

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057

 Telephone:
 +86 (0) 755 2601 2053

 Fax:
 +86 (0) 755 2671 0594

 Email:
 ee.shenzhen@sgs.com

Report No.: SZEM120400181202 Page: 1 of 34

FCC REPORT

Test Result:	PASS *
Date of Issue:	2012-05-24
Date of Test:	2012-04-26 to 2011-05-04
Date of Receipt:	2012-04-18
Standards:	FCC CFR Title 47 Part 15 (2010)
FCC ID:	YFK-22003802FR
Model No.(EUT):	220209-FR
Product Name:	POWER A PRO EX CONTROLLER FOR PS3
Applicant:	Bensussen Deutsch & Associates, Inc.
Application No.:	SZEM1204001812RF

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEM120400181202 Page : 2 of 34

2 Test Summary

Test Item	Test Requirement	Test method	Result	
Antonno Doguiromont	FCC CFR Title 47 Part 15C Section	ANGL CC2 10 (2000)	DAGO	
Antenna Requirement	15.203	ANSI C63.10 (2009)	PASS	
AC Power Line	FCC CFR Title 47 Part 15C Section	ANGL CC2 10 (2000)	DASS	
Conducted Emission	15.207	ANSI C63.10 (2009)	PASS	
Field Strength of the	FCC CFR Title 47 Part 15C Section	ANSI C62 10 (2000)	PASS	
Fundamental Signal	15.249 (a)	ANSI C63.10 (2009)	FA35	
Spurious Emissions	FCC CFR Title 47 Part 15C Section	ANSI C63.10 (2009)	PASS	
	15.249 (a)/15.209	ANSI 665.10 (2009)		
Band edge	FCC CFR Title 47 Part 15C Section	ANSI C63.10 (2009)	PASS	
(Radiated Emission)	15.249(a)/15.205	ANSI 065.10 (2009)	FA33	
20dB Occupied	FCC CFR Title 47 Part 15C Section	ANSI C62 10 (2000)		
Bandwidth	15.215 (c)	ANSI C63.10 (2009)	PASS	

Report No.: SZEM120400181202 Page : 3 of 34

3 Contents

1	C	OVER PAGE	Page
1	Ŭ		
2	T	EST SUMMARY	2
3	С	ONTENTS	3
4	G	ENERAL INFORMATION	4
	4.1	CLIENT INFORMATION	4
	4.2	GENERAL DESCRIPTION OF EUT	
	4.3	TEST ENVIRONMENT AND MODE	6
	4.4	DESCRIPTION OF SUPPORT UNITS	
	4.5	TEST LOCATION	
	4.6	TEST FACILITY	
	4.7	DEVIATION FROM STANDARDS	
	4.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	4.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	4.10	Test Instruments List	8
5	T	EST RESULTS AND MEASUREMENT DATA	10
	5.1	ANTENNA REQUIREMENT	10
	5.2	CONDUCTED EMISSIONS	
	5.3	Spurious Emissions	
	5.	3.1 Duty Cycle	
	5.	3.2 Spurious Emissions	
	5.4	BAND EDGE (RADIATED EMISSION)	
	5.5	20dB Bandwidth	

Report No.: SZEM120400181202 Page : 4 of 34

4 General Information

4.1 Client Information

Applicant:	Bensussen Deutsch & Associates, Inc.
Address of Applicant:	15525 Woodinville-Redmond Road NE Woodinville, WA 98072 USA

4.2 General Description of EUT

Name:	POWER A PRO EX CONTROLLER FOR PS3	
Model No.:	220209-FR	
Frequency Range:	2410.0000MHz-2470.0066MHz	
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	
Modulation Type:	MSK	
Number of Channels:	75 (declared by the client)	
Sample Type:	Fixed production	
Antenna Type:	Integral	
Antenna Gain:	2.0dBi	
Power Supply:	PS3 USB supply	
	AC 120V 60Hz voltage for PS3	

