RX101_RX101B

LOW Cost 2.4GHZ Radio Transceiver

Preliminary

JUN,18, 2015 Version 1.3

RUIXING TECHNOLOGY CO.,LTD reserves the right to change this documentation without prior notice. Information provided by RUIXING TECHNOLOGY CO,LTD is believed to be accurate and reliable. However, RUIXING TECHNOLOGY CO,LTD makes no warranty for any errors which may appear in this document. Contact RUIXING TECHNOLOGY CO,LTD to obtain the latest version of device specifications before placing your order. No responsibility is assumed by RUIXING TECHNOLOGY CO. LTD for any infringement of patent or other rights of third parties which may result from its use. In addition, RUIXING products are not authorized for use as critical components in life support devices/systems or aviation devices/systems, where malfunction or failure of the product may reasonably be expected to result in significant injury to the user, without the express written approval of RUIXING 1

Low Cost 2.4GHz Radio Transceiver

FEATURES

Complete 2.4 GHz radio transceiver includes fully integrated RF PLL and channel filtering Supports Frequency-Hopping Spread Spectrum Supports SPI and I € bus interface

Built-in smart auto-acknowledge Tx/Rx protocol simplifies usage

Packet data rate 1 Mbps over-the-air

FIFO flag signal permits continuous streaming data at 1 Mbps over-the-air

Power management for minimizing current consumption

Digital readout of RSSI and temperature

Lead-free 4x4mm QFN Package & SOP16 for best RF performance

Application

Remote controls

Wireless keyboards and mice Proprietary Wireless Networks

Home automation

Commercial and industrial short-range wireless

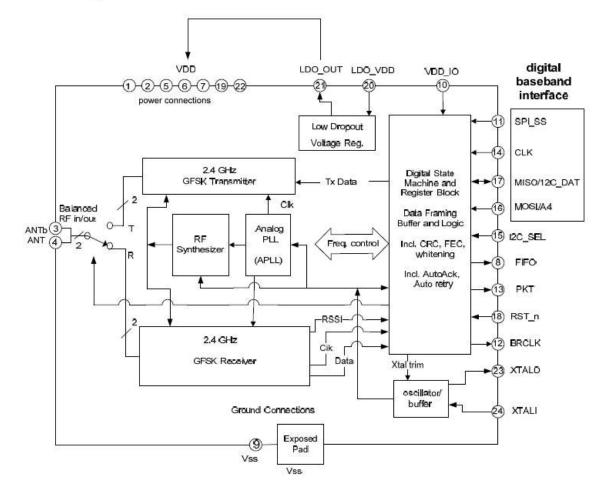
Wireless voice, VoIP, Cordless headsets Robotics and machine connectivity

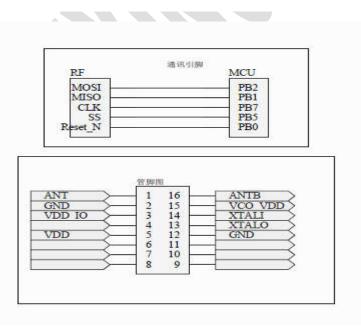
GENERAL DESCRIPTION

The RX101 is а low-cost, fully RF transceiver, GFSK data integrated CMOS modem, and packet framer, optimized for use in the 2.4 GHz ISM band. It contains transmit, receive, RF synthesizer, and digital modem functions, with few external components. The transmitter supports digital power control. The receiver utilizes extensive digital processing for excellent overall performance, even in the presence of interference and transmitter impairments.

The RX101 transmits GFSK data at approximately 1 dBm output power. The low-IF receiver architecture produces good selectivity, with sensitivity down to approx. -87 dBm. Digital RSSI values are available to monitor channel quality.

On-chip transmit and receive FIFO registers are available to buffer the data transfer with MCU. Over-the-air data rate is always 1 Mbps even when connected to a slow, low-cost MCU. Built-in CRC, FEC, data whitening, and automatic retry/acknowledge are all available to simplify and optimize performance for individual applications.


The digital baseband interface can be either 4-wire SPI or 2-wire I2C-bus. Three additional pins are available for optional reset and buffer control.


For extended battery life, power consumption is minimized all key areas. A sleep mode is available to reduce standby current consumption to just 1 uA typ. while preserving register settings.

This product is available in RoHS compliant 24-lead 4x4 mm JEDEC standard QFN package, featuring an exposed pad on the bottom for best RF characteristics. Also available in bare die form.

