

FCC DFS TEST REPORT

Applicant	:	AOPEN Inc.
Address	:	No. 68 Ruiguang Rd., Neihu District, Taipei City 114, Taiwan
Equipment	:	AOPEN Chromebox Commercial 2
Model No.	:	BC5000
Trade Name	:	AOPEN
FCC ID.	:	YEW-BC500017265

I HEREBY CERTIFY THAT :

The sample was received on Apr. 15, 2019 and the testing was carried out on Jun. 08, 2019 at Cerpass Technology Corp. The test result refers exclusively to the test presented test model / sample. Without written approval of Cerpass Technology Corp., the test report shall not be reproduced except in full.

Approved by:

Lara

Mark Liao / Supervisor

Laboratory Accreditation:

Cerpass Technology Corporation Test Laboratory

CONTENTS

1.	Sumr	mary of Test Procedure and Test Results	4
	1.1.	Applicable Standards	4
2.	Test	Configuration of Equipment under Test	5
	2.1.	Feature of Equipment under Test	5
	2.2.	Description of Test System	6
	2.3.	General Information of Test	6
	2.4.	Measurement Uncertainty	6
3.	Test	Equipment and Ancillaries Used for Tests	7
4.	Anter	nna Requirements	8
	4.1.	Standard Applicable	8
	4.2.	Antenna Construction and Directional Gain	
5.	Dyna	mic Frequency Selection	9
	5.1.	List of Measurement and Examinations	9
	5.2.	Test Setup	11
	5.3.	DFS Detection Threshold	13
	5.4.	Channel Availability Check Time	14
	5.5.	Radar Burst at the Beginning of the Channel Availability Check Time	15
	5.6.	Radar Burst at the End of the Channel Availability Check Time	16
	5.7.	U-NII Detection Bandwidth	17
	5.8.	Statistical Performance Check	18
	5.9.	In-Service Monitoring	19
	5.10.	Non-Occupancy Period	21
	5.11.	EUT Setup Photos	24

CERPASS TECHNOLOGY CORP.	Issued date	: Jun. 12, 2019
T-FD-501-0 Ver 1.0	Page No.	: 2 of 24
	FCC ID.	: YEW-BC5000I7265

ERPASS	TECHNOL	.OGY	CORP.

History of this te	est report
--------------------	------------

Report No.	Issue Date	Description
TEFS1903256	Jun. 12, 2019	Original

1. Summary of Test Procedure and Test Results

- 1.1. Applicable Standards
 - ANSI C63.4:2014
 - ANSI C63.10:2013

FCC Rules and Regulations Part 15 Subpart E §15.407

First R&O 14-30

KDB662911

KDB789033

KDB644545

KDB905462

FCC Rule	Description of Test	Result
15.203	Antenna Requirement	PASS
15.207(a)	AC Power Line Conducted Emission	PASS
15.407(b) 15.209	Radiated Spurious Emission	PASS
15.407(a)	26 dB Occupied Bandwidth	PASS
15.407	6 dB Bandwidth	PASS
15.407 (a) & (a)(3)	Average Power	PASS
15.407(a)	Output and PPSD	PASS
15.407	Dynamic Frequency Selection	PASS

*The principle of judgment is made according to the laboratory's reporting control and measurement uncertainty standard procedures.