Report No.: SZEM120400181202 Page : 5 of 34

Operation Fre	Operation Frequency Each of Channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency		
1CH	2410.0000MHz	26CH	2430.2725MHz	51CH	2450.5450MHz		
2CH	2410.8109MHz	27CH	2431.0834MHz	52CH	2451.3559MHz		
3CH	2411.6218MHz	28CH	2431.8943MHz	53CH	2452.1668MHz		
4CH	2412.4327MHz	29CH	2432.7052MHz	54CH	2452.9777MHz		
5CH	2413.2436MHz	30CH	2433.5161MHz	55CH	2453.7886MHz		
6CH	2414.0545MHz	31CH	2434.3270MHz	56CH	2454.5995MHz		
7CH	2414.8654MHz	32CH	2435.1379MHz	57CH	2455.4104MHz		
8CH	2415.6763MHz	33CH	2435.9488MHz	58CH	2456.2213MHz		
9CH	2416.4872MHz	34CH	2436.7597MHz	59CH	2457.0322MHz		
10CH	2417.2981MHz	35CH	2437.5706MHz	60CH	2457.8431MHz		
11CH	2418.1090MHz	36CH	2438.3815MHz	61CH	2458.6540MHz		
12CH	2418.9199MHz	37CH	2439.1924MHz	62CH	2459.4649MHz		
13CH	2419.7308MHz	38CH	2440.0033MHz	63CH	2460.2758MHz		
14CH	2420.5417MHz	39CH	2440.8142MHz	64CH	2461.0867MHz		
15CH	2421.3526MHz	40CH	2441.6251MHz	65CH	2461.8976MHz		
16CH	2422.1635MHz	41CH	2442.4360MHz	66CH	2462.7085MHz		
17CH	2422.9744MHz	42CH	2443.2469MHz	67CH	2463.5194MHz		
18CH	2423.7853MHz	43CH	2444.0578MHz	68CH	2464.3303MHz		
19CH	2424.5962MHz	44CH	2444.8687MHz	69CH	2465.1412MHz		
20CH	2425.4071MHz	45CH	2445.6796MHz	70CH	2465.9521MHz		
21CH	2426.2180MHz	46CH	2446.4905MHz	71CH	2466.7630MHz		
22CH	2427.0289MHz	47CH	2447.3014MHz	72CH	2467.5739MHz		
23CH	2427.8398MHz	48CH	2448.1123MHz	73CH	2468.3848MHz		
24CH	2428.6507MHz	49CH	2448.9232MHz	74CH	2469.1957MHz		
25CH	2429.4616MHz	50CH	2449.7341MHz	75CH	2470.0066MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel(CH1)	2410.0000MHz
The middle channel(CH38)	2440.0033MHz
The highest channel(CH75)	2470.0066MHz

Report No.: SZEM120400181202 Page : 6 of 34

4.3 Test Environment and Mode

Operating Environment:	Operating Environment:		
Temperature:	24.0 °C		
Humidity:	52 % RH		
Atmospheric Pressure:	1006 mbar		
Test mode:	Test mode:		
Transmitting mode: Keep the EUT in transmitting mode.			

4.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.
PS3	Sony Computer Entertainment Inc.	CECHP12
LCD-displaying	DELL	SP2208WFPt

4.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

SGS

SGS-CSTC Standards Technical Services Ltd.

Report No.: SZEM120400181202 Page : 7 of 34

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• VCCI

The 3m Semi-anechoic chamber, Full-anechoic Chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2197, G-416, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1.

4.7 Deviation from Standards

None.

4.8 Abnormalities from Standard Conditions

None.

4.9 Other Information Requested by the Customer

None.

Report No.: SZEM120400181202 Page : 8 of 34

4.10 Test Instruments List

RE in Chamber					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2012-06-10
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEL0023	2012-05-26
3	EMI Test software	AUDIX	E3	SEL0050	N/A
4	Coaxial cable	SGS	N/A	SEL0028	2012-05-29
5	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2012-10-29
6	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2012-10-29
7	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2012-10-29
8	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2012-05-26
9	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2012-10-26
11	Band filter	Amindeon	82346	SEL0094	2012-05-26

RF c	RF conducted					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)	
1	Spectrum Analyzer	Rohde & Schwarz	FSP 30	SEL0154	2012-10-23	
2	Coaxial cable	SGS	N/A	SEL0028	2012-05-29	

Report No.: SZEM120400181202

Page : 9 of 34

Con	Conducted Emission					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)	
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	2012-06-10	
2	Two-Line V-Network	ETS-LINDGREN	3816/2	SEL0021	2012-05-26	
3	LISN	Rohde & Schwarz	ENV216	SEL0152	2012-10-23	
4	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2012-05-26	
5	Coaxial Cable	SGS	N/A	SEL0024	2012-05-29	

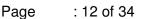
	General used equipment							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)			
1	Humidity/ Temperature Indicator	Shanghai	ZJ1-2B	SEL0102 to SEL0103	2012-10-27			
2	Humidity/ Temperature Indicator	Shanghai	ZJ1-2B	SEL0101	2012-10-27			
3	Barometer	ChangChun	DYM3	SEL0088	2012-05-18			

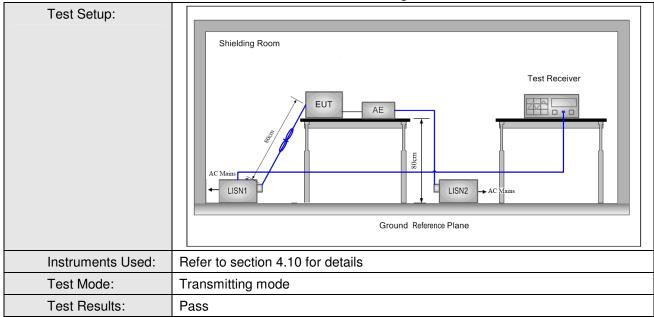
Report No.: SZEM120400181202 Page : 10 of 34

5 Test results and Measurement Data

5.1 Antenna Requirement

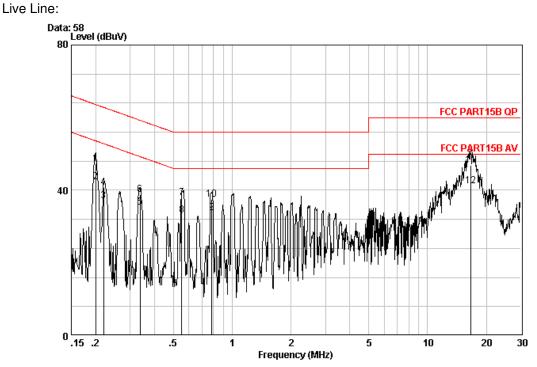
	1
Standard requirement:	FCC Part15 C Section 15.203
15.203 requirement:	
	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of
an antenna that uses a uniqu	ue coupling to the intentional radiator, the manufacturer may design the
unit so that a broken antenn	na can be replaced by the user, but the use of a standard antenna jack
or electrical connector is pro	ohibited.
EUT Antenna:	
The antenna is integrated on	the main PCB and no consideration of replacement. The best case
gain of the antenna is 2.0dBi.	
	RF Antenna