RUIXING TECHNOLOGY CO.,LTD reserves the right to change this documentation without prior notice. Information provided by RUIXING TECHNOLOGY CO.,LTD is believed to be accurate and reliable. However, RUIXING TECHNOLOGY CO.,LTD makes no warranty for any errors which may appear in this document. Contact RUIXING TECHNOLOGY CO.,LTD to obtain the latest version of device specifications before placing your order. No responsibility is assumed by RUIXING TECHNOLOGY CO.,LTD to obtain the latest version of device specifications before placing your order. No responsibility is assumed by RUIXING TECHNOLOGY CO.,LTD for any infringement of patent or other rights of third parties which may result from its use. In addition, RUIXING products are not authorized for use as critical components in life support devices/systems or aviation devices/systems, where malfunction or failure of the product may reasonably be expected to result in significant injury to the user, without the express written approval of RUIXING 2

1. Block Diagram

RUIXING TECHNOLOGY CO.,LTD reserves the right to change this documentation without prior notice. Information provided by RUIXING TECHNOLOGY CO.,LTD is believed to be accurate and reliable. However, RUIXING TECHNOLOGY CO.,LTD makes no warranty for any errors which may appear in this document. Contact RUIXING TECHNOLOGY CO.,LTD to obtain the latest version of device specifications before placing your order. No responsibility is assumed by RUIXING TECHNOLOGY CO.,LTD makes no warranty for any errors which may appear in this document. Contact RUIXING TECHNOLOGY CO.,LTD to obtain the latest version of device specifications before placing your order. No responsibility is assumed by RUIXING TECHNOLOGY CO. LTD for any infringement of patent or other rights of third parties which may result from its use. In addition, RUIXING products are not authorized for use as critical components in life support devices/systems or aviation devices/systems, where malfunction or failure of the product may reasonably be expected to result in significant injury to the user, without the express written approval of RUIXING 3

2. Absolute Maximum Ratings

Parameter	Symbol	MIN	TYP	MAX	Unit	
Operating Temp.	TOP	-40		+85	°C	
Storage Temp.	TSTORAGE	-55		+125	°C	
LDO_VDD, VDD_IO Voltage	VIN_MAX			+3.7	VDC	
VDD pins	VDD_MAX			+2.5	VDC	
Applied Voltages to Other Pins	VOTHER	-0.3		+3.7	VDC	
Input RF Level	PIN		ŝ	+10	dBm	
Output Load mismatch (Z0=50Ω)	VSWROUT			10:1	VSWR	

Table 1. Absolute Maximum Rating

Notes:

Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended operating conditions 1. indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics section below.

These devices are electro-static sensitive. Devices should be transported and stored in anti-static containers. Equipment and 2. personnel contacting the devices need to be properly grounded. Cover workbenches with grounded conductive mats.

RUIXING TECHNOLOGY CO ... LTD reserves the right to change this documentation without prior notice. Information provided by RUIXING TECHNOLOGY CO.,LTD is believed to be accurate and reliable. However, RUIXING TECHNOLOGY CO.,LTD makes no warranty for any errors which may appear in this document. Contact RUIXING TECHNOLOGY CO.,LTD to obtain the latest version of device specifications before placing your order. No responsibility is assumed by RUIXING TECHNOLOGY CO. LTD for any infringement of patent or other rights of third parties which may result from its use. In addition, RUIXING products are not authorized for use as critical components in life support devices/ systems or aviation devices/systems, where malfunction or failure of the product may reasonably be expected to result in significant injury to the user, without the express written approval of RUIXING Δ

3. Electrical Characteristics

Table 2. Electrical Characteristics

The following specifications are guaranteed for TA = 25 C, LDO_VDD= VDD_IO = 3.3 VDC, unless otherwise noted.