2. Test Configuration of Equipment under Test

2.1. Feature of Equipment under Test

WLAN Module	Intel / Dual Band Wireless-AC 7265(Stone Peak)
Frequency Range	BT / BLE: 2400-2483.5MHz 802.11b/g/n: 2400-2483.5MHz 802.11a/n/ac: 5150-5250MHz, 5250-5350MHz,
Modulation Type	5470-5725MHz, 5725-5850MHz BT: GFSK, π/4-DQPSK, 8DPSK BLE: GFSK 802.11b: CCK, DQPSK, DBPSK 802.11g/n/a: BPSK, QPSK, 16QAM, 64QAM 802.11ac: BPSK, QPSK, 16QAM, 64QAM, 256QAM
Data Rate	BT: GFSK: 1Mbps, π /4-DQPSK: 2Mbps, 8DPSK: 3Mbps BLE: GFSK: 1Mbps WLAN: 802.11b: 1, 2, 5.5, 11Mbps 802.11g: 6, 9, 12, 18, 24, 36, 48, 54Mbps 802.11n: MCS0 – MCS15, HT20/40 802.11a: 6, 9, 12, 18, 24, 36, 48, 54Mbps 802.11ac: MCS0 – MCS9, VHT20/40/80
Antenna Type	Dipole Antenna
Antenna Gain	2400-2483.5MHz: 3.53dBi 5150-5250MHz: 2.52dBi 5250-5350MHz: 2.52dBi 5470-5725MHz: 2.02dBi 5725-5850MHz: 1.59dBi
Data Rate	BT: GFSK: 1Mbps, π /4-DQPSK: 2Mbps, 8DPSK: 3Mbps BLE: GFSK: 1Mbps WLAN: 802.11b: 1, 2, 5.5, 11Mbps 802.11g: 6, 9, 12, 18, 24, 36, 48, 54Mbps 802.11n: MCS0 – MCS15, HT20/40 802.11a: 6, 9, 12, 18, 24, 36, 48, 54Mbps 802.11ac: MCS0 – MCS9, VHT20/40/80
Adapter	Chicony \ A11-065N1A INPUT: 100-240V~1.7A 50-60Hz OUTPUT: 19V / 3.42A 65W Chicony \ A16-090P1A INPUT: 100-240V~1.5A 50-60Hz OUTPUT: 19V / 4.74A 90W

Note:

1.for more details, please refer to the User's manual of the EUT.

2.FW:Google_Fizz.10139.155.0

2.2. Description of Test System

	DFS					
Equipment	Brand	Model	Length/Type	Power cord/Length/Type		
Notebook	ASUS	P2430U	N/A	Adapter / 1.8m / NS		
AP	NETGEAR	R7800	N/A	Adapter / 1.5m / NS		
Network cable	N/A	N/A	1.2m / NS	N/A		

2.3. General Information of Test

	Cerpass	Technology Corporation Test Laboratory			
	Address: No.10, Ln. 2, Lianfu St., Luzhu Dist., Taoyuan City 33848,				
	Taiwan (R.O.C.)				
	Tel:+886	-3-3226-888			
	Fax:+88	6-3-3226-881			
	Address	: No.68-1, Shihbachongsi, Shihding Township,			
	New Tai	pei City 223, Taiwan, R.O.C.			
Test Site	Tel: +886-2-2663-8582				
	FCC	TW1079, TW1061, 390316, 228391, 641184			
	IC	4934E-1, 4934E-2			
	VCCI	T-2205 for Telecommunication test			
		C-4663 for Conducted emission test			
		R-4399, R-4218 for Radiated emission test			
		G-10812, G-10813 for radiated disturbance above 1GHz			
Frequency Range	ency Range Conducted: from 150kHz to 30 MHz				
Investigated:	Radiation: from 30 MHz to 40,000MHz				
Test Distance:	The test distance of radiated emission from antenna to EUT is 3 M.				

Test Item	Test Site	Test Site Tested Date		Tested By
DFS	RFDFS01-NK	2019/06/06	20°C / 66%	Dian Chen

2.4. Measurement Uncertainty

Measurement Item	Uncertainty
Channel Move Time	±5.4%
Channel Closing Transmission Time	±6.79%
Threshold	±1.875dB

Test Item	DFS				
Test Site	RFDFS01-NK				
Instrument	Manufacturer	Model No	Serial No	Calibration Date	Valid Date
Horn Antenna	EMCO	3115	31589	2019/04/01	2020/03/31
Horn Antenna	EMCO	3115	31601	2018/09/26	2019/09/25
CAX Signal Analyzer	KEYSIGHT	N9000B	MY57100339	2018/11/20	2019/11/19
MXG Vector Signal Generator	KEYSIGHT	N5182A	MY50141551	2018/10/07	2019/10/06
N7607B Signal Studio	KEYSIGHT	v3.2.0.0	NA	NA	NA
InServiceMonitorUtility	Theda	v10.0.0.0	NA	NA	NA

3. Test Equipment and Ancillaries Used for Tests

4. Antenna Requirements

4.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.407 (a), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