Report No.: SZEM120400181202 Page : 11 of 34


5.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10: 2009						
Test Frequency Range:	150kHz to 30MHz						
Limit:		Limit (dBuV)					
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarith	nm of the frequency.					
Test Procedure:	1) The mains terminal disturbance voltage test was conducted in a shielded room.						
	2) The EUT was connected to AC power source through a LISN Impedance Stabilization Network) which provides a 50Ω/50µ linear impedance. The power cables of all other units of t were connected to a second LISN 2, which was bonded ground reference plane in the same way as the LISN 1 for being measured. A multiple socket outlet strip was used to multiple power cables to a single LISN provided the ratin LISN was not exceeded.						
	3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,						
	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.						
	5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 on conducted measurement.						

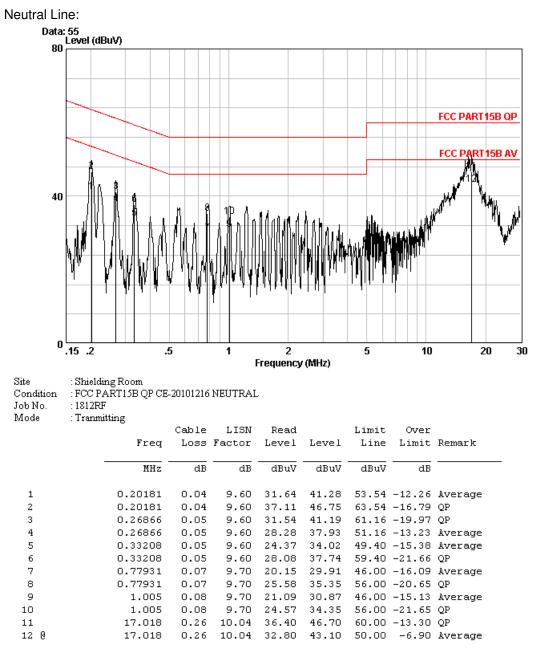
Report No.: SZEM120400181202


Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Report No.: SZEM120400181202 Page : 13 of 34


Site	: Shielding Room
Condition	FCC PART15B QP CE-20101216 LINE
Job No.	: 1812RF

Mode : Tranmitting

101040	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
		2000				21		
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.19969	0.04	9.60	37.68	47.32	63.62	-16.31	QP
20	0.19969	0.04	9.60	32.55	42.19	53.62	-11.43	Average
3	0.21967	0.04	9.60	27.49	37.13	52.83	-15.70	Average
4	0.21967	0.04	9.60	31.19	40.83	62.83	-22.00	QP
5	0.33740	0.05	9.60	25.57	35.22	49.27	-14.04	Average
6	0.33740	0.05	9.60	29.13	38.78	59.27	-20.49	QP
7	0.55226	0.06	9.63	28.27	37.97	56.00	-18.03	QP
8	0.55226	0.06	9.63	23.41	33.10	46.00	-12.90	Average
9	0.78761	0.07	9.70	24.04	33.81	46.00	-12.19	Average
10	0.78761	0.07	9.70	27.77	37.54	56.00	-18.46	QP
11	16.661	0.26	10.03	36.50	46.79	60.00	-13.21	QP
12 0	16.661	0.26	10.03	30.90	41.19	50.00	-8.81	Average

Report No.: SZEM120400181202 Page : 14 of 34

Notes:

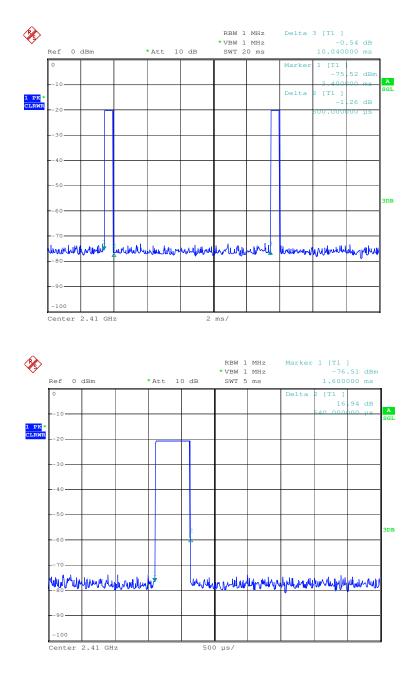
1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM120400181202 Page : 15 of 34

5.3 Spurious Emissions

5.3.1 Duty Cycle


Test Requirement:	FCC Part15 C Section 15.35 (c)			
Test Method:	ANSI C63.10:2009			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Instruments Used:	Refer to section 4.10 for details			
Limit:	N/A			
Test Mode:	Transmitting mode			
Test Results:	Pass			

Report No.: SZEM120400181202 Page : 16 of 34

Test plot as follows:

Report No.: SZEM120400181202 Page : 17 of 34

Test Requirement: FCC Part15 C Section 15.249 and 15.209 Test Method: ANSI C63.10: 2009 Test Frequency Range: 30MHz to 25000MHz Test Site: Measurement Distance: 3m (Semi-Anechoic Chamber) **Receiver Setup:** Frequency Detector RBW VBW Remark 30MHz-1GHz Quasi-peak 100kHz 300kHz Quasi-peak Value Above 1GHz Peak 1MHz 3MHz Peak Value Limit: Remark Frequency Limit (dBuV/m @3m) (Field strength of the 94.0 Average Value 2400MHz-2483.5MHz fundamental signal) 114.0 Peak Value Limit: Limit (dBuV/m @3m) Remark Frequency (Spurious Emissions) 30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value 46.0 216MHz-960MHz Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value Average Value 54.0 Above 1GHz Peak Value 74.0 Test Setup: EUT EUT Ground Re Controlle Test Re Figure 1. 30MHz to 1GHz Figure 2. Above 1 GHz

5.3.2Spurious Emissions

Report No.: SZEM120400181202

Page : 18 of 34

	5
Test Procedure:	a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	 b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna
	tower. c. The antenna height is varied from one meter to four meters above the
	ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	 f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel, the Highest
	channel h. Repeat above procedures until all frequencies measured was complete.
Instruments Used:	Refer to section 4.10 for details
Test Mode:	Transmitting mode
Test Results:	Pass

Report No.: SZEM120400181202 Page : 19 of 34

Measurement Data

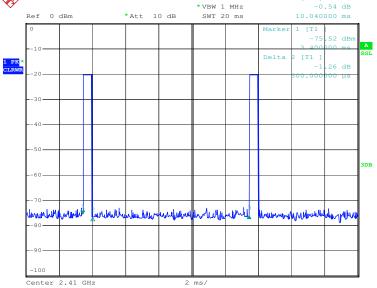
5.3.2.1 Field Strength Of The Fundamental Signal

Peak value:

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2410.0000	2.99	32.54	39.86	100.94	96.61	114.00	-17.39	Horizontal
2410.0000	2.99	32.54	39.86	99.32	94.99	114.00	-19.01	Vertical
2440.0033	3.01	32.61	39.89	100.48	96.21	114.00	-17.79	Horizontal
2440.0033	3.01	32.61	39.89	98.13	93.86	114.00	-20.14	Vertical
2470.0066	3.02	32.64	39.91	99.54	95.29	114.00	-18.71	Horizontal
2470.0066	3.02	32.64	39.91	98.03	93.78	114.00	-20.22	Vertical

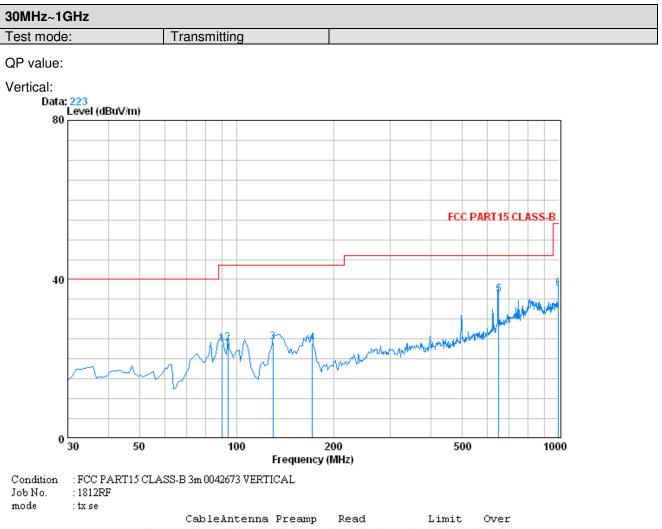
Average value:

norage raid						
Frequency (MHz)	PDCF	Peak value (dBuV/m)	Average value (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2410.0000	-25.38	96.61	71.23	94.00	-22.77	Horizontal
2410.0000	-25.38	94.99	69.61	94.00	-24.39	Vertical
2440.0033	-25.38	96.21	70.83	94.00	-23.17	Horizontal
2440.0033	-25.38	93.86	68.48	94.00	-25.52	Vertical
2470.0066	-25.38	95.29	69.91	94.00	-24.09	Horizontal
2470.0066	-25.38	100.39	75.01	94.00	-18.99	Vertical


Note:

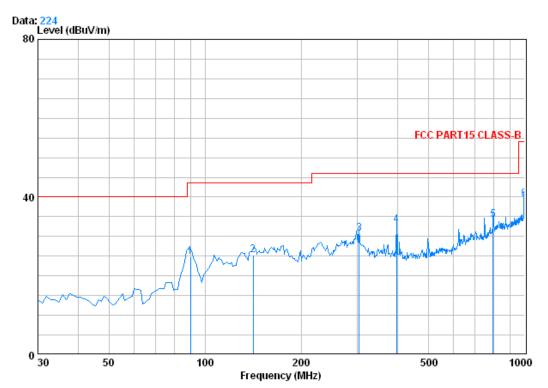
Peak Level (Final Level)= Reading Level + Antenna Factor + Cable Loss - Preamp Factor