Parameter	Symbol	MIN	TYP	MAX	Units	Test Condition and Notes
Supply Voltage						
DC power supply voltage range	2	1.9		3.6	VDC.	Input to VDD_IO and LDO_VDD pins.
Current Consumption						
0	IDD_TXH	0	18		mA	POUT = high power setting
Current Consumption - TX	IDD_TXL		12		mA	POUT = low power setting
Current Consumption - RX	IDD_RX	<i></i>	17		mA	
	IDD_IDLE1		1.4		mA	Configured for BRCLK output running.
Current Consumption –IDLE	IDD_IDLE2	0	1.1		mA	Configured for BRCLK output OFF.
Current Consumption - SLEEP	IDD_SLP	2	1		uA	
Digital Inputs	25	8		2	2	
Logic input high	VIH	0.8		1.2	v	
Logic input low	VIL			VDD_IN 0.8	v	
Input Capacitance	C_IN	- 194 91	-	10	pF	÷
Input Leakage Current	I_LEAK_IN	61		10	uA	r
Digital Outputs	98 - 2222 98	0				8
Logic output high	VOH	0.8 VDD IN		VDD_IN	v	
Logic output low	VOL			0.4	V	
Output Capacitance	C_OUT	8		10	pF	
Output Leakage Current	I_LEAK_OUT			10	uA	
Rise/Fall Time (SPI)	T_RISE_OUT	0		5	nS	
Clock Signals						
CLK rise, fall time (SPI)	Tr_spi	8		25	nS	Requirement for error-free register reading, writing.
CLK frequency range (SPI)	FSPI	0	12		MHz	
Overall Transceiver		0				
Operating Frequency Range	F_OP	2400		2482	MHz	
Antenna port mismatch	VSWR_I		<2:1		VSWR	Receive mode.
(Z0=50Ω)	VSWR_O		<2:1		VSWR	Transmit mode.

RUIXING TECHNOLOGY CO.,LTD reserves the right to change this documentation without prior notice. Information provided by RUIXING TECHNOLOGY CO.,LTD is believed to be accurate and reliable. However, RUIXING TECHNOLOGY CO.,LTD makes no warranty for any errors which may appear in this document. Contact RUIXING TECHNOLOGY CO.,LTD to obtain the latest version of device specifications before placing your order. No responsibility is assumed by RUIXING TECHNOLOGY CO. LTD for any infringement of patent or other rights of third parties which may result from its use. In addition, RUIXING products are not authorized for use as critical components in life support devices/systems or aviation devices/systems, where malfunction or failure of the product may reasonably be expected to result in significant injury to the user, without the express written approval of RUIXING S

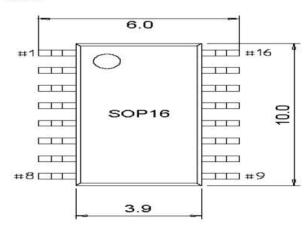
Parameter		Symbol	MIN	TYP	MAX	Unis	Test Condition and Notes			
Receive Section							Measured using BER ≤ 0.1%:	50 Ohm balun. For		
Receiver sensitivity	У			-87		dBm	FEC off.			
Maximum useable	signal		-20	1		dBm				
Data (Symbol) rate	•	Ts		1		us	0			
Min. Carrier/Interfe	erence ratio				ŝ.	0	For BER ≤ 0.1%			
Co-Channel Int	terference	CI_cochannel		+9		dB	-60 dBm desired signal.			
Adjacent Ch. In 1MHz offset	iterference,	CI_1		+6		dB	-60 dBm desired signal.			
Adjacent Ch. Ir 2MHz offset	nterference,	CI_2		-12		dB	-60 dBm desired signal.			
Adjacent Ch. Ir 3MHz offset	terference,	CI_3		-24		dB	-67 dBm desired signal.			
Out-of-Band Blocking For additional test conditions, see footnote1.		OBB_1	-10	- 3. - C		dBm	30 MHz to 2000 MHz	Meas. with ACX		
		OBB_2	-27			dBm	2000 MHz to 2400 MHz	BF2520 ceramic filter 2 on ant. pin .		
		OBB_3	-27			dBm	2500 MHz to 3000 MHz	Desired sig67 dBm, BER ≤ 0.1%.		
		OBB_4	-10			dBm	3000 MHz to 12.75 GHz			
Transmit Section		177	51		12	175	Measured using	50 Ohm balun3:		
RF Output Power		PAV			6		POUT= maxin Reg09=0x4000	num output power		
		-2		2		dBm	POUT = nominal output power Reg09=0x1840			
			-17			6	POUT=minimum outpu power,Reg09=1FC0			
Second harmonic				-50		dBm	Conducted to AN	14		
Third harmonic				-50		dBm	Conducted to ANT pin.			
Modulation Charac	teristics					Ĩ.	2)			
Peak FM	00001111 pattern	∆f1avg		280		kHz				
Deviation	01010101 pattern	∆f2max		225		kHz		:		
In-Band Spurious	Emission	411 12 ¹ 14			6	0- 21-				
2MHz offset		IBS_2		0	-40	dBm	0			
>3MHz offset		IBS_3			-60	dBm	-21			
		OBS_O_1		< -60	-36	dBm	30 MHz ~ 1 GHz			
Out-of-Band Spurious Emission, Operation		OBS_O_2		-45	-30	dBm	1 GHz ~ 12.75 signal and harmo	GHz, excludes desired onics.		
		OBS_O_3		< -60	-47	dBm	1.8 GHz ~ 1.9 GHz			
		OBS_O_4		< -65	-47	dBm	5.15 GHz ~ 5.3 (5.15 GHz ~ 5.3 GHz		