4.2. Antenna Construction and Directional Gain

Antenna Type	Dipole Antenna
Antenna Gain	2412MHz-2462MHz: ANT A: 3.53 dBi ; ANT B: 3.53 dBi 5180MHz-5240MHz: ANT A: 2.52 dBi ; ANT B: 2.52 dBi 5260MHz-5320MHz: ANT A: 2.52 dBi ; ANT B: 2.52 dBi 5500MHz-5700MHz: ANT A: 2.02 dBi ; ANT B: 2.02 dBi 5745MHz-5825MHz: ANT A:1.59 dBi ; ANT B: 1.59 dBi

2412-2462MHz For Power directional gain= G_{ant} = 3.53 dBi For PSD directional gain = 10 log[($10^{G1/20} + 10^{G2/20}$) ² /N _{ANT}] = 6.54 (dBi) 5180MHz-5240MHz For Power directional gain= G_{ant} = 2.52 dBi For PSD directional gain = 10 log[($10^{G1/20} + 10^{G2/20}$) ² /N _{ANT}] = 5.53 (dBi) 5260MHz-5320MHz For Power directional gain= G_{ant} = 2.52 dBi For Power directional gain = 10 log[($10^{G1/20} + 10^{G2/20}$) ² /N _{ANT}] = 5.53 (dBi) 5260MHz-5320MHz For PSD directional gain = G_{ant} = 2.52 dBi For PSD directional gain = G_{ant} = 2.52 dBi For PSD directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 /N_{ANT}]$ = 5.53 (dBi) 5500MHz-5700MHz
For PSD directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / N_{ANT}]$ = $6.54 (dBi)$ 5180MHz-5240MHz For Power directional gain= G_{ant} = $2.52 dBi$ For PSD directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / N_{ANT}]$ = $5.53 (dBi)$ 5260MHz-5320MHz For Power directional gain= G_{ant} = $2.52 dBi$ For PSD directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / N_{ANT}]$ = $5.53 (dBi)$
= 6.54 (dBi) $= 6.54 (dBi)$ $= 5.53 (dBi)$ $= 5.53 (dBi)$ $= 5.53 (dBi)$ $= 5.52 (dBi)$ $= 5.53 (dBi)$
For Power directional gain= G_{ant} = 2.52 dBi For PSD directional gain = 10 log[$(10^{G1/20} + 10^{G2/20})^2 /N_{ANT}$] = 5.53 (dBi) 5260MHz-5320MHz For Power directional gain= G_{ant} = 2.52 dBi For PSD directional gain = 10 log[$(10^{G1/20} + 10^{G2/20})^2 /N_{ANT}$] = 5.53 (dBi)
For PSD directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / N_{ANT}]$ = 5.53 (dBi) 5260MHz-5320MHz For Power directional gain= G _{ant} = 2.52 dBi For PSD directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / N_{ANT}]$ = 5.53 (dBi)
= 5.53 (dBi) 5260MHz-5320MHz For Power directional gain= G_{ant} = 2.52 dBi For PSD directional gain = 10 log[($10^{G1/20} + 10^{G2/20})^2 /N_{ANT}$] = 5.53 (dBi)
$5260MHz-5320MHz$ For Power directional gain= G _{ant} = 2.52 dBi For PSD directional gain = 10 log[($10^{G1/20} + 10^{G2/20})^2 / N_{ANT}$] = 5.53 (dBi)
For Power directional gain= G_{ant} = 2.52 dBi For PSD directional gain = 10 log[(10 ^{G1/20} + 10 ^{G2/20}) ² /N _{ANT}] = 5.53 (dBi)
For PSD directional gain = 10 log[(10 ^{G1/20} + 10 ^{G2/20}) ² /N _{ANT}] = 5.53 (dBi)
= 5.53 (dBi)
5500MHz-5700MHz
For Power directional gain= G _{ant} = 2.02 dBi
For PSD directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / N_{ANT}]$
= 5.03 (dBi)
5745MHz-5825MHz
For Power directional gain= G _{ant} = 1.59 dBi
For PSD directional gain = 10 log[(10 ^{G1 /20} + 10 ^{G2 /20}) ² /N _{ANT}]
= 4.60 (dBi)

5. Dynamic Frequency Selection

5.1. List of Measurement and Examinations

EUT Applicability of DFS requirements and Frequency Range

		Operating Frequency Range		
Operation Mo	de	5250-5350MHz	5470-5725MHz (5600MHz-5650MHz will be disable)	
Master				
Client without radar detection	\checkmark	\checkmark	\checkmark	
Client with radar detection				

