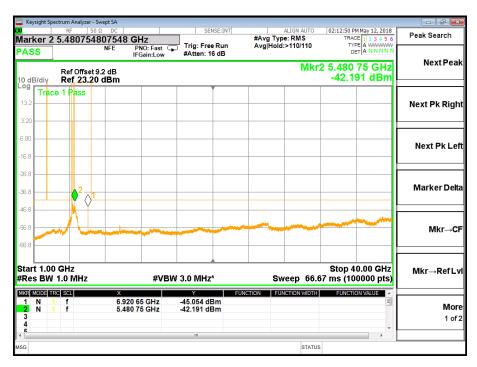


Plot 39: 30 MHz to 1 GHz, U-NII-3; highest channel



Date:16MAY.2018 07:27:11

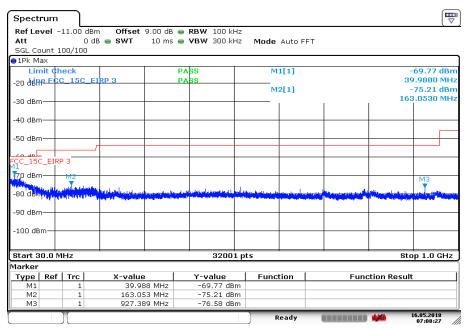

Plot 40: 1 GHz to 40 GHz, U-NII-3; highest channel

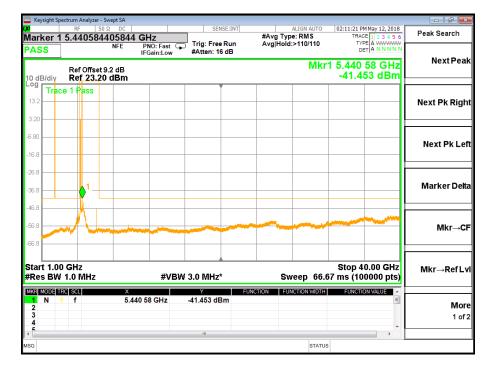

Plots: 40 MHz channel bandwidth / Antenna 1

Plot 41: 30 MHz to 1 GHz, U-NII-1; lowest channel

Date:16MAY.2018 07:09:01

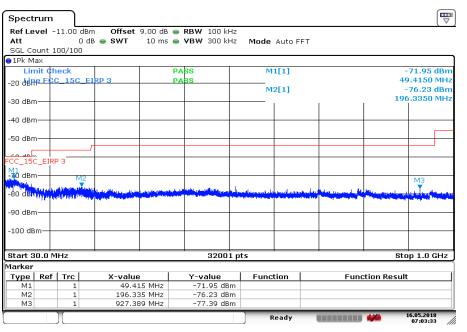
Plot 42: 1 GHz to 40 GHz, U-NII-1; lowest channel



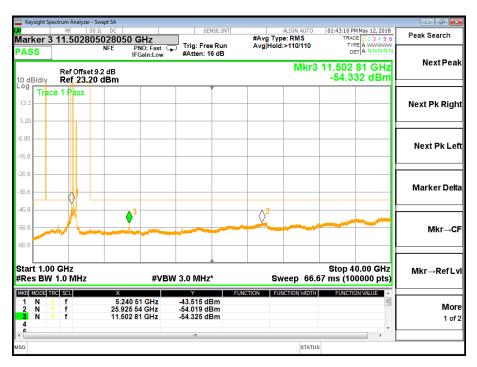

Plot 43: 5.1 GHz to 5.7 GHz (Zoom), U-NII-1; lowest channel

Plot 44: 30 MHz to 1 GHz, U-NII-1; highest channel

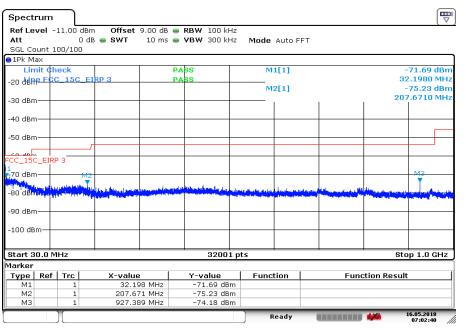
Date:16MAY.2018 07:08:28


Plot 45: 1 GHz to 40 GHz, U-NII-1; highest channel

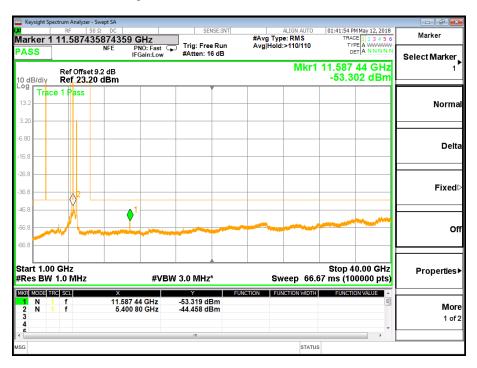
Plot 46: 5.1 GHz to 5.7 GHz (Zoom), U-NII-1; highest channel



Plot 47: 30 MHz to 1 GHz, U-NII-3; lowest channel


Date:16MAY.2018 07:03:34

Plot 48: 1 GHz to 40 GHz, U-NII-3; lowest channel



Plot 49: 30 MHz to 1 GHz, U-NII-3; highest channel

Date:16MAY.2018 07:02:40

Plot 50: 1 GHz to 40 GHz, U-NII-3; highest channel

11 Observations

No observations except those reported with the single test cases have been made.

Annex A Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
C	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
00	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System

Test report no.: 1-5326/17-01-03-C

Annex B **Document history**

Version	Applied changes	Date of release
-/-	Initial release	2018-05-18
А	Applicant, Manufacturer, FVIN, HVIN, HMN and type identification changed	2018-05-24
В	FVIN, HVIN, HMN changed	2018-07-06
С	HVIN revised	2018-08-24

Annex C **Accreditation Certificate**

first page	last page
Deutsche Akkreditierungsstelle GmbH Bigatory to the Multilerarel Agreements of EA, ILAC and IAF for Mutual Recognition Deutsche Akkreditierungsstelle GmbH Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory Druetsche Straße 6-10, 66117 Saarbrücken	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 10117 Berlin Office Frankfurt am Main G0327 Frankfurt am Main Office Braunschweig Bundesallee 100 38116 Braunschweig
is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields: Telecommunication	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkKS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkiStelleG) of 31 July 2009 (Federal au Gaztet ja .2623) and the flequibation (E(N) to F3C300 of the European Parliament and of
The accreditation certificate shall only apply in connection with the notice of accreditation of 02.06.2017 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 43 pages. Registration number of the certificate: D-PL-12076-01-03	(relation Law Gaterie Jp. 2622) and the negation (EC) for 2622/060 to the studges in relations in the dot go the Council of S July 2008 etting out the relation enersities for accreditation and market surveillance relation to the marketing of products (Official Journal of the European Union 1.2.8 of S July 2008, p. 30, DMAK is a signitory to the Multilatent Agreements for Accredit of the European of the European expension for Accreditation (EA). International Accreditation forum (MP) and International Laboratory Accreditation Cooperation (ILC). The Signatories to these agreements for expense each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.usuppean-accreditation.org ILAC: www.last.org IAF: www.last.org IAF: www.last.nu
Head of Uningform	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

http://www.dakks.de/as/ast/d/D-PL-12076-01-03.pdf