

Choose certainty.
Add value.

Report On

Application for Grant of Equipment Authorization of the Nextivity Inc.

Cel-Fi GO Cellphone Signal Repeater

FCC CFR 47 Part 2 and 27 RSS-Gen and RSS-130

Report No. SD72121023-1016D Rev 1.0

March 2017

Report No. SD72121023-1016D Rev 1.0

REPORT ON Radio Testing of the

Nextivity Inc.

Cellphone Signal Repeater

TEST REPORT NUMBER SD72121023-1016D Rev 1.0

PREPARED FOR Nextivity Inc.

16550 West Bernardo Drive, Bldg 5, Suite 550,

San Diego, CA 92127, USA

CONTACT PERSON CK Li

Sr. Principal Engineer, Regulatory

(858) 485-9442

CKLi@NextivityInc.com

PREPARED BY Xiaoying Zhang

Name

Authorized Signatory

Title: EMC/Wireless Test Engineer

APPROVED BY Juan M. Gonzalez

Name

Authorized Signatory

Title: EMC SL Manager Western Region

DATED March 30, 2017

Report No. SD72121023-1016D Rev 1.0

Revision History

SD72121023-1016D Rev 1.0 Nextivity Inc. Cel-Fi GO Cellphone Signal Repeater							
DATE	OLD REVISION	NEW REVISION	REASON	PAGES AFFECTED	APPROVED BY		
03/15/17	Initial Release				Juan M Gonzalez		
03/30/17	Initial Release	Rev 1.0	Added Antenna Information	Page 9, 10, 23	Juan M Gonzalez		

Report No. SD72121023-1016D Rev 1.0

CONTENTS

Section		Page No
1	REPORT SUMMARY	5
1.1	Introduction	6
1.2	Brief Summary of Results	
1.3	Product Information	
1.4	EUT Test configuration	
1.5	Deviations from the Standard	
1.6	Modification Record	15
1.7	Test Methodology	15
1.8	Test Facility Location	
1.9	Test Facility Registration	
1.10	Sample Calculations	17
2	TEST DETAILS	18
2.1	Transmitter Conducted Output Power	19
2.2	Effective Radiated Power	
2.3	Occupied bandwidth	24
2.4	Peak-Average Ratio	30
2.5	Band Edge	34
2.6	Conducted Spurious Emissions	40
2.7	Field Strength Of Spurious Radiation	50
2.8	Frequency Stability	57
2.9	Power Line Conducted Emissions	62
3	TEST EQUIPMENT USED	66
3.1	Test Equipment Used	67
3.2	Measurement Uncertainty	69
4	Diagram Of Test Setup	71
4.1	Test Setup Diagram	72
5	ACCREDITATION, DISCLAIMERS AND COPYRIGHT	77
5.1	Accreditation, Disclaimers and Copyright	78

Report No. SD72121023-1016D Rev 1.0

SECTION 1

REPORT SUMMARY

Radio Testing of the Nextivity Inc. Cel-Fi GO Cellphone Signal Repeater

Report No. SD72121023-1016D Rev 1.0

1.1 INTRODUCTION

The information contained in this report is intended to show verification of the Nextivity Inc. Cellphone Signal Repeater to the requirements of the following:

FCC CFR 47 Part 2 and 27

RSS-Gen and RSS-130.

Objective To perform Radio Testing to determine the Equipment Under

Test's (EUT's) compliance with the Test Specification, for the

series of tests carried out.

Manufacturer Nextivity Inc.

Model Name Cel-Fi GO

Model Number(s) G32-2/4/5/12/13

FCC ID YETG32-2451213

IC Number 9298A-G322451213

Serial Number(s) 332633000356 (Fix Unit) and 332633000417 (Mobile Unit)

Number of Samples Tested 2

Test Specification/Issue/Date • FCC CFR 47 Part 2 and 27 (October 1, 2016).

RSS-130 – Mobile Broadband Services (MBS) Equipment
 Operating in the Frequency Bands 698-756 MHz and 777-

787 MHz (Issue 1, October 2013).

 RSS-Gen - General Requirements and Information for the Certification of Radio Apparatus (Issue 4, November 2014).

Start of Test December 05, 2016

Finish of Test December 21, 2017

Name of Engineer(s) Xiaoying Zhang

Related Document(s) • ANSI/TIA-603-D-2010 - Lan

 ANSI/TIA-603-D-2010 – Land Mobile FM or PM – Communications Equipment – Measurement and Performance Standards.

remornance standards.

 KDB971168 (D01 Power Meas License Digital Systems v02r02) Measurement Guidance For Certification Of

Licensed Digital Transmitters

 KDB412172 D01 Determining ERP and EIRP v0101 (Guidelines for Determining the Effective Radiated Power (ERP) and Equivalent Isotropically Radiated Power (EIRP) of a

RF Transmitting System.

Antenna Kitting_v1.pdf

Supporting documents for EUT certification are separate

exhibits.

Report No. SD72121023-1016D Rev 1.0

1.2 BRIEF SUMMARY OF RESULTS

A brief summary of the tests carried out in accordance with FCC CFR 47 Part 2 and 27 with cross-reference to the corresponding IC RSS standard is shown below.

Section		Spec Clause		Took Description	Result	
Section	FCC Part 2	FCC Part 27	RSS-130	Test Description	Result	
2.1	2.1046	27.50 (b)(9)	4.4	Transmitter Conducted Output Power	Compliant	
2.2	-	-	4.4	Equivalent Isotropic Radiated Power	Compliant	
2.2	-	27.50 (b)(9)	-	Equivalent Radiated Power	Compliant	
2.3	2.1049	27.53 (h)	RSS-Gen 6.6	Occupied Bandwidth	Compliant	
2.4	-	27.50 (d)(5)	4.4	Peak-Average Ratio	Compliant	
2.5	2.1051	27.53 (c)(1),(2),(5)	4.6.1	Band Edge	Compliant	
2.6	2.1051	27.53 (c)(1),(2),(3), (4),(5) (6) and (f)	4.6	Conducted Spurious Emissions	Compliant	
2.7	2.1053	27.53 (c)(1),(2), (5)	4.6	Field Strength Of Spurious Radiation	Compliant	
2.8	2.1055	27.54	4.3	Frequency Stability	Compliant	
-	-	-	RSS-Gen 6.0	Receiver Spurious Emissions	N/A	
2.9	-	-	RSS-Gen 8.8	Power Line Conducted Emission	Compliant	

N/A - Not applicable. EUT has no Stand-Alone receiver port

Report No. SD72121023-1016D Rev 1.0

1.3 PRODUCT INFORMATION

1.3.1 Technical Description

The Equipment Under Test (EUT) is a Nextivity Inc. Cel-Fi GO Cellphone Signal Repeater. The EUT is a WCDMA/LTE Signal Booster to improve voice and data cellular performance in a variety of mobile (e.g. Vehicle and Marine), Fix (e.g. Home/office and Nomadic), Indoor and Outdoor environments. Both Fix and Mobile Versions are identical except the allowed maximum system gains which are set by firmware during production. The model tested in this report was the Fix sample as the representative unit unless otherwise stated. The unit includes Bluetooth LE connectivity. With the use of Nextivity smartphone application, it allows user to register the product, update software, capture / display details metrics of the system. LTE Band 13 function of the EUT was verified in this test report.

Report No. SD72121023-1016D Rev 1.0

1.3.2 EUT General Description

EUT Description Cellphone Signal Repeater

Model Name Cel-Fi GO

Model Number(s) G32-2/4/5/12/13

Rated Voltage 15V DC via external AC/DC adapter (Fix Unit)

12V DC via CLA (Cigarette Lighter Adaptor) (Mobile Unit)

Mode Verified LTE Band 13

Frequency Range Uplink: 777 MHz – 787 MHz

Downlink: 746 MHz - 756 MHz

Channel Bandwidth 5MHz, 10MHz

Rated Power

Bandwidth	Band 13		
(MHz)	DL (dB)	UL (dB)	
5	10.0	20	
10	13.0	20	

Capability WCDMA (Band 2 and 5), LTE (Band 2, 5, 12, 13 and 4) and BT LE

Primary Unit (EUT) Production

Pre-Production

Engineering

Manufacturer Declared Temperature Range

0°C to 65°C

Antenna Type External Antenna

Manufacturer Refer to the Antenna Kitting information supplied by the

manufacture

Antenna Model Refer to the Antenna Kitting information supplied by the

manufacture

Maximum Antenna Gain

Radio	Uplink (Donor)	Downlink (Server)	
HSPA/LTE Band 2	6.0 dBi	-1.0 dBi	
LTE Band 4	6.0 dBi	-1.0 dBi	
HSPA/LTE Band 5	8.0 dBi	-1.0 dBi	
LTE Band 12	8.0 dBi	-1.0 dBi	
LTE Band 13	8.0 dBi	-1.0 dBi	

Report No. SD72121023-1016D Rev 1.0

1.3.3 Transmit Frequency Table

	Channel	Tx Frequency	Emission	ERP(Part 27)		EIRP (RSS-130)	
Mode	Bandwidth (MHz)	(MHz)	Designator	Max. Power (dBm)	Max. Power (W)	Max. Power (dBm)	Max. Power (W)
LTE Band 13	5	748.5 - 753.5	4M28F9W	7.13	0.005	9.28	0.008
Downlink	10	751	8M80F9W	10.28	0.011	12.43	0.017
LTE Band 13 Uplink	5	779.5 - 784.5	4M28F9W	28.59	0.723	30.74	1.186
	10	782	8M80F9W	28.18	0.658	30.33	1.079

Report No. SD72121023-1016D Rev 1.0

1.4 EUT TEST CONFIGURATION

1.4.1 Test Configuration Description

Test Configuration	Description
А	Downlink. Input signal is applied to the antenna port of Donor (NU). Output is monitored from the antenna port of Server (CU).
В	Uplink. Input signal is applied to the antenna port of Server (CU). Output is monitored from the antenna port of Donor (NU).
С	Radiated test setup. Downlink. Input signal is applied to the antenna port of Donor (NU). The antenna port of Server (CU) is terminated with a 50Ω load.
D	Radiated test setup. Uplink. Input signal is applied to the antenna port of Server (CU). The antenna port of Donor (NU) is terminated with a 50Ω load.