DEVICES WITH RADAR DETECTION

MAXIMUM TRANSMIT POWER	VALUE (SEE Note 1 and 2)	
≥ 200 milliwatt -64 dBm		
EIRP < 200 milliwatt and	-62 dBm	
power spectral density < 10 dBm/MHz	-02 UBITI	
EIRP < 200 milliwatt that do not meet the	-64 dBm	
power spectral density requirement	-04 UDIT	
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.		
Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the		
test transmission waveforms to account for variations in measurement equipment. This will ensure		
that the test signal is at or above the detection threshold level to trigger a DFS response.		
Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911		

Table1: Applicability of DFS requirements prior to use of a channel

		OPERATIONAL MOI	DE
REQUIREMENT		CLIENT WITHOUT	CLIENT WITH
RADAR	MASTER	RADAR	RADAR
		DETECTION	DETECTION
Non-Occupancy Period	V	V _{Note}	V
DFS Detection Threshold	V	Not required	V
Channel Availability Check Time	V	Not required	Not required
U-NII Detection Bandwidth	V	Not required	V

Note: Regarding KDB 905462 D03 Client Without DFS New Rules section (b)(5/6), If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shut down (rather than moving channels), no beacons should appear. An analyzer plot that contains a single 30-minute sweep on the original channel.

Table2: Applicability of DFS requirements during normal operation

		OPERATIONAL M	ODE
REQUIREMENT		CLIENT WITHOUT	CLIENT WITH
RADAR	MASTER	RADAR	RADAR
		DETECTION	DETECTION
DFS Detection Threshold	V	Not required	V
Channel Closing Transmission Time	V	V	V
Channel Move Time	V	V	V
U-NII Detection Bandwidth	V	Not required	V

Additional requirements for devices with multiple bandwidth modes	Master or Client with radar detection	Client without radar detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other	Any single BW mode	Not required
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.		

5.2. Test Setup

Setup for Master with injection at the Master

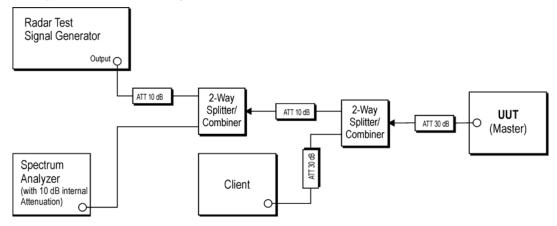
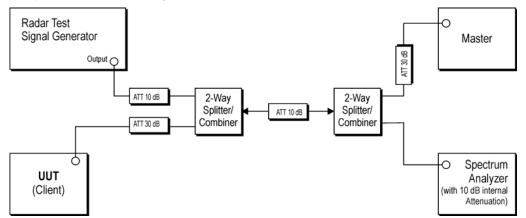



Figure 1: Example Conducted Setup where UUT is a Master and Radar Test Waveforms are injected into the Master

Setup for Client with injection at the Master

Figure 2: Example Conducted Setup where UUT is a Client and Radar Test Waveforms are injected into the Master

Setup for Client with injection at the Client

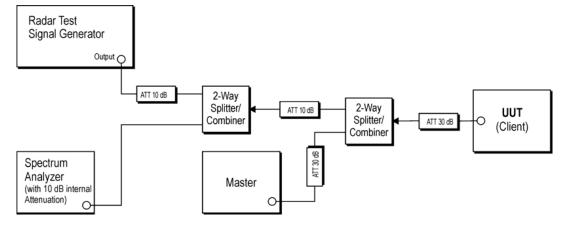


Figure 3: Example Conducted Setup where UUT is a Client and Radar Test Waveforms are injected into the Client

5.3. DFS Detection Threshold

DFS Detection Threshold is the level used by the DFS mechanism to detect radar interference.

5.3.1. Test Limit

Limits Clause 4.7.2.1.2

DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

MAXIMUM TRANSMIT POWER	VALUE (SEE Note 1 and 2)	
≥ 200 milliwatt -64 dBm		
EIRP < 200 milliwatt and	-62 dBm	
power spectral density < 10 dBm/MHz	-02 dBIII	
EIRP < 200 milliwatt that do not meet the -64 dBm		
power spectral density requirement		
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.		
Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the		
test transmission waveforms to account for variations in measurement equipment. This will ensure		
that the test signal is at or above the detection threshold level to trigger a DFS response.		
Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication		
662911		

5.3.2. Test Result of DFS Detection Threshold

5.4. Channel Availability Check Time

The Channel Availability Check is defined as the mechanism by which an RLAN device checks a channel for the presence of radar signals.