Report No.: SZEM120400181202 Page : 20 of 34


verage value:									
	Average valu	e=Peak val	ue + P	DCF					
alculate Formula:		PDCF=20 log(Duty cycle)=-25.38							
		Duty cycle= T on time / T period							
Test data:	Ton time =0.9								
		.04 1115							
st plot as follows:									
		RBW 1 MHz *VBW 1 MHz	Marker	1 [T1] -76.51 dBm	1				
Ref 0 dBm	*Att 10 dB	SWT 5 ms		1.600000 ms	7				
0			Delta	2 [T1] 16.94 dB					
10				540.000000 µs	A SGL				
1 PK * CLRWR					_				
30					-				
40					_				
50					-				
60		_			ЗДВ				
		1							
han and have have been and hav	www.	howelling	ypuma	mmhhhhmmmi	<u>/</u>				
90									
-100	CHa 500 mg/								
Center 2.41 GHz	: 5	00 µs/							
A		RBW 1 MHz	Delta 3						
Ref 0 dBm	*Att 10 dB	*VBW 1 MHz SWT 20 ms		-0.54 dB 10.040000 ms					
			Mankon	1 [T1]	7				

Report No.: SZEM120400181202 Page : 21 of 34

5.3.2.2 Spurious Emissions



			Capier	intenna	Preamp	Read		Limit	Over
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1		90.140	1.10	8.71	27.21	41.26	23.87	43.50	-19.63
2		94.020	1.14	8.87	27.21	41.11	23.91	43.50	-19.59
3		129.910	1.28	7.70	27.01	42.19	24.15	43.50	-19.35
4		171.620	1.36	9.55	26.81	39.83	23.93	43.50	-19.57
5	0	648.860	2.80	20.60	27.47	40.33	36.26	46.00	-9.74
6		994.180	3.69	24.21	26.33	36.25	37.82	54.00	-16.18

Report No.: SZEM120400181202 Page : 22 of 34

Horizontal:

Condition	: FCC PART15 CLASS-B 3m 0042673 HORIZONTAL
Job No.	: 1812RF
mode	: tx se

		CableA	Intenna	Preamp	Read		Limit	Over
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	90.140	1.10	8.71	27.21	42.25	24.85	43.50	-18.65
2	141.550	1.30	8.24	26.95	42.60	25.19	43.50	-18.31
3	303.540	1.91	14.03	26.42	41.25	30.77	46.00	-15.23
4	397.630	2.19	16.27	27.11	41.52	32.87	46.00	-13.13
5	797.270	3.19	22.09	27.30	36.18	34.16	46.00	-11.84
6	999.030	3.70	24.30	26.30	37.68	39.38	54.00	-14.62

Report No.: SZEM120400181202

Page : 23 of 34

Above 1GHz	z										
Test mode:		Tran	smitting	Test chai	Test channel: Lowest		Remark:	Remark:		Peak	
Frequency (MHz)	Lo	able oss dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Reac Leve (dBuV		Level (dBuV/m)	Limit Line (dBuV/m)	Ov Lin (dE	nit	Polarization
1364.250	2	.43	27.85	39.29	48.62	2	39.61	74.00	-34.	39	Vertical
1869.500	2	.75	30.81	39.51	48.65	;	42.70	74.00	-31.	30	Vertical
4795.250	4	.68	34.73	41.63	53.29)	51.07	74.00	-22.	93	Vertical
6522.500	5	.26	36.28	40.46	51.80)	52.88	74.00	-21.	12	Vertical
7509.500	6	.13	36.00	39.61	50.57	,	53.09	74.00	-20.	91	Vertical
9542.250	6	.00	37.23	37.85	47.97	,	53.35	74.00	-20.	65	Vertical
1317.250	2	.40	27.79	39.28	48.98	;	39.89	74.00	-34.	11	Horizontal
3420.500	3	.67	33.23	40.61	50.03	;	46.32	74.00	-27.	68	Horizontal
4830.500	4	.70	34.68	41.65	53.80)	51.53	74.00	-22.	47	Horizontal
5829.250	5	.07	35.42	41.07	51.09)	50.51	74.00	-23.	49	Horizontal
6957.250	5	.50	35.85	40.08	50.70)	51.97	74.00	-22.	03	Horizontal
9154.500	6	.11	36.79	38.19	49.23	}	53.94	74.00	-20.	06	Horizontal

Test mode:	Transmitting	Test chai	nnel: Lowes	st Re	mark:	Average
Frequency (MHz)	Peak Level (dBuV/m)	PDCF (dB)	Average Level (dBuV/m)	Average Limit (dBuV/m)	Over Limit (dB)	polarization
1364.250	39.61	-25.38	14.23	54.00	-39.77	Vertical
1869.500	42.7	-25.38	17.32	54.00	-36.68	Vertical
4795.250	51.07	-25.38	25.69	54.00	-28.31	Vertical
6522.500	52.88	-25.38	27.50	54.00	-26.50	Vertical
7509.500	53.09	-25.38	27.71	54.00	-26.29	Vertical
9542.250	53.35	-25.38	27.97	54.00	-26.03	Vertical
1317.250	39.89	-25.38	14.51	54.00	-39.49	Horizontal
3420.500	46.32	-25.38	20.94	54.00	-33.06	Horizontal
4830.500	51.53	-25.38	26.15	54.00	-27.85	Horizontal
5829.250	50.51	-25.38	25.13	54.00	-28.87	Horizontal
6957.250	51.97	-25.38	26.59	54.00	-27.41	Horizontal
9154.500	53.94	-25.38	28.56	54.00	-25.44	Horizontal