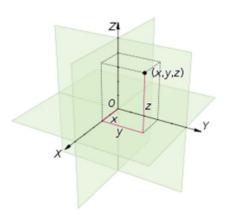
1.4.2 EUT Exercise Software

Manufacturer provided a configuration software (ConformanceTest.exe) running from a support laptop where EUT is connected via USB.

1.4.3 Support Equipment and I/O cables

Manufacturer	Equipment/Cable	Description	
		Model: HK-AY-150A160-US S/N: GB0000007	
HON-KWANG	I.T.E Power Supply	Input: 100-240V, 50/60Hz, 0.8A;	
		Output: 15 VDC 1.6A	
	Cigarette Lighter Adaptor	Model: 290N035-001	
-	(CLA)	Input: 12.6 – 14.7VDC;	
	(CLA)	Output: 12VDC	
Nextivity	Support USB cable	Custom 1.0 meter shielded USB Type A to	
IVEXLIVILY	заррог озд саме	Type A cable	
Nextivity	USB / Interface Box	Unshielded with "Tag-Connect" interface	
API Technologies	DC Block	M/N: 8037	
Corp.		,	
Lenovo	Support Laptop	M/N: 2912-3VU, S/N: R9-92MH0 10/11	
Lenovo	Support Laptop AC Adapter	M/N: 42T4430	
LCHOVO	Support Euptop Ac Adapter	S/N: 11S42T4430Z1ZGWE27AA9X	

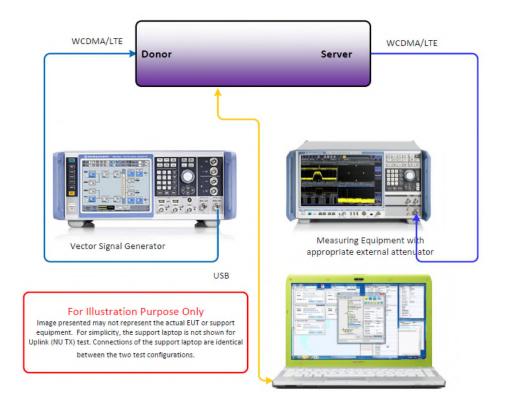
Report No. SD72121023-1016D Rev 1.0

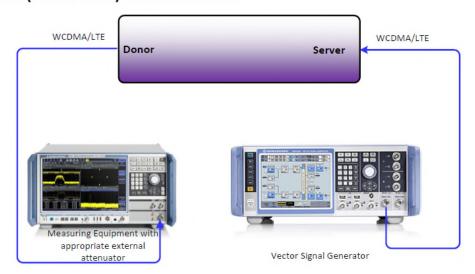


1.4.4 Worst Case Configuration

Worst-case configuration used in this test report per Transmitter Conducted Output Power (Section 2.1 of this test report). This is for single channel verification, otherwise all three channels (Low, Mid and High) are verified:

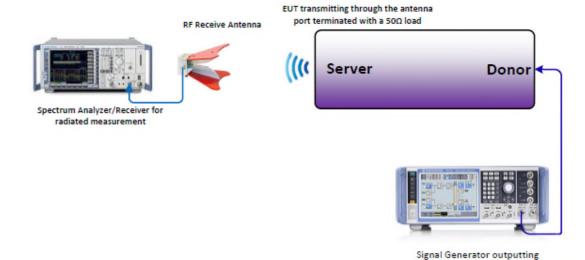
Mode	Bandwidth	Cellular	Frequency
LTE Band 13 Downlink	10MHz	Channel 5230	751 MHz
LTE Band 13 Uplink	5MHz	Channel 23205	779.5 MHz


EUT is a mobile device. Final installation position is unknown at the time of verification. For radiated measurements X, Y and Z orientations were verified. No major variation in emissions observed between the three (3) orientations. Verifications performed using "Y" configuration.



1.4.5 Simplified Test Configuration Diagram

Downlink (Server Port) Conducted Test


Uplink (Donor Port) Conducted Test

WCDMA/LTE signals

Radiated Testing (Downlink)

Radiated Testing (Uplink)

Report No. SD72121023-1016D Rev 1.0

1.5 DEVIATIONS FROM THE STANDARD

No deviations from the applicable test standards or test plan were made during testing.

1.6 MODIFICATION RECORD

Description of Modification	Modification Fitted By	Date Modification Fitted			
Serial Number 332633000356 (Fix Unit) and 332633000417 (Mobile Unit)					
N/A	-	-			

The table above details modifications made to the EUT during the test programme. The modifications incorporated during each test (if relevant) are recorded on the appropriate test pages.

1.7 TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.26 2015, American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

For conducted (if applicable) and radiated emissions the equipment under test (EUT) was configured to measure its highest possible emission level. This level was based on the maximized cable configuration from exploratory testing per ANSI C63.26-2015. The test modes were adapted according to the Operating Instructions provided by the manufacturer/client.

1.8 TEST FACILITY LOCATION

1.8.1 TÜV SÜD America Inc. (Mira Mesa)

10040 Mesa Rim Road, San Diego, CA 92121-2912 (32.901268,-117.177681). Phone: 858 678 1400 FAX: 858-546 0364

1.8.2 TÜV SÜD America Inc. (Rancho Bernardo)

16936 Via Del Campo, San Diego, CA 92127-1708 (33.018644,-117.092409). Phone: 858 678-1400 Fax: 858 546 0364.

1.9 TEST FACILITY REGISTRATION

1.9.1 FCC – Registration No.: US1146

TUV SUD America Inc. (San Diego), is an accredited test facility with the site description report on file and has met all the requirements specified in §2.948 of the FCC rules. The acceptance letter from the FCC is maintained in our files and the Registration is US1146.

Report No. SD72121023-1016D Rev 1.0

1.9.2 Innovation, Science and Economic Development Canada Registration No.: 3067A

The 10m Semi-anechoic chamber of TUV SUD America Inc. (San Diego) has been registered by Certification and Engineering Bureau of Innovation, Science and Economic Development Canada for radio equipment testing with Registration No. 3067A.

Report No. SD72121023-1016D Rev 1.0

1.10 SAMPLE CALCULATIONS

1.10.1 LTE Emission Designator

Emission Designator = 1M30F9W F = Frequency Modulation 9= Composite Digital Info W = Combination (Audio/Data)

1.10.2 Spurious Radiated Emission (below 1GHz)

Measuring equipment raw r	24.4		
	Asset# 1066 (cable) 0.3		
	Asset# 1172 (cable)	0.3	
Correction Factor (dB)	Asset# 1016 (preamplifier)	lifier) -30.7	
	Asset# 1175(cable)	0.3	
	Asset# 1002 (antenna)	17.2	
Reported QuasiPeak Final M	11.8		

1.10.3 Spurious Radiated Emission – Substitution Method

Example = 84dBµV/m @ 1413 MHz (numerical sample only)

The field strength reading of $84dB\mu V/m$ @ 1413 MHz (2^{nd} Harmonic of 706.5 MHz) is the maximized measurement when the EUT is on the turntable measured at 3 meters. The gain of the substituted antenna is 7.8dBi while the transmit cable loss is 1.0 dB (cable between signal generator and the substituted antenna). The signal generator level is adjusted until the $84dB\mu V/m$ level at the receiving end is replicated (identical test setup, i.e. same antenna, cable/s and preamp). If the adjusted signal generator level is -18dBm, then we have the following for both EIRP and ERP as required:

 P_{EIRP} = -18 dBm + 7.8 dBi – 1dB

= 11.2 dBm

 $P_{ERP} = P_{EIRP} - 2.15 dB$

= 11.2 dBm - 2.15 dB

= 9.05 dBm

Report No. SD72121023-1016D Rev 1.0

SECTION 2

TEST DETAILS

Radio Testing of the Nextivity Inc. Cel-Fi GO Cellphone Signal Repeater

Report No. SD72121023-1016D Rev 1.0

2.1 TRANSMITTER CONDUCTED OUTPUT POWER

2.1.1 Specification Reference

FCC 47 CFR Part 2, Clause 2.1046 (a) and (c) FCC 47 CFR Part 27, Clause 27.50 (b)(9) RSS-130, Clause 4.4

2.1.2 Standard Applicable

FCC 47 CFR Part 2, Clause 2.1046:

- (a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in §2.1033(c)(8). The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.
- (c) For measurements conducted pursuant to paragraphs (a) and (b) of this section, all calculations and methods used by the applicant for determining carrier power or peak envelope power, as appropriate, on the basis of measured power in the radio frequency load attached to the transmitter output terminals shall be shown. Under the test conditions specified, no components of the emission spectrum shall exceed the limits specified in the applicable rule parts as necessary for meeting occupied bandwidth or emission limitations.

FCC 47 CFR Part 27, Clause 27.50 (b)(9):

Control stations and mobile stations transmitting in the 746–757 MHz, 776–788 MHz, and 805–806 MHz bands and fixed stations transmitting in the 787–788 MHz and 805–806 MHz bands are limited to 30 watts ERP.

RSS-130, Clause 4.4:

The e.i.r.p. shall not exceed 50 watts for mobile equipment or for outdoor fixed subscriber equipment, nor shall it exceed 5 watts for portable equipment or for indoor fixed subscriber equipment.