There shall be no transmissions by the device within the channel being checked during this process. If no radars have been detected, the channel becomes an Available Channel valid for a period of time. The RLAN shall only start transmissions on Available Channels.

At power-up, the RLAN is assumed to have no Available Channels.

5.4.1. Test Limit

Limits Clause 4.7.2.1.2 Table D.2: DFS requirement values

Parameter	Value
Channel Availability Check	> 60s

5.4.2. Test Result of Channel Availability Check

5.5. Radar Burst at the Beginning of the Channel Availability Check Time

The steps below define the procedure to verify successful radar detection on the test Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar Burst with a level equal to the DFS Detection Threshold + 1 dB occurs at the beginning of the Channel Availability Check Time. This is illustrated in **Figure 15**.

- a) The Radar Waveform generator and UUT are connected using the applicable test setup described in the sections on configuration for Conducted Tests or Radiated Tests and the power of the UUT is switched off.
- b) The UUT is powered on at T0. T1 denotes the instant when the UUT has completed its power-up sequence (Tpower_up). The Channel Availability Check Time commences on Chr at instant T1 and will end no sooner than T1 + Tch_avail_check.
- c) A single Burst of one of the Short Pulse Radar Types 0-4 will commence within a 6 second window starting at T1. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.
- d) Visual indication or measured results on the UUT of successful detection of the radar Burst will be recorded and reported. Observation of Chr for UUT emissions will continue for 2.5 minutes after the radar Burst has been generated.
- e) Verify that during the 2.5 minute measurement window no UUT transmissions occurred on Chr. The Channel Availability Check results will be recorded.

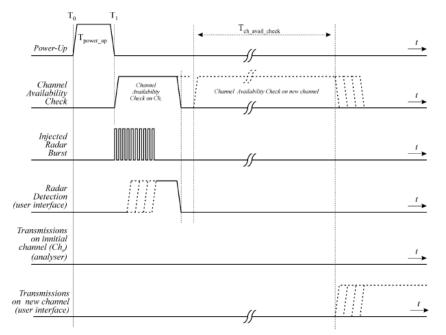


Figure 15: Example of timing for radar testing at the beginning of the Channel Availability Check Time

5.5.1. Test Result of radar burst at the beginning of the Channel Availability Check Time

The steps below define the procedure to verify successful radar detection on the test Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar Burst with a level equal to the DFS Detection Threshold + 1dB occurs at the end of the Channel Availability Check Time. This is illustrated in **Figure 16**.

- a) The Radar Waveform generator and UUT are connected using the applicable test setup described in the sections for Conducted Tests or Radiated Tests and the power of the UUT is switched off.
- b) The UUT is powered on at T0. T1 denotes the instant when the UUT has completed its power-up sequence (Tpower_up). The Channel Availability Check Time commences on Chr at instant T1 and will end no sooner than T1 + Tch_avail_check.
- c) A single Burst of one of the Short Pulse Radar Types 0-4 will commence within a 6 second window starting at T1 + 54 seconds. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.
- d) Visual indication or measured results on the UUT of successful detection of the radar Burst will be recorded and reported. Observation of Chr for UUT emissions will continue for 2.5 minutes after the radar Burst has been generated.
- e) Verify that during the 2.5 minute measurement window no UUT transmissions occurred on Chr. The Channel Availability Check results will be recorded.

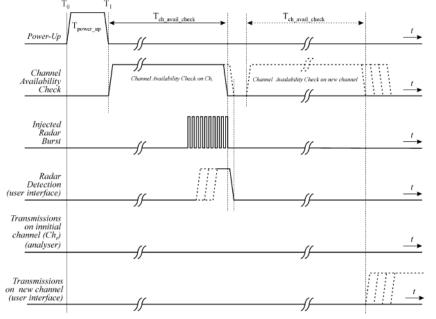


Figure 16: Example of timing for radar testing towards the end of the Channel Availability Check Time

5.6.1. Test Result of radar burst at the end of the Channel Availability Check Time Not required

5.7. U-NII Detection Bandwidth

Additional requirements for devices with	Master or Client with	Client without radar
multiple bandwidth modes	radar detection	detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.		