Report No.: SZEM120400181202

					Page	: 24 of 3	34	
Test mode:	Tran	smitting	Test char	nnel:	Middle	Remark:	Pe	ak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1775.500	2.70	30.20	39.47	48.82	42.25	74.00	-31.75	Vertical
3702.500	3.91	33.45	40.81	49.34	45.89	74.00	-28.11	Vertical
4877.500	4.72	34.59	41.68	53.57	51.20	74.00	-22.80	Vertical
6146.500	5.16	35.88	40.79	51.04	51.29	74.00	-22.71	Vertical
8038.250	6.20	36.01	39.16	49.57	52.62	74.00	-21.38	Vertical
9824.250	5.98	37.53	37.61	47.11	53.01	74.00	-20.99	Vertical
1211.500	2.33	27.57	39.23	49.97	40.64	74.00	-33.36	Horizontal
3702.500	3.91	33.45	40.81	51.13	47.68	74.00	-26.32	Horizontal
4877.500	4.72	34.59	41.68	55.48	53.11	74.00	-20.89	Horizontal
6910.250	5.45	35.89	40.13	50.81	52.02	74.00	-21.98	Horizontal
8543.500	6.18	36.24	38.72	49.21	52.91	74.00	-21.09	Horizontal
10423.500	6.08	38.20	37.62	46.82	53.48	74.00	-20.52	Horizontal

Test mode:	Transmitting	Test chai	nnel: Middle	Ren	nark:	Average
Frequency (MHz)	Peak Level (dBuV/m)	PDCF (dB)	Average Level (dBuV/m)	Average Limit (dBuV/m)	Over Limit (dB)	polarization
1775.500	42.25	-25.38	16.87	54.00	-37.13	Vertical
3702.500	45.89	-25.38	20.51	54.00	-33.49	Vertical
4877.500	51.2	-25.38	25.82	54.00	-28.18	Vertical
6146.500	51.29	-25.38	25.91	54.00	-28.09	Vertical
8038.250	52.62	-25.38	27.24	54.00	-26.76	Vertical
9824.250	53.01	-25.38	27.63	54.00	-26.37	Vertical
1211.500	40.64	-25.38	15.26	54.00	-38.74	Horizontal
3702.500	47.68	-25.38	22.30	54.00	-31.70	Horizontal
4877.500	53.11	-25.38	27.73	54.00	-26.27	Horizontal
6910.250	52.02	-25.38	26.64	54.00	-27.36	Horizontal
8543.500	52.91	-25.38	27.53	54.00	-26.47	Horizontal
10423.500	53.48	-25.38	28.10	54.00	-25.90	Horizontal

Report No.: SZEM120400181202

					Page	: 25 of 3	34	
Test mode:	Tran	smitting	Test char	nnel: I	Highest	Remark:	Pe	ak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1352.500	2.42	27.85	39.29	48.01	38.99	74.00	-35.01	Vertical
3138.500	3.42	33.34	40.41	50.10	46.45	74.00	-27.55	Vertical
5253.500	4.87	34.65	41.57	56.20	54.15	74.00	-19.85	Vertical
6334.500	5.21	36.10	40.63	50.82	51.50	74.00	-22.50	Vertical
7415.500	6.02	35.97	39.69	51.38	53.68	74.00	-20.32	Vertical
10047.500	5.98	37.76	37.47	47.33	53.60	74.00	-20.40	Vertical
1775.500	2.70	30.20	39.47	49.28	42.71	74.00	-31.29	Horizontal
2997.500	3.32	33.40	40.30	50.14	46.56	74.00	-27.44	Horizontal
4219.500	4.30	34.41	41.19	50.29	47.81	74.00	-26.19	Horizontal
4924.500	4.75	34.51	41.72	53.44	50.98	74.00	-23.02	Horizontal
6287.500	5.20	36.04	40.68	50.63	51.19	74.00	-22.81	Horizontal
7944.250	6.21	36.00	39.24	49.76	52.73	74.00	-21.27	Horizontal

Test mode:	Transmitting	Test chai	nnel:	Highes	st Re	emark:	Average
Frequency (MHz)	Peak Level (dBuV/m)	PDCF (dB)	Avera Leve (dBuV	el 🛛	Average Limit (dBuV/m)	Over Limit (dB)	polarization
1352.500	38.99	-25.38	13.6	1	54.00	-40.39	Vertical
3138.500	46.45	-25.38	21.0	7	54.00	-32.93	Vertical
5253.500	54.15	-25.38	28.7	7	54.00	-25.23	Vertical
6334.500	51.5	-25.38	26.1	2	54.00	-27.88	Vertical
7415.500	53.68	-25.38	28.3	0	54.00	-25.70	Vertical
10047.500	53.6	-25.38	28.2	2	54.00	-25.78	Vertical
1775.500	42.71	-25.38	17.3	3	54.00	-36.67	Horizontal
2997.500	46.56	-25.38	21.1	8	54.00	-32.82	Horizontal
4219.500	47.81	-25.38	22.4	3	54.00	-31.57	Horizontal
4924.500	50.98	-25.38	25.6	0	54.00	-28.40	Horizontal
6287.500	51.19	-25.38	25.8	1	54.00	-28.19	Horizontal
7944.250	52.73	-25.38	27.3	5	54.00	-26.65	Horizontal