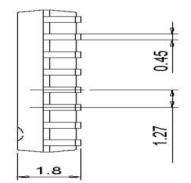
Note:

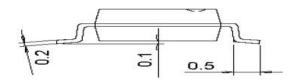
1. The test is run at one midband frequency, typically 2460 MHz. With blocking frequency swept in 1 MHz steps, up to 24 exception frequencies are allowed. Of these, no more than 5 shall persist with blocking signal reduced to -50dBm. For blocking frequencies below desired receive frequency, in-band harmonics of the out-of-band blocking signal are the most frequent cause of failure, so be sure blocking signal has adequate harmonic filtering.

2. In some applications, this filter may be incorporated into the antenna, or be approximated by the effective antenna bandwidth.

3. Transmit power measurement is corrected for insertion loss of Balun, in order to indicate the transmit power at the IC pins.


RUIXING TECHNOLOGY CO.,LTD reserves the right to change this documentation without prior notice. Information provided by RUIXING TECHNOLOGY CO,LTD is believed to be accurate and reliable. However, RUIXING TECHNOLOGY CO,LTD makes no warranty for any errors which may appear in this document. Contact RUIXING TECHNOLOGY CO,LTD to obtain the latest version of device specifications before placing your order. No responsibility is assumed by RUIXING TECHNOLOGY CO. LTD for any infringement of patent or other rights of third parties which may result from its use. In addition, RUIXING products are not authorized for use as critical components in life support devices/systems or aviation devices/systems, where malfunction or failure of the product may reasonably be expected to result in significant injury to the user, without the express written approval of RUIXING 6


Parameter	Symbol	MIN	TYP	MAX	Unit	Test Condition and Notes		
RF VCO and PLL Section						•		
Typical PLL lock range	FLOCK	2366		2516	MHz			
Tx, Rx Frequency Tolerance					ppm	Same as XTAL pins frequency tolerance		
Channel (Step) Size			1		MHz			
			≤ - 9 5		dBc/Hz	550kHz offset		
SSB Phase Noise			≤ - 1 15		dBc/Hz	2MHz offset		
Crystal oscillator freq. range (Reference Frequency)			12.00 0		MHz	Designed for 12 MHz crystal reference freq.		
Crystal oscillator digital trim range, typ.			±20		ppm	See Register 27 description. Amount of pull depends on crystal spec. and operating point.		
RF PLL Settling Time	THOP		75	150	uS	Settle to within 30 kHz of final value.		
Spurious Emissions	OBS_1		< -75	-57	dBm	30 MHz ~ 1 GHz	IDLE state	
	OBS_2		-68	-47	dBm	1 GHz ~ 12.75 GHz	 Synthesizer an VCO ON. 	
LDO Voltage Regulator Section	n			~			91	
Dropout Voltage	Vdo		0.17	0.5	V	Measured during Receive state		


RUIXING TECHNOLOGY CO.,LTD reserves the right to change this documentation without prior notice. Information provided by RUIXING TECHNOLOGY CO.,LTD is believed to be accurate and reliable. However, RUIXING TECHNOLOGY CO.,LTD makes no warranty for any errors which may appear in this document. Contact RUIXING TECHNOLOGY CO.,LTD to obtain the latest version of device specifications before placing your order. No responsibility is assumed by RUIXING TECHNOLOGY CO. LTD for any infringement of patent or other rights of third parties which may result from its use. In addition, RUIXING products are not authorized for use as critical components in life support devices/systems or aviation devices/systems, where malfunction or failure of the product may reasonably be expected to result in significant injury to the user, without the express written approval of RUIXING 7

SOP16