5.7.1. Test Limit

Limits Clause 4.7.2.1.2 Table D.2: DFS requirement values

Parameter	Value
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission
Note : During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.	

5.7.2. Test Result of U-NII Detection Bandwidth

5.8. Statistical Performance Check

The UUT will select channel by random mode and remember this channel when detect radar signal, so that will select unused channel by random mode.

5.8.1. Test Result of Uniform Spreading

5.9. In-Service Monitoring

The In-Service Monitoring is defined as the process by which an RLAN monitors the Operating Channel for the presence of radar signals.

Additional requirements for devices with multiple bandwidth modes	Master or Client with radar detection	Client without radar detection				
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required				
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link				
All other	Any single BW mode	Not required				
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.						

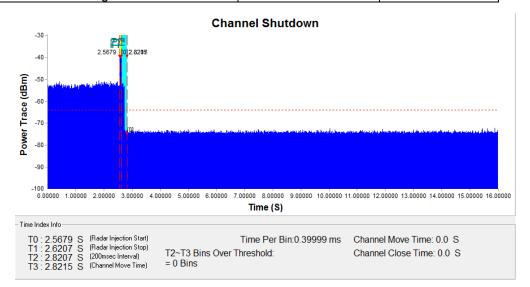
5.9.1. Test Limit

Parameter	Value
Channel Move Time	< 10 s (See Note 1)
Channel Closing Transmission Time	< 200 ms+ an aggregate of 60 milliseconds over remaining 10 second period. (See Notes 1 and Notes 2.)
with Radar Type 0. The measurement Note 2: The Channel Closing Transmission Ti beginning of the Channel Move Time plus any facilitate a Channel move (an aggregate of 60	Closing Transmission Time should be performed timing begins at the end of the Radar Type 0 burst. me is comprised of 200 milliseconds starting at the additional intermittent control signals required to milliseconds) during the remainder of the 10 trol signals will not count quiet periods in between

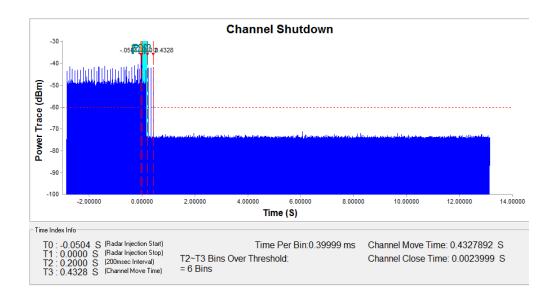
Limits Clause 4.7.2.2.2

The In-Service Monitoring shall be used to continuously monitor an Operating Channel.

The In-Service-Monitoring shall start immediately after the RLAN has started


transmissions on an Operating Channel.

5.9.2. Test Result of In-Service Monitoring


Bandwidth 80MHz Channel 58

	Value	Limit
Channel Move Time	0.0 s	<10 s
Channel Closing Transmission Time	0.0 ms	< 60 ms

Channel 106

	Value	Limit
Channel Move Time	0.4327892 s	<10 s
Channel Closing Transmission Time	2.3999 ms	< 60 ms

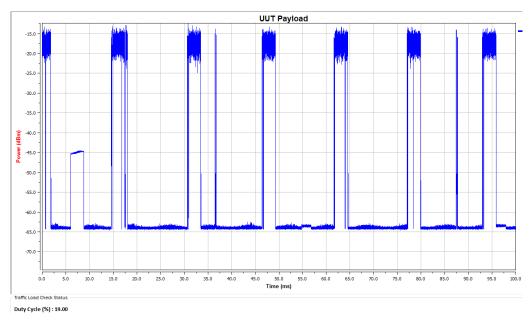
5.10. Non-Occupancy Period

The Channel Shutdown is defined as the process initiated by the RLAN device immediately after a radar signal has been detected on an Operating Channel.

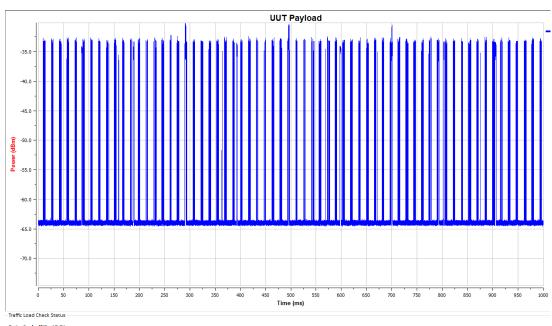
The master device shall instruct all associated slave devices to stop transmitting on this channel, which they shall do within the Channel Move Time.