2.1.3 Equipment Under Test and Modification State

Serial No: 332633000356 (Fix Unit) / Test Configuration A and B

2.1.4 Date of Test/Initial of test personnel who performed the test

December 06, 2016/XYZ

2.1.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

Report No. SD72121023-1016D Rev 1.0

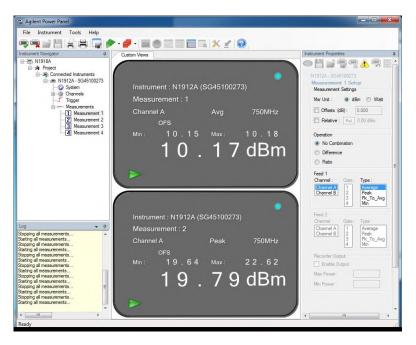
2.1.6 Environmental Conditions

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility.

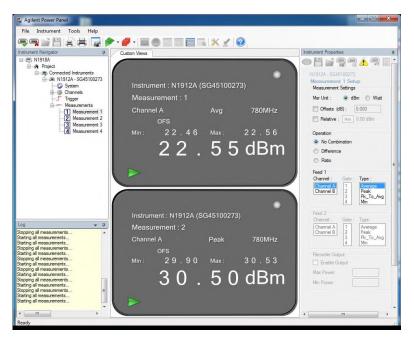
Ambient Temperature 22.3C
Relative Humidity 40.3%
ATM Pressure 90.0kPa

2.1.7 Additional Observations

- This is a conducted test using an average power meter.
- The path loss was measured and entered as a level offset.
- Both Peak and Average measurements presented.


2.1.8 Test Results

Downlink (CU B13 Output)							
Band Bandwidth Channel Frequency Average Power Peak Power (MHz) (dBm) (dBm)							
	5MHz 10MHz	5205	748.5	10.13	20.21		
		5230	751	10.17	19.79		
LTE Band 13		5255	753.5	10.28	20.18		
LIE Band 13		-	-	-	-		
		5230	751	13.43	23.35		
		-	-	-	-		


Uplink (NU B13 Output)							
Band	Bandwidth	Channel	Frequency (MHz)	Average Power (dBm)	Peak Power (dBm)		
	5MHz	23205	779.5	22.74	30.05		
		23230	782	22.55	30.50		
LTE Band 13		23255	784.5	22.74	30.22		
LIE Ballu 13	10MHz	-	-	-	-		
		23230	782	22.33	30.75		
		-	-	-	-		

2.1.9 Sample Test Plot

LTE Band 13 DL 5MHz Bandwidth Mid Channel

LTE Band 13 UL 5MHz Bandwidth Mid Channel

2.2 EFFECTIVE RADIATED POWER

2.2.1 Specification Reference

FCC 47 CFR Part 27, Clause 27.50 (b)(9) RSS-130, Clause 4.4

2.2.2 Standard Applicable

FCC 47 CFR Part 27, Clause 27.50 (b)(9):

Control stations and mobile stations transmitting in the 746–757 MHz, 776–788 MHz, and 805–806 MHz bands and fixed stations transmitting in the 787–788 MHz and 805–806 MHz bands are limited to 30 watts ERP.

RSS-130, Clause 4.4:

The e.i.r.p. shall not exceed 50 watts for mobile equipment or for outdoor fixed subscriber equipment, nor shall it exceed 5 watts for portable equipment or for indoor fixed subscriber equipment.

2.2.3 Equipment Under Test and Modification State

Serial No: 332633000356 (Fix Unit)

2.2.4 Date of Test/Initial of test personnel who performed the test

December 06, 2016/XYZ

2.2.5 Additional Observations

- ERP was calculated as per Section 1.3.2 of KDB412172 D01 (Determining ERP and EIRP v01).
- Calculation formula in logarithmic terms:

$$ERP = P_T + G_T - L_C - 2.15dB$$

Where:

P_T = transmitter conducted output power dBm (Section 2.1 of this test report)

 G_T = gain of the transmitting antenna, in dBi (EIRP: the -2.15 in the formula is to convert EIRP to ERP);

 $\mathbf{L}_{\mathbf{C}}$ = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

2.2.6 Sample Computation

ERP =
$$P_T + G_T - L_C - 2.15dB$$

= 29.87 (Peak) + 0.13 (max. gain) – 3.84 (cable loss) -2.15
= 24.01 dBm

2.2.7 Test Results

Band 13 Downlink								
Bandwidth	Channel	Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	ERP (dBm)	EIRP (dBm)	Limit (dBm)	
	5205	748.5	10.13	-1.0	6.98	9.13	44.78	
5.0MHz	5230	751	10.17	-1.0	7.02	9.17	44.78	
	5255	753.5	10.28	-1.0	7.13	9.28	44.78	
	-	-	-	-	-	-	-	
10MHz	5230	751	13.43	-1.0	10.28	12.43	44.78	
	-	-	-	-	-	-	-	

Band 13 Uplink								
Bandwidth	Channel	Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	ERP (dBm)	EIRP (dBm)	Limit (dBm)	
	23205	779.5	22.74	8.0	28.59	30.74	44.78	
5.0MHz	23230	782	22.55	8.0	28.4	30.55	44.78	
	23255	784.5	22.74	8.0	28.59	30.74	44.78	
	-	-	-	-	-	-	-	
10MHz	23230	782	22.33	8.0	28.18	30.33	44.78	
	-	-	-	-	-	-	-	

Report No. SD72121023-1016D Rev 1.0

2.3 OCCUPIED BANDWIDTH

2.3.1 Specification Reference

FCC 47 CFR Part 2. Clause 2.1049 FCC 47 CFR Part 27, Clause 27.53(h)(3) RSS-GEN Issue 4, Clause 6.6

2.3.2 Standard Applicable

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

2.3.3 Equipment Under Test and Modification State

Serial No: 332633000356 (Fix Unit) / Test Configuration A and B

2.3.4 Date of Test/Initial of test personnel who performed the test

December 06, 2016/XYZ

2.3.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.3.6 Environmental Conditions

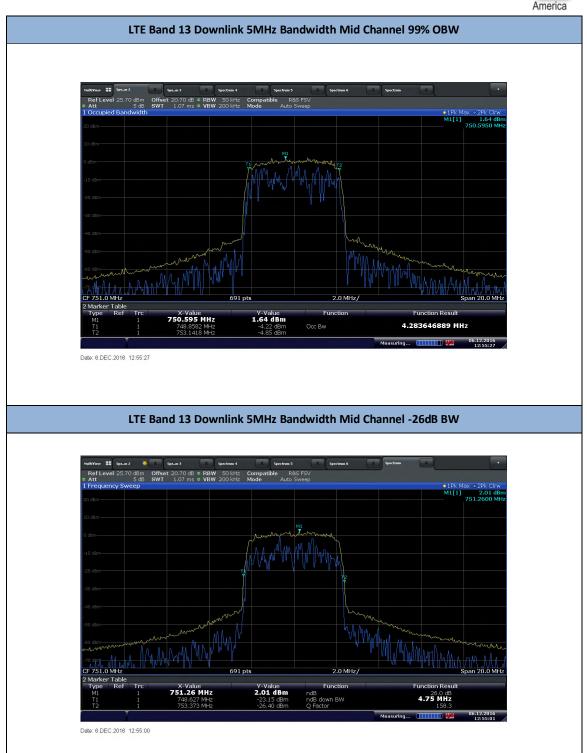
Test performed at TÜV SÜD America Inc. Rancho Bernardo facility.

Ambient Temperature 22.3°C Relative Humidity 40.3% ATM Pressure 99.0kPa

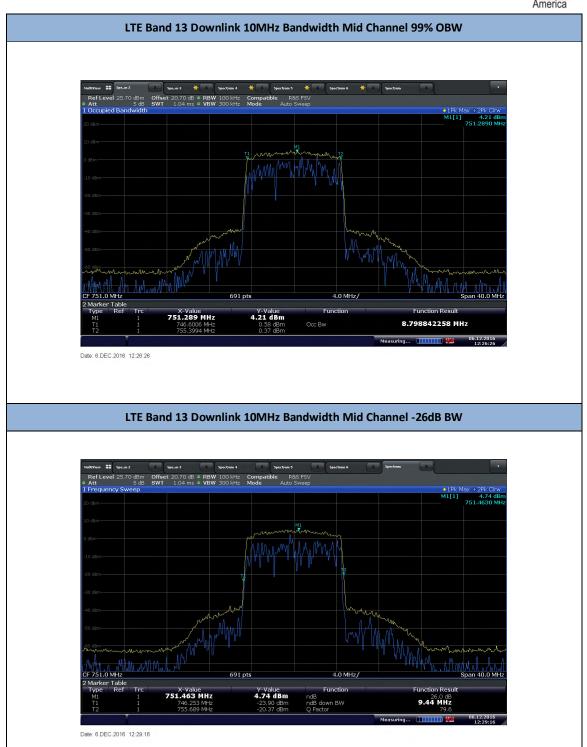
2.3.7 Additional Observations

- This is a conducted test. Both 26dB bandwidth and 99% bandwidth presented.
- All channels for emission bandwidth verification verified.
- The span is between two and five times the anticipated OBW.
- The RBW is set to 1% of the OBW while the VBW is ≥3X RBW.
- The detector is peak and the trace mode is max hold.
- All low, middle and high channels were verified. Only test plots for middle channel presented in this test report as the representative configuration.
- The SA built-in emission bandwidth measurement feature is utilized. The power level setting is set to 99% while "x dB" is set to -26.