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

2) The disturbance above 11GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Report No.: SZEM120400181202 Page : 26 of 34

5.4 Band edge (Radiated Emission)

Test Requirement:	FCC Part15 C Section 15.209 and 15.205				
Test Method:	ANSI C63.10: 2009				
Test site:	Measurement Distance: 3m	(Semi-Anechoic Chamber	·)		
Limit(band edge):	Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.				
	Frequency	Limit (dBuV/m @3m)	Remark		
	30MHz-88MHz	40.0	Quasi-peak Value		
	88MHz-216MHz	43.5	Quasi-peak Value		
	216MHz-960MHz	46.0	Quasi-peak Value		
	960MHz-1GHz	54.0	Quasi-peak Value		
	Above 1GHz	54.0	Average Value		
		74.0	Peak Value		
Test Setup:					
AE EUT (Turntable) Test Receiver	Antenna Tower	AE EUT (Turntable) Ground Reference Plane Test Receiver			
Figure 1. 30MHz	to 1GHz	Figure 2. Above 1	GHz		

Report No.: SZEM120400181202

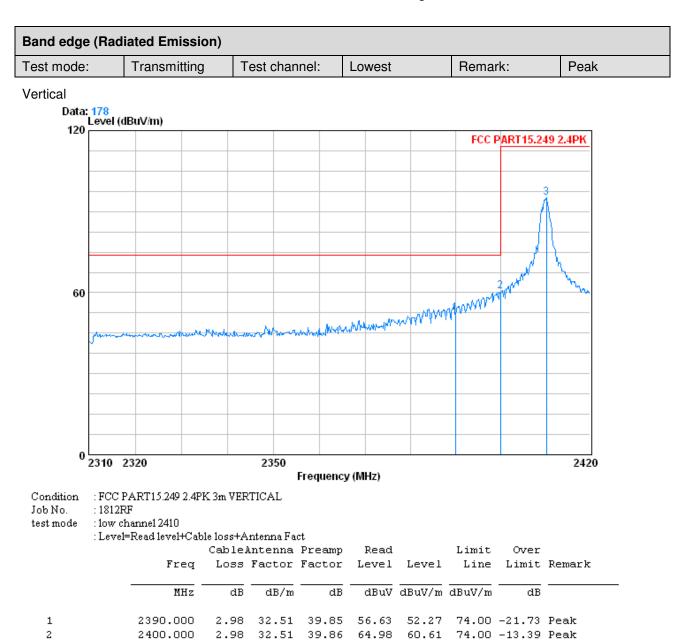
Page : 27 of 34

	3
Test Procedure:	 a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel g. Test the EUT in the lowest channel , the Highest channel h. Repeat above procedures until all frequencies measured was complete.
Instruments Used:	Refer to section 4.10 for details
Test Mode:	Transmitting mode
Test Results:	Pass

Measurement Data

Average value:					
	Average value=Peak value + PDCF				
Calculate Formula:	PDCF=20 log(Duty cycle)=-25.38				
	Duty cycle= T on time / T period				
Test date.	Ton time =0.54ms				
Test data:	T period =10.04 ms				

3

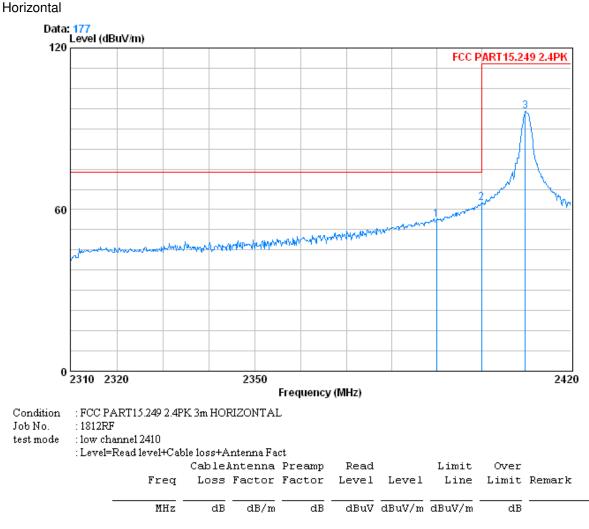

2410.210

2.99

SGS-CSTC Standards Technical Services Ltd.