Slave devices with a Radar Interference Detection function, shall stop their own transmissions within the Channel Move Time.

The aggregate duration of all transmissions of the RLAN device on this channel during the Channel Move Time shall be limited to the Channel Closing Transmission Time. The aggregate duration of all transmissions shall not include quiet periods in between transmissions.


5.10.1. Test Limit

Radar Test Signal	Master (min)	Client (min)		
0	> 30	> 30		


5.10.2. Channel Loading

Timing plots are required with calculations demonstrating a minimum channel loading of approximately 17% or greater. For example, channel loading can be estimated by setting the spectrum analyzer for zero span and approximate the Time On/ (Time On + Off Time). This can be done with any appropriate channel BW and modulation type

Modulation Standard: 802.11ac VHT80 CH58 Channel Load 19.00%

Modulation Standard: 802.11ac VHT80 CH106 Channel Load 17.23%

Duty Cycle (%) : 17.71

5.10.3. Test Result of Non-Occupancy Period

Modulation Standard: 802.11ac VHT80 CH58

Spectrum Analyz Swept SA		F							\$	Marker	- 7 法
KL +++	Input: RF Coupling: AC Align: Auto	Input Z: 50 Ω Corrections: Off Freq Ref: Int (S)	#Atten: 0 dB Preamp: Off		Off n: High	Avg Type: Lo Trig: Free Ru		123456 WWWWWW NNNNNN	Select Mar Marker 1	rker	•
1 Spectrum	v				ack: Off			1 59.00 s	Marker Tir 59.0000 s		Settings
Scale/Div 10 de	3		Ref Level -20.0	0 dBm			-3	8.62 dBm	Peak	Search	Peak Search
-30.0									Nex	t Peak	Pk Search Config
-40.0									Next	Pk Right	Properties
-60.0									Next	Pk Left	Marker Function
-70.0	a ball and the second	a set a series () and () a constant () separated by	the state program is state at the	ing and the second second	termodenter atte	a sugar a sugar ta da base a	utanan at in the barb	aday, the system, the s		um Peak	Marker→
-80.0										< Search	Counter
-90.0										er Delta r→CF	
-100										r→Cr →Ref Lvl	
								• • • •	Continuou		
Center 5.26000 Res BW 3.0 MH	z		Video BW 3.0	MHZ				Span 0 Hz s (40001 pts)	Search On Off		
L) (┓ ┓ ?	Jun 06, 2019 12:13:21 PM									

Modulation Standard: 802.11ac VHT80 CH106

Spectrum Analy Swept SA		F					Marker	· · ₩
	Input: RF Coupling: AC Align: Auto	Input Z: 50 Ω Corrections: Off Freq Ref: Int (S)	#Atten: 0 dB Preamp: Off	PNO: Fast Gate: Off IF Gain: High	Avg Type: Log-Powe Trig: Free Run	123456 WWWWWW NNNNNN	Select Marker Marker 1	•
பர 1 Spectrum	T			Sig Track: Off		kr1 59.40 s	Marker Time 59.4000 s	Settings
Scale/Div 10 dl	B		Ref Level -20.00) dBm		-36.78 dBm	Peak Search	Peak Search
-30.0							Next Peak	Pk Search Config
-40.0							Next Pk Right	Properties
-60.0							Next Pk Left	Marker Function
-70.0	Carl Surgers and a feet for the state	a la manta bastla paramana	en al sin esta esta la la constructiva en co	n with a state of the first of the state of the	a Nama ang kang bang bang bang bang bang bang bang b		Minimum Peak	Marker→
-80.0							Pk-Pk Search	Counter
-90.0							Marker Delta Mkr→CF	
-100							Mkr→Ref Lvl	
Center 5.50000	0000 GHz		Video BW 3.0	MHz		Span 0 Hz	Continuous Peak	
Res BW 3.0 MH			VIGEO BW 3.0) ks (40001 pts)		
ま り (<pre></pre>	Jun 06, 2019 11:25:28 AM	\square					