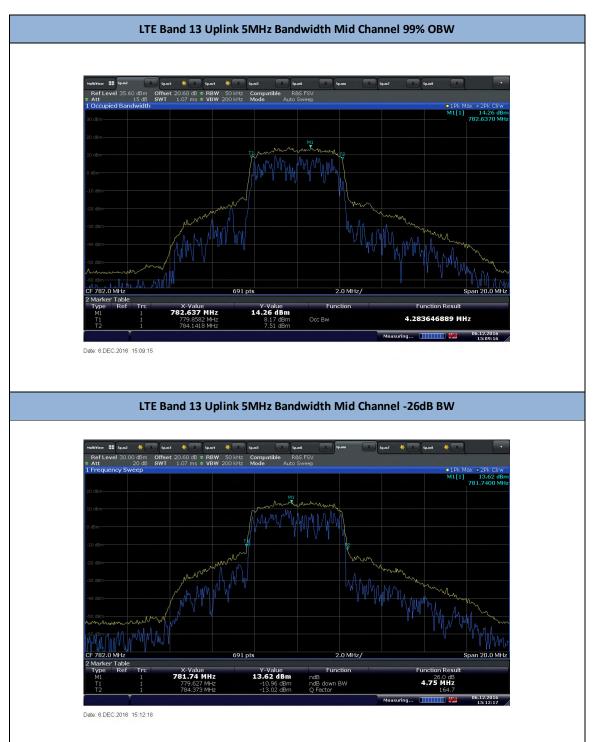
Report No. SD72121023-1016D Rev 1.0

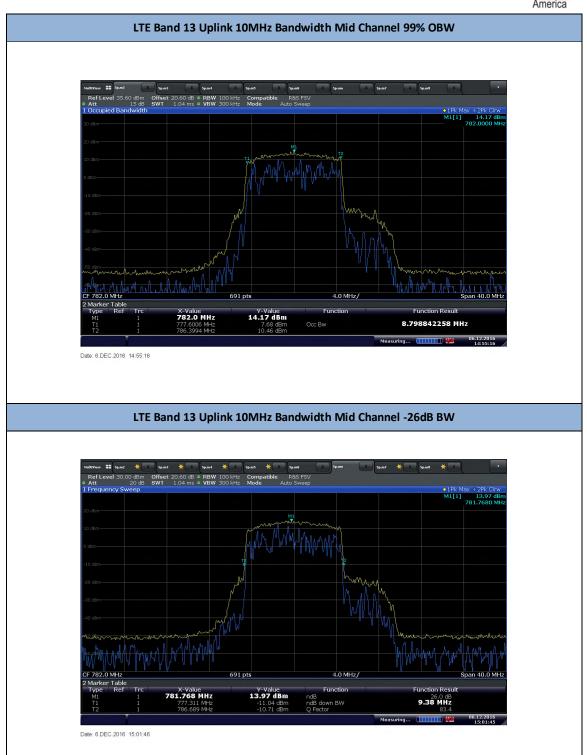


2.3.8 Test Results


Downlink							
Band	Bandwidth	Channel	Frequency (MHz)	OBW (MHz)	-26dB BW (MHz)		
	5MHz	5205	748.5	4.28	4.72		
		5230	751	4.28	4.75		
LTE Band 13		5255	753.5	4.28	4.72		
LIE Band 13	10MHz	-	-	-	-		
		5230	751	8.80	9.44		
		-	-	-	-		

Uplink							
Band	Bandwidth	Channel	Frequency (MHz)	OBW (MHz)	-26dB BW (MHz)		
	5MHz	23205	748.5	4.28	4.75		
		23230	751	4.28	4.75		
LTE Band 13		23255	753.5	4.28	4.75		
LIE BANG 13	10MHz	-	-	-	-		
		23230	751	8.80	9.38		
		-	-	-	-		





Report No. SD72121023-1016D Rev 1.0

2.4 PEAK-AVERAGE RATIO

2.4.1 Specification Reference

FCC 47 CFR Part 27, Clause 27.50 (d)(5) RSS-130, Clause 4.4

2.4.2 Standard Applicable

The peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB for more than 0.1% of the time and shall use a signal corresponding to the highest PAPR during periods of continuous transmission.

2.4.3 Equipment Under Test and Modification State

Serial No: 332633000356 (Fix Unit) / Test Configuration A and B

2.4.4 Date of Test/Initial of test personnel who performed the test

December 06, 2016/XYZ

2.4.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.4.6 Environmental Conditions

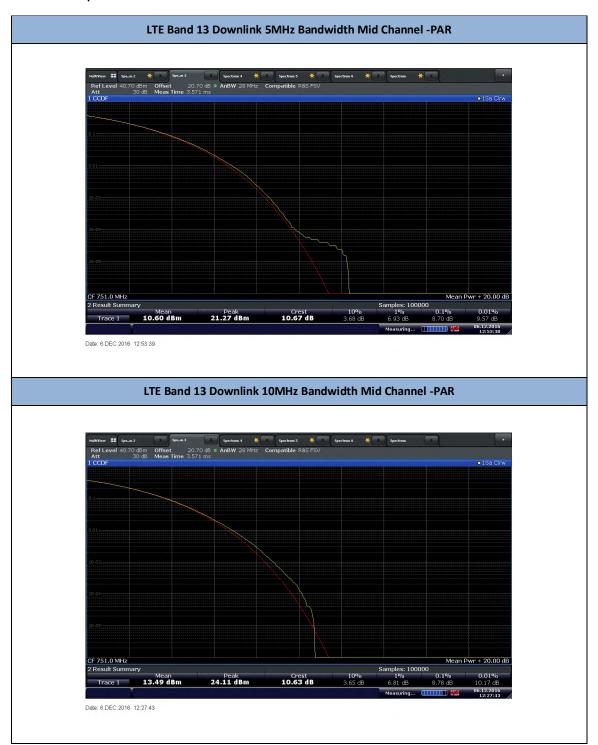
Test performed at TÜV SÜD America Inc. Rancho Bernardo facility.

Ambient Temperature 22.3°C Relative Humidity 40.3% ATM Pressure 99.0kPa

2.4.7 Additional Observations

- This is a conducted test. Test procedure is per Section 5.7 of KDB971168 (D01 Power Meas License Digital Systems v02r02). Appropriate offset (line loses) applied.
- Measurement was done using the Spectrum Analyzer's Complementary Cumulative Distribution Function (CCDF) measurement profile. The built-in function is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth (crest factor or peak-to-average ratio) The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signals spends at or above the level defines the probability for that particular power level.
- Procedure is per Section 5.7.1 of KDB971168.
- RBW was set to maximum the SA can support.
- The maximum PAPR level associated with a probability of 0.1% was recorded.

- All low, middle and high channels were verified. Only test plots for middle channel presented in this test report as the representative configuration.
- There are no measured PAR levels greater than 13dB. EUT complies.


2.4.8 Test Results

Downlink						
Band	Bandwidth	Channel	Frequency (MHz)	PAR (dB)		
	5MHz	5205	748.5	10.45		
		5230	751	10.67		
LTE Dand 12		5255	753.5	10.78		
LTE Band 13	10MHz	-	-	-		
		5230	751	10.63		
		-	-	-		


Uplink						
Band	Bandwidth	Channel	Frequency (MHz)	PAR (dB)		
	5MHz	23205	779.5	7.62		
		23230	782	7.59		
LTE Dand 12		23255	784.5	7.65		
LTE Band 13	10MHz	-	-	-		
		23230	782	8.55		
		-	-	-		

2.4.9 Sample Test Plot

Report No. SD72121023-1016D Rev 1.0

2.5 BAND EDGE

2.5.1 Specification Reference

FCC 47 CFR Part 27, Clause 27.53(c)(1),(2) and (5) RSS-130, Clause 4.6

2.5.2 Standard Applicable

FCC 47 CFR Part 27, Clause 27.53:

(c)(1) On any frequency outside the 746–758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;

(c)(2) On any frequency outside the 776–788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;

(c)(5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed.

RSS-130, Clause 4.6.1:

The power of any unwanted emissions in any 100 kHz bandwidth on any frequency outside thefrequency range(s) within which the equipment is designed to operate shall be attenuated below the transmitter power, P (dBW), by at least 43 + 10 log10 p (watts), dB. However, in the 100 kHz band immediately outside the equipment's operating frequency range, a resolution bandwidth of 30 kHz may be employed.

2.5.3 Equipment Under Test and Modification State

Serial No: 332633000356 (Fix Unit) / Test Configuration A and B

2.5.4 Date of Test/Initial of test personnel who performed the test

December 06, 2016/XYZ

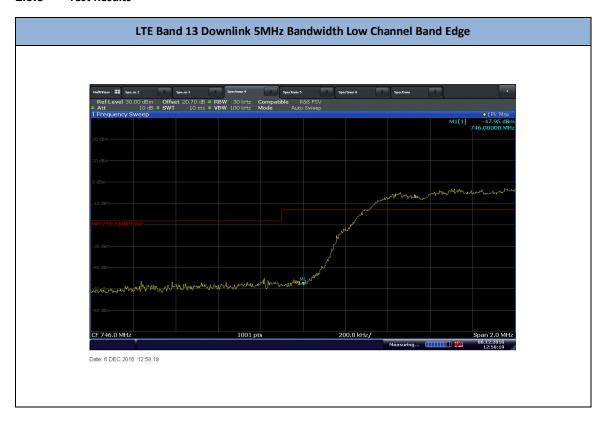
2.5.5 Test Equipment Used

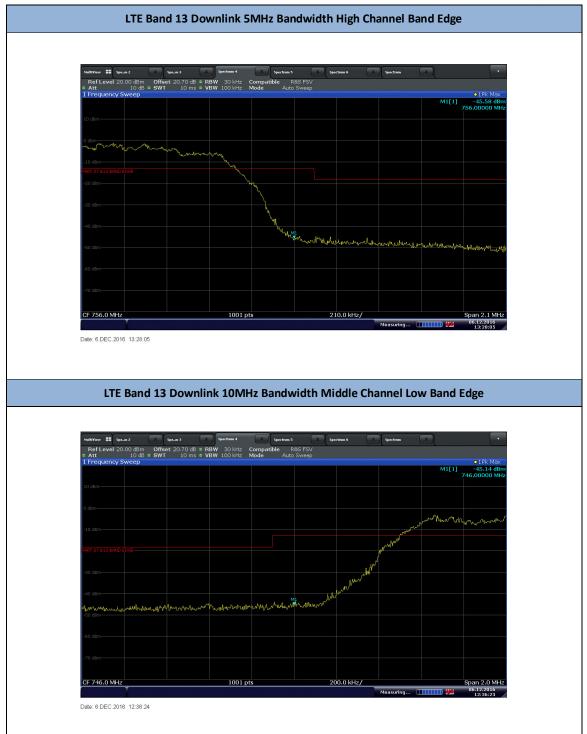
The major items of test equipment used for the above tests are identified in Section 3.1.

2.5.6 Environmental Conditions

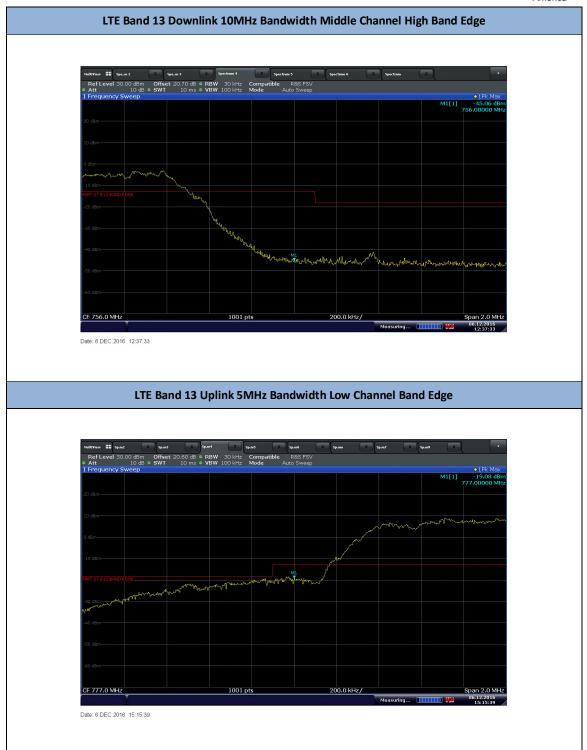
Test performed at TÜV SÜD America Inc. Rancho Bernardo facility.

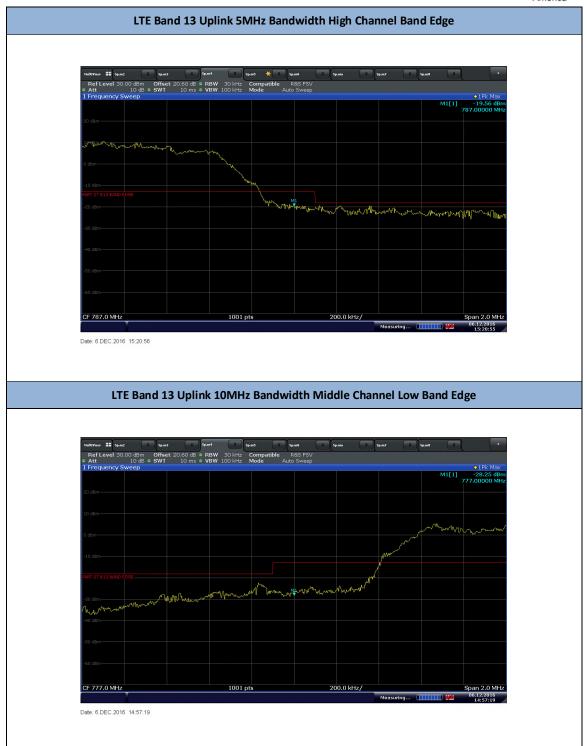
Ambient Temperature 22.3°C Relative Humidity 40.3% ATM Pressure 99.0kPa


Report No. SD72121023-1016D Rev 1.0


2.5.7 Additional Observations

- This is a conducted test.
- Test guidance is per Section 6.0 of KDB971168 (D01 Power Meas License Digital Systems v02r02).
- The path loss was measured and entered as a level offset.
- The center frequency of the spectrum is the band edge frequency (worst case 746 MHz 756MHz and 777 MHz -787 MHz per IC requirement).
- Using a span of 2MHz, RBW is set to 30 kHz and VBW is set to 3X RBW.
- The limit was set to -13dBm in the 100 kHz bands immediately outside and adjacent to the frequency block, and -18.23dBm for 100 kHz outside of the frequency block to compensate RBW from 100 kHz to 30 kHz.


2.5.8 Test Results



Report No. SD72121023-1016D Rev 1.0

2.6 CONDUCTED SPURIOUS EMISSIONS

2.6.1 Specification Reference

FCC 47 CFR Part 2, Clause 2.1051 FCC 47 CFR Part 27, Clause 27.53(c)(f) RSS-130, Clause 4.6.2

2.6.2 Standard Applicable

FCC 47 CFR Part 27, Clause 27.53 (c):

- (1) On any frequency outside the 746–758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;
- (2) On any frequency outside the 776–788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;
- (3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than $76 + 10 \log (P)$ dB in a 6.25 kHz band segment, for base and fixed stations;
- (4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations;
- (5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed.
- (6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.
- (f) For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

RSS-130, Clause 4.6.1:

The power of any unwanted emissions in any 100 kHz bandwidth on any frequency outside thefrequency range(s) within which the equipment is designed to operate shall be attenuated below the transmitter power, P (dBW), by at least 43 + 10 log10 p (watts), dB. However, in the 100 kHz band immediately outside the equipment's operating frequency range, a resolution bandwidth of 30 kHz may be employed.

RSS-130, Clause 4.6.2:

In addition to the limit outlined in Section 4.6.1 (RSS-Gen and RSS-130), equipment operating in the frequency bands 746-756 MHz and 777-787 MHz shall also comply with the following restrictions:

(a) The power of any unwanted emissions in any 6.25 kHz bandwidth for all frequencies between 763-775 MHz and 793-806 MHz shall be attenuated below the transmitter power, P (dBW), by at least:

Page **40** of **78**

Report No. SD72121023-1016D Rev 1.0

(i) 76 + 10 log10 p(watts), dB, for base and fixed equipment, and

(ii) 65 + 10 log10 p(watts), dB, for mobile and portable equipment.

(b) The e.i.r.p. in the band 1559-1610 MHz shall not exceed -70 dBW/MHz for wideband signal and -80 dBW for discrete emission with bandwidth less than 700 Hz.

2.6.3 Equipment Under Test and Modification State

Serial No: 332633000356 (Fix Unit) / Test Configuration A and B

2.6.4 Date of Test/Initial of test personnel who performed the test

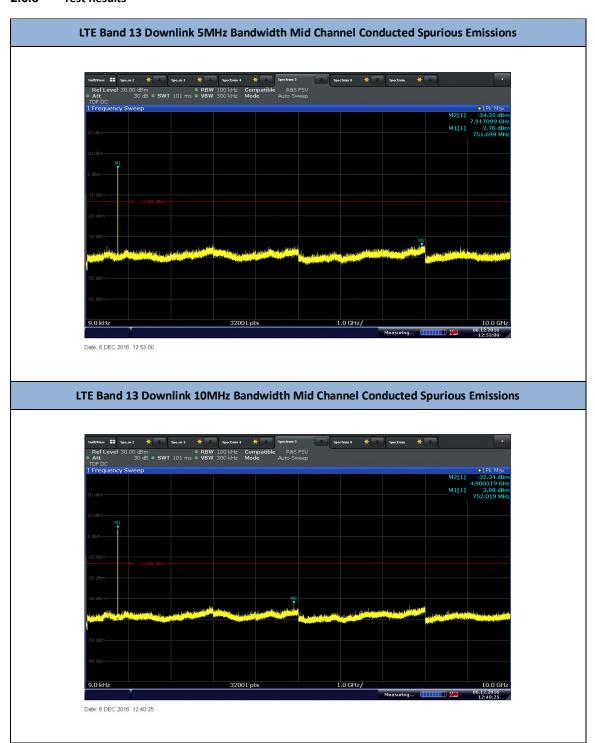
December 06, 2016/XYZ

2.6.5 Test Equipment Used

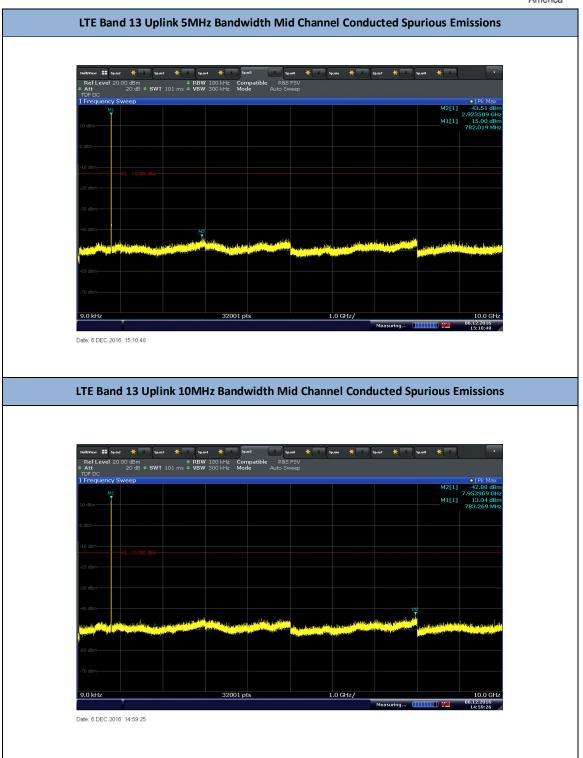
The major items of test equipment used for the above tests are identified in Section 3.1.

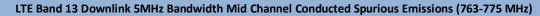
2.6.6 Environmental Conditions

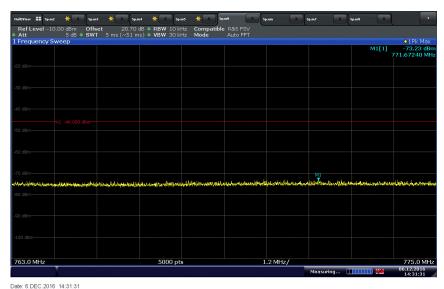
Test performed at TÜV SÜD America Inc. Rancho Bernardo facility.


Ambient Temperature 22.3°C Relative Humidity 40.3% ATM Pressure 99.0kPa

2.6.7 Additional Observations

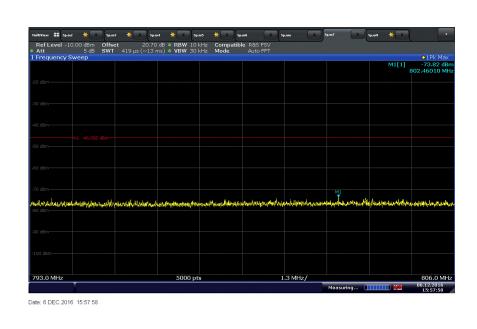

- This is a conducted test.
- The transducer factor (TDF) used is from the external attenuators and cables used.
- The spectrum was searched from 9 kHz to 10 GHz (requirement is up to the 10th harmonic (≤8GHz)) using 100 kHz RBW.
- For 763-775 MHz and 793-806 MHz verification, the next available RBW was used (6.25 kHz required, 10kHz RBW utilized).
- For 1559 1610 MHz verifiation, 1 MHz RBW was used. Additional correction factor of 0dB was added for the antenna gain of the EUT.
- All low, middle and high channels were verified. Only test plots for middle channel presented in this test report as the representative configuration.

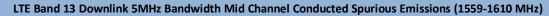

2.6.8 Test Results



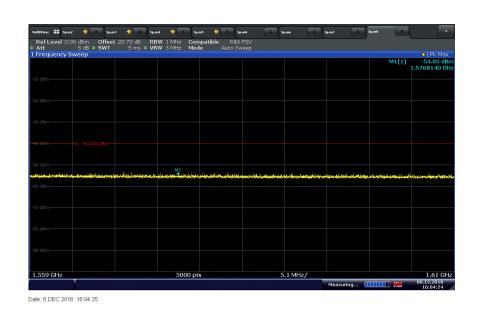


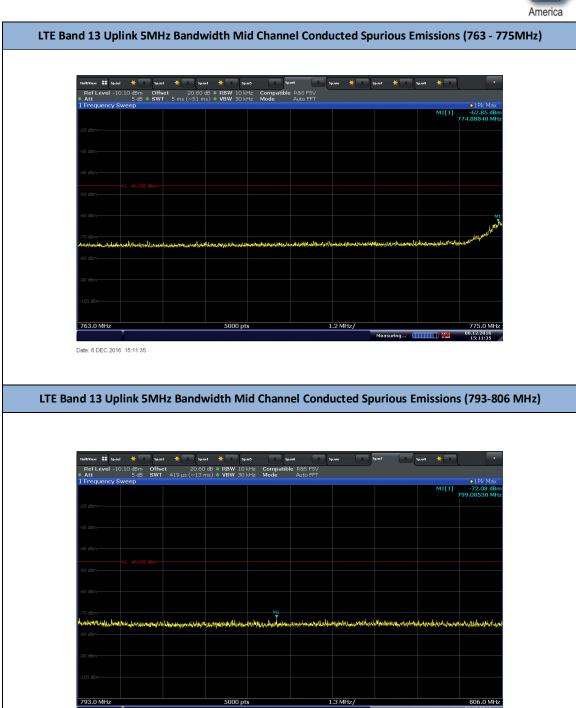

LTE Band 13 Downlink 5MHz Bandwidth Mid Channel Conducted Spurious Emissions (793-806 MHz)


Date: 6.DEC.2016 14:30:17

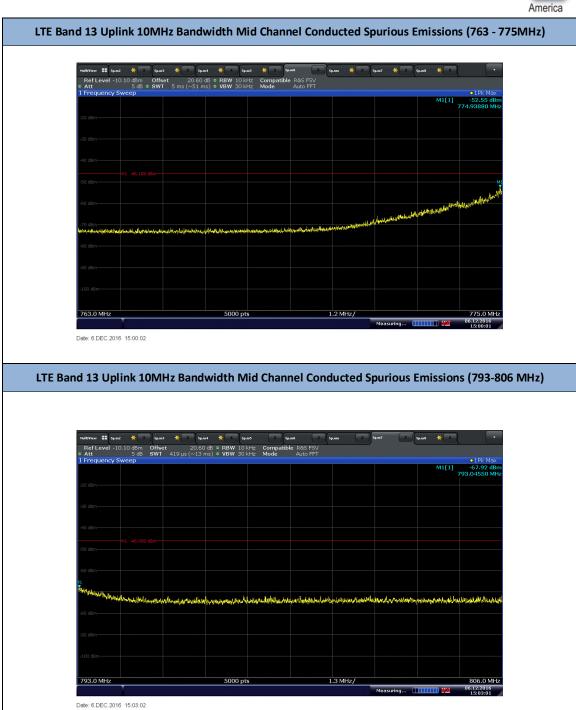


TE Band 13 Downlink 10MHz Bandwidth Mid Channel Conducted Spurious Emissions (793-806 MHz)

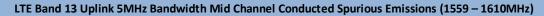


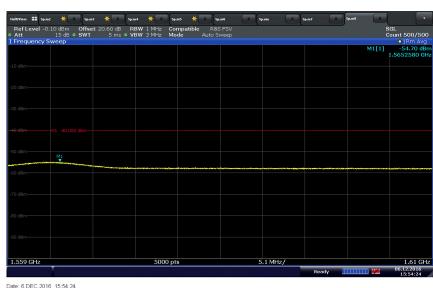


LTE Band 13 Downlink 10MHz Bandwidth Mid Channel Conducted Spurious Emissions (1559-1610 MHz)



Date: 6.DEC.2016 15:12:41





LTE Band 13 Uplink 10MHz Bandwidth Mid Channel Conducted Spurious Emissions (1559 – 1610MHz)

Date: 6.DEC.2016 15:54:24

Report No. SD72121023-1016D Rev 1.0

2.7 FIELD STRENGTH OF SPURIOUS RADIATION

2.7.1 Specification Reference

FCC 47 CFR Part 2, Clause 2.1053 FCC 47 CFR Part 27, Clause 27.53(c) RSS-130, Clause 4.6

2.7.2 Standard Applicable

Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

2.7.3 Equipment Under Test and Modification State

Serial No: 332633000356 (Fix Unit) / Test Configuration C and D

2.7.4 Date of Test/Initial of test personnel who performed the test

December 10, 12 and 18, 2016/XYZ

2.7.5 Test Equipment Used

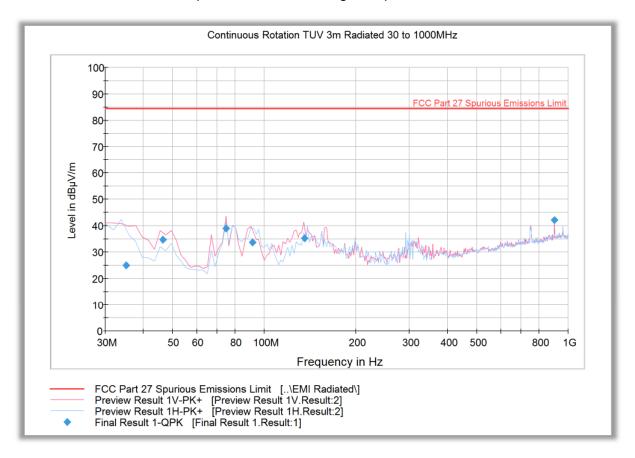
The major items of test equipment used for the above tests are identified in Section 3.1.

2.7.6 Environmental Conditions

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility.

Ambient Temperature 22.8 - 23.1°C Relative Humidity 39.8 - 56.8% ATM Pressure 99.3 - 99.4kPa

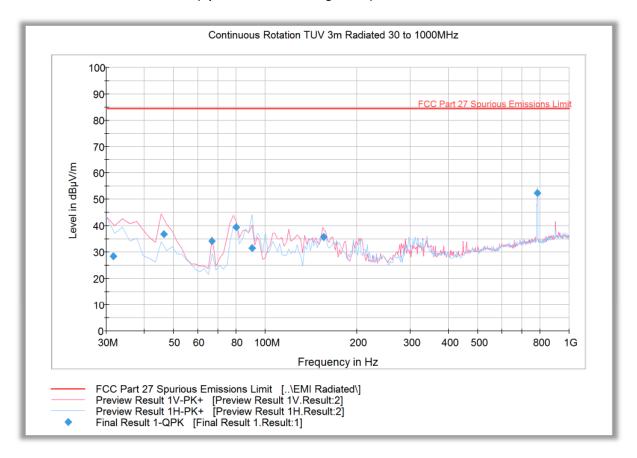
2.7.7 Additional Observations


- This is a radiated test using substitution method as per Unwanted Emissions: Radiated Spurious method of measurement of ANSI/TIA/EIA-603-D 2010, June 24, 2010.
- Only the worst case configuration presented in this test report.
- Measurement was done using EMC32 V8.53 automated software. Reported level is the actual level with all the correction factors factored in. Correction Factor column is for informational purposes only.

2.7.8 Test Results

See attached plots.

2.7.9 Test Results Below 1GHz (Downlink Worst Case Configuration) - 10MHz Bandwidth Middle Channel

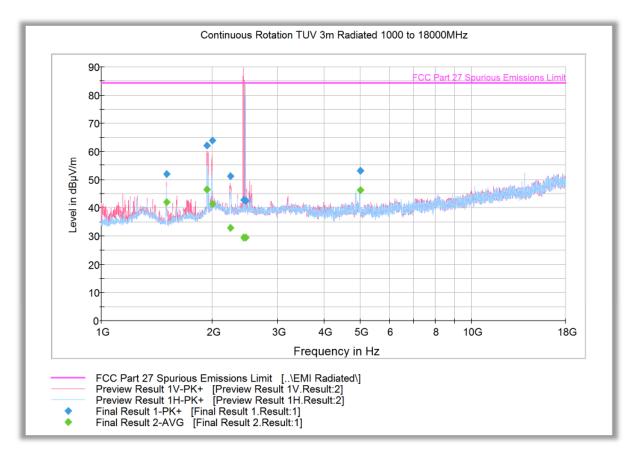

Quasi Peak Data

Frequency (MHz)	QuasiPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
35.047776	25.1	1000.0	120.000	158.0	Н	192.0	-8.5	59.3	84.4
46.431102	34.9	1000.0	120.000	100.0	V	336.0	-12.6	49.5	84.4
74.789419	39.1	1000.0	120.000	100.0	V	87.0	-15.5	45.3	84.4
91.380521	33.7	1000.0	120.000	150.0	V	63.0	-14.2	50.7	84.4
135.569940	35.3	1000.0	120.000	105.0	V	160.0	-13.8	49.1	84.4
899.981723	42.1	1000.0	120.000	100.0	V	128.0	8.3	42.3	84.4

Test Notes: Only worst case channel presented for spurious emissions below 1GHz. Only case spurious emissions within 20dB of the calculated limit will be proven by substitution method.

2.7.10 Test Results Below 1GHz (Uplink Worst Case Configuration) - 5MHz Bandwidth Low Channel

Quasi Peak Data

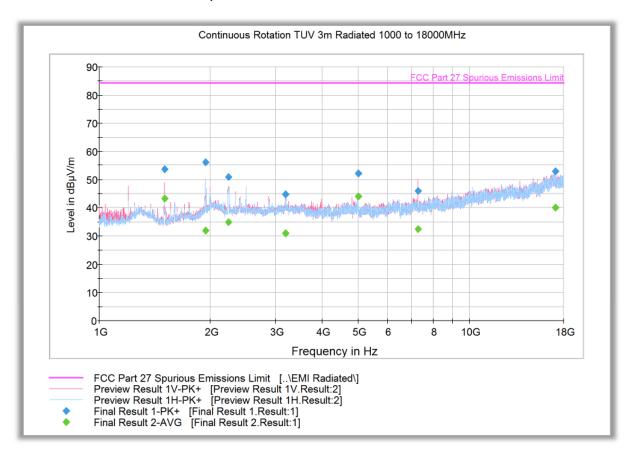

Frequency (MHz)	QuasiPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBμV/m)
31.600000	28.5	1000.0	120.000	395.0	Н	122.0	-5.9	55.9	84.4
46.391102	36.8	1000.0	120.000	114.0	V	0.0	-12.6	47.6	84.4
66.773868	34.3	1000.0	120.000	134.0	V	223.0	-15.7	50.1	84.4
79.997194	39.4	1000.0	120.000	150.0	V	329.0	-15.7	45.0	84.4
90.500521	31.5	1000.0	120.000	150.0	Н	328.0	-14.4	52.9	84.4
155.568818	35.7	1000.0	120.000	100.0	V	15.0	-11.4	48.7	84.4
780.412345	52.4	1000.0	120.000	109.0	Н	349.0	6.1	32.0	84.4

Test Notes: Only worst case channel presented for spurious emissions below 1GHz. Only case spurious emissions within 20dB of the calculated limit will be proven by substitution method.

Report No. SD72121023-1016D Rev 1.0

2.7.11 Test Results Above 1GHz - Downlink 10MHz Middle Channel

Peak Data

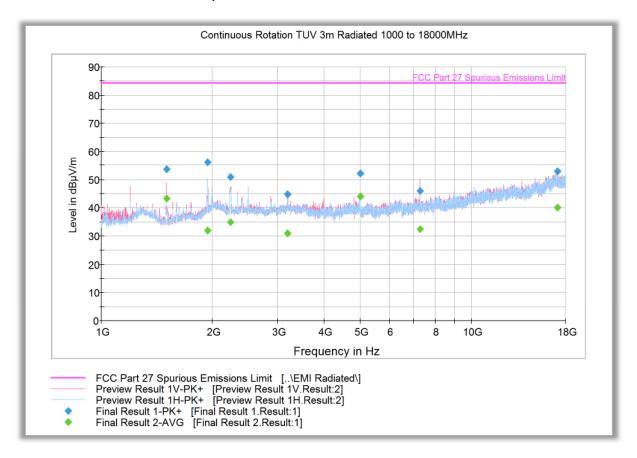

_	ik Dala									
	Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBμV/m)
	1500.000000	51.8	1000.0	1000.000	103.7	V	171.0	-6.2	32.6	84.4
	1931.966667	62.2	1000.0	1000.000	301.2	V	225.0	-0.7	22.2	84.4
	1992.600000	64.1	1000.0	1000.000	295.3	V	86.0	-0.2	20.3	84.4
	2235.200000	51.2	1000.0	1000.000	169.6	V	112.0	-1.8	33.2	84.4
	2421.166667	42.7	1000.0	1000.000	225.5	V	13.0	-1.1	Pluoto	oth Carrier
	2451.766667	42.6	1000.0	1000.000	152.7	Н	25.0	-0.9	ышесос	All Calllel
	5000.133333	53.1	1000.0	1000.000	139.7	V	146.0	3.4	31.3	84.4

2.480 2 4.14									
Frequency (MHz)	Average (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBμV/m)
1500.000000	41.9	1000.0	1000.000	103.7	V	171.0	-6.2	42.5	84.4
1931.966667	46.5	1000.0	1000.000	301.2	V	225.0	-0.7	37.9	84.4
1992.600000	41.2	1000.0	1000.000	295.3	V	86.0	-0.2	43.2	84.4
2235.200000	32.9	1000.0	1000.000	169.6	V	112.0	-1.8	51.5	84.4
2421.166667	29.4	1000.0	1000.000	225.5	V	13.0	-1.1	Dhiotos	oth Carrier
2451.766667	29.4	1000.0	1000.000	152.7	Н	25.0	-0.9	ышегос	uncarrier
5000.133333	46.2	1000.0	1000.000	139.7	V	146.0	3.4	38.2	84.4

Report No. SD72121023-1016D Rev 1.0

2.7.12 Test Results Above 1GHz - Uplink 5MHz Low Channel

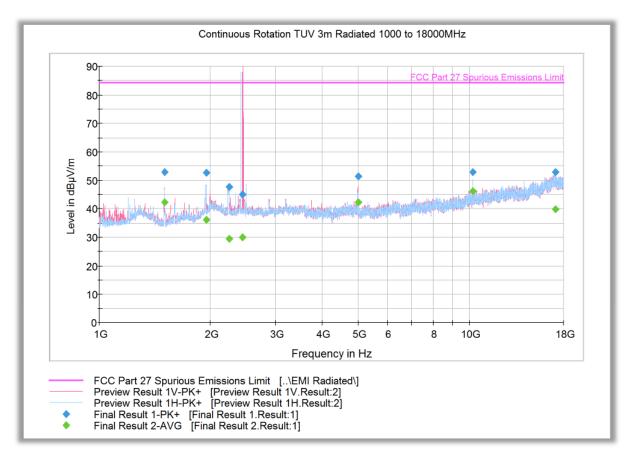
Peak Data


C	ik Data									
	Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
	1500.000000	53.7	1000.0	1000.000	100.0	V	155.0	-6.2	30.7	84.4
	1938.400000	56.1	1000.0	1000.000	350.0	Н	100.0	-0.7	28.3	84.4
	2234.000000	50.8	1000.0	1000.000	167.0	V	127.0	-1.8	33.6	84.4
	3185.300000	44.9	1000.0	1000.000	318.0	Н	44.0	1.1	39.5	84.4
	4999.933333	52.2	1000.0	1000.000	100.0	V	148.0	3.4	32.2	84.4
	7260.333333	45.9	1000.0	1000.000	186.0	V	84.0	7.3	38.5	84.4
	17088.200000	52.9	1000.0	1000.000	150.0	Н	65.0	19.8	31.5	84.4

5. mgc = m.tm									
Frequency (MHz)	Average (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
1500.000000	43.2	1000.0	1000.000	100.0	V	155.0	-6.2	41.2	84.4
1938.400000	32.1	1000.0	1000.000	350.0	Н	100.0	-0.7	52.3	84.4
2234.000000	34.8	1000.0	1000.000	167.0	V	127.0	-1.8	49.6	84.4
3185.300000	31.0	1000.0	1000.000	318.0	Н	44.0	1.1	53.4	84.4
4999.933333	44.1	1000.0	1000.000	100.0	V	148.0	3.4	40.3	84.4
7260.333333	32.5	1000.0	1000.000	186.0	V	84.0	7.3	51.9	84.4
17088.200000	40.1	1000.0	1000.000	150.0	Н	65.0	19.8	44.3	84.4