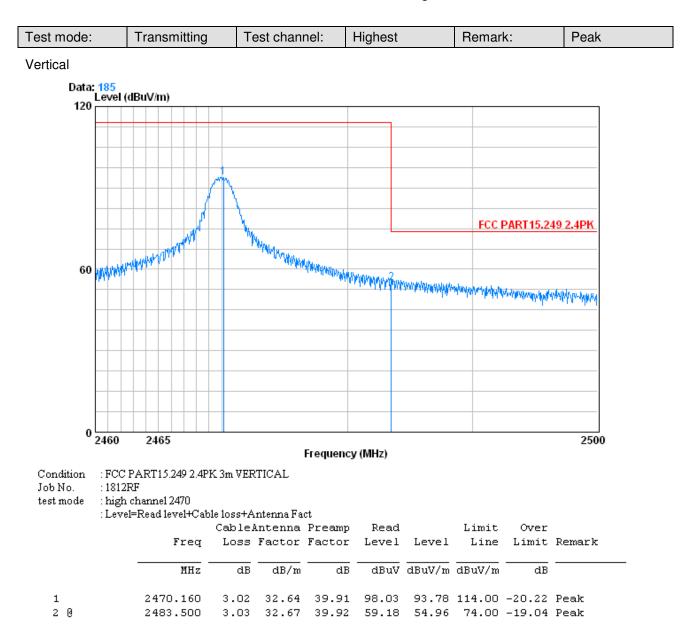
99.31 94.99 114.00 -19.01 Peak

Report No.: SZEM120400181202 Page : 28 of 34

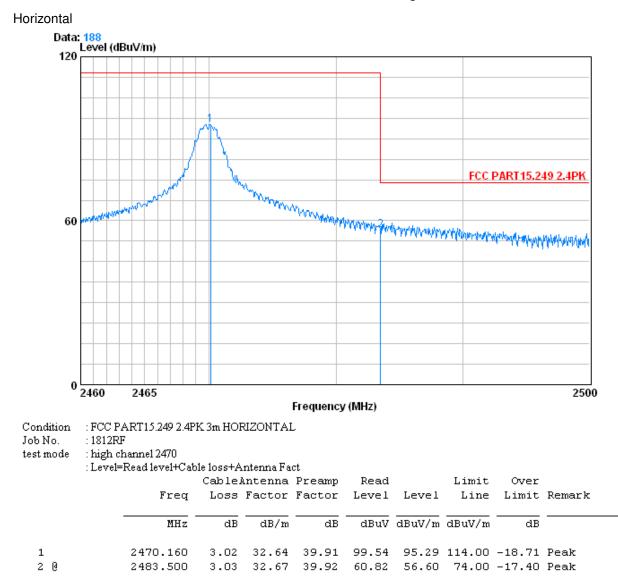


"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

32.54 39.86


Report No.: SZEM120400181202 Page : 29 of 34

1	2390.000	2.98	32.51	39.85	60.70	56.34	74.00 -17.66 Peak	
20	2400.000	2.98	32.51	39.86	66.82	62.45	74.00 -11.55 Peak	
3	2409.770	2.99	32.54	39.86	100.94	96.61	114.00 -17.39 Peak	



Report No.: SZEM120400181202 Page : 30 of 34

Report No.: SZEM120400181202 Page : 31 of 34

Note:

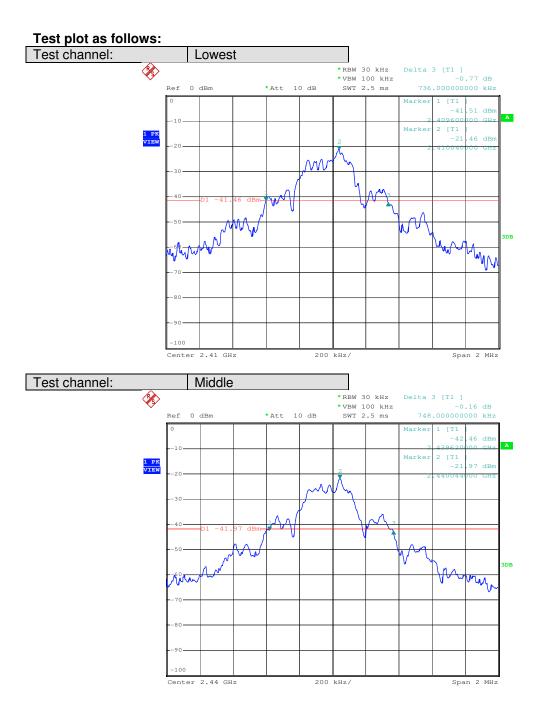
The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

For band-edge radiated emissions (pulse signal), Average value=Peak value + PDCF PDCF < Average limte-Peak limit = -20dB,and the peak value complies with the peak limit, so deems to the Average value complies with the average limit.

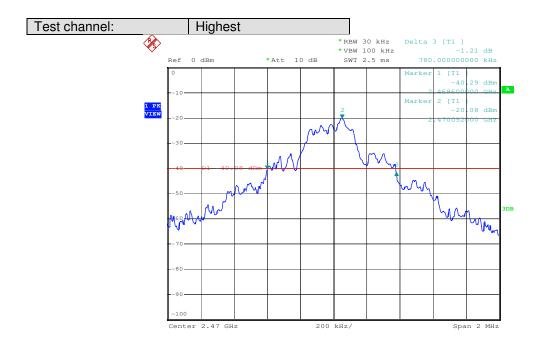
Report No.: SZEM120400181202 Page : 32 of 34

5.5 20dB Bandwidth


Test Requirement:	FCC Part15 C Section 15.215
Test Method:	ANSI C63.10:2009
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Instruments Used:	Refer to section 4.7 for details
Test mode:	Transmitting mode
Limit:	N/A
Test Results:	Pass

Measurement Data

Test channel	20dB bandwidth (MHz)	Results
Lowest	0.736	Pass
Middle	0.748	Pass
Highest	0.780	Pass



Report No.: SZEM120400181202 Page : 33 of 34

Report No.: SZEM120400181202 Page : 34 of 34