Report No. SD72121023-1016D Rev 1.0

2.7.13 Test Results Above 1GHz - Uplink 5MHz Middle Channel


Peak Data

Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBμV/m)
1500.000000	53.8	1000.0	1000.000	100.0	V	154.0	-6.2	30.6	84.4
1938.600000	55.2	1000.0	1000.000	299.0	Н	4.0	-0.7	29.2	84.4
2235.200000	48.8	1000.0	1000.000	250.0	Н	125.0	-1.8	35.6	84.4
3188.333333	47.9	1000.0	1000.000	150.0	V	90.0	1.1	36.5	84.4
4999.933333	51.6	1000.0	1000.000	136.0	V	211.0	3.4	32.8	84.4
10200.033333	53.0	1000.0	1000.000	100.0	Н	68.0	11.3	31.4	84.4
17037.800000	53.7	1000.0	1000.000	100.0	Н	206.0	19.9	30.7	84.4

Frequency (MHz)	Average (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
1500.000000	42.9	1000.0	1000.000	100.0	V	154.0	-6.2	41.5	84.4
1938.600000	32.0	1000.0	1000.000	299.0	Н	4.0	-0.7	52.4	84.4
2235.200000	32.5	1000.0	1000.000	250.0	Н	125.0	-1.8	51.9	84.4
3188.333333	31.3	1000.0	1000.000	150.0	V	90.0	1.1	53.1	84.4
4999.933333	43.8	1000.0	1000.000	136.0	V	211.0	3.4	40.6	84.4
10200.033333	45.8	1000.0	1000.000	100.0	Н	68.0	11.3	38.6	84.4
17037.800000	40.6	1000.0	1000.000	100.0	Н	206.0	19.9	43.8	84.4

2.7.14 Test Results Above 1GHz - Uplink 5MHz High Channel

Peak Data

٠.	in Data										
	Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)	
	1499.766667	52.9	1000.0	1000.000	100.0	V	154.0	-6.2	31.5	84.4	
	1941.066667	52.5	1000.0	1000.000	312.0	Н	185.0	-0.6	31.9	84.4	
	2242.500000	47.7	1000.0	1000.000	173.0	V	9.0	-1.7	36.7	84.4	
	2437.066667	45.1	1000.0	1000.000	250.0	V	95.0	-1.0	BLE	Carrier	
	4999.900000	51.4	1000.0	1000.000	136.0	V	147.0	3.4	33.0	84.4	
	10200.033333	52.8	1000.0	1000.000	100.0	Н	67.0	11.3	31.6	84.4	
	17095.733333	52.9	1000.0	1000.000	250.0	Н	67.0	19.8	31.5	84.4	

Frequency (MHz)	Average (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dΒμV/m)
1499.766667	42.3	1000.0	1000.000	100.0	V	154.0	-6.2	42.1	84.4
1941.066667	36.3	1000.0	1000.000	312.0	Н	185.0	-0.6	48.1	84.4
2242.500000	29.6	1000.0	1000.000	173.0	V	9.0	-1.7	54.8	84.4
2437.066667	29.9	1000.0	1000.000	250.0	V	95.0	-1.0	BLE	Carrier
4999.900000	42.3	1000.0	1000.000	136.0	V	147.0	3.4	42.1	84.4
10200.033333	46.3	1000.0	1000.000	100.0	Н	67.0	11.3	38.1	84.4
17095.733333	39.8	1000.0	1000.000	250.0	Н	67.0	19.8	44.6	84.4

Report No. SD72121023-1016D Rev 1.0

2.8 FREQUENCY STABILITY

2.8.1 Specification Reference

FCC 47 CFR Part 2, Clause 2.1055 FCC 47 CFR Part 27, Clause 27.54 RSS-130, Clause 4.3

2.8.2 Standard Applicable

FCC 47 CFR Part 27, Clause 27.54:

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

RSS-130, Clause 4.3:

The transmitter frequency stability limit shall be determined as follows:

- (a) The frequency offset shall be measured according to the procedure described in RSS-Gen and recorded;
- (b) Using a resolution bandwidth of 1% of the occupied bandwidth, a reference point at the unwanted emission level which complies with the attenuation of 43 + 10 log10 p (watts) on the emission mask of the lowest and highest channel shall be selected, and the frequency at these points shall be recorded as fL and fH respectively.

The applicant shall ensure frequency stability by showing that fL minus the frequency offset and fH plus the frequency offset shall be within the frequency range in which the equipment is designed to operate.

2.8.3 Equipment Under Test and Modification State

Serial No: 332633000356 (Fix Unit) and 332633000417 (Mobile Unit) / Test Configuration A and B

2.8.4 Date of Test/Initial of test personnel who performed the test

December 20 and 21, 2016/XYZ

2.8.5 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.8.6 Environmental Conditions

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility.

Ambient Temperature 21.7 – 22.1°C Relative Humidity 23.2 - 58.1% ATM Pressure 99.0 - 99.5kPa

Report No. SD72121023-1016D Rev 1.0

2.8.7 Additional Observations

- This is a conducted test.
- The EUT was operated at 120.0VAC nominal voltage and was placed in the temperature chamber for the series of evaluations performed.
- The Temperature was reduced to -30°C and allowed to sit for 1 hour to allow the equipment and chamber temperature to stabilize. The measurements on both downlink and uplink were then performed. The temperature was them increased by 10°C steps and allowed to settle before taking the next set of measurements.
- Voltage variation was also performed at 85% and 115% of the nominal voltage on both Fix and Mobile Units.
- Input Type "Tones" was selected and the EUT was injected a CW signal from a Signal Generator and maximum frequency error was monitored using the spectrum analyzer.
- Test Procedure as per RSS-130 was also performed and 5MHz BW for Downlink and Uplink was used.

2.8.8 Test Results Summary

	LTE B13 Downlink (Fix Unit)												
Voltage (VAC)	Temperature (°C)	Frequency Deviation (ppm)	f∟ (MHz)	f _H (MHz)	Compliance								
	-30	0/0	746.26863	755.73829									
	-20	0/0	746.27363	755.74367									
	-10	0/0	746.28171	755.7429									
	0	0/0	746.26479	755.73675	Within the frequency								
120	+10	0/0	746.26479	755.74214	range of 746 –								
	+20	0/0	746.27183	755.73598	756 MHz band EUT Complies.								
	+30	0/0	746.26479	755.73675									
	+40	0/0	746.27017	755.73444									
	+50	0/0	746.26863	755.73829									

	LTE B13 Downlink (Fix Unit)												
Temperature (°C)	Voltage (VAC)	Frequency Deviation (Hz/ppm)	f∟ (MHz)	f _н (MHz)	Compliance								
20	102	0/0	746.27094	755.74214	Within the frequency range of 746 –								
20	138	0/0	746.26709	755.74214	756 MHz band EUT Complies								

Report No. SD72121023-1016D Rev 1.0

LTE B13 Downlink (Mobile Unit)							
Temperature (°C)	Voltage (VAC)	f _H (MHz)	Compliance				
	10.2	0/0	746.26747	755.73752	Within the		
20	12.0	0/0	746.27132	755.73752 range of 746	frequency range of 746 – 756 MHz band		
	13.8	0/0	746.26824	755.74137	EUT Complies		

	LTE B13 Uplink (Fix Unit)							
Voltage (VAC)	Temperature (°C)	Frequency Deviation (ppm)	f _L (MHz)	f _H (MHz)	Compliance			
	-30	0/0	777.14403	786.86059				
	-20	0/0	777.14249	786.8652				
	-10	0/0	777.15249	786.85597				
	0	0/0	777.14864	786.85982	Within the frequency			
120	+10	0/0	777.14633	786.85597	range of 777 –			
	+20	0/0	777.14787	786.84824	787 MHz band EUT Complies.			
	+30	0/0	777.15095	786.8529	20. 00			
	+40	0/0	777.13941	786.85367				
	+50	0/0	777.15249	786.84982				

	LTE B13 Uplink (Mobile Unit)						
Temperature (°C)	Voltage (VAC)	Frequency Deviation (ppm)	f∟ (MHz)	f _H (MHz)	Compliance		
20	102	0/0	777.14095	786.86213	Within the frequency range of 777 –		
20	138	0/0	777.16249	786.86597	787 MHz band EUT Complies		

LTE B13 Uplink (Mobile Unit)							
Temperature (°C)	f_L (VAC) Frequency Deviation f_L (MF		f∟ (MHz)	f _н (MHz)	Compliance		
	10.2	0/0	777.14018	786.8529	Within the		
20	12.0	0/0	777.14018	786.86136	frequency range of 777 – 787 MHz band		
	13.8	0/0	777.14249	786.86443	EUT Complies		

2.8.9 Sample Test Plots for Downlink

Date: 20.DEC.2016 13:12:25

LTE B13 Downlink Low Channel @ 50°C Nominal Voltage

2.9 POWER LINE CONDUCTED EMISSIONS

2.9.1 Specification Reference

RSS-Gen 8.8

2.9.2 Standard Applicable

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz-30 MHz, shall not exceed the limits in table below.

Unless the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in table below. The more stringent limit applies at the frequency range boundaries.

	Conducted	limit (dBμV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15–0.5	66 to 56*	56 to 46*
0.5–5	56	46
5–30	60	50

^{*}Decreases with the logarithm of the frequency.

2.9.3 Equipment Under Test and Modification State

Serial No: 332633000356 (Fix Unit) / Test Configuration B

2.9.4 Date of Test/Initial of test personnel who performed the test

December 16, 2016/XYZ

2.9.5 Test Equipment Used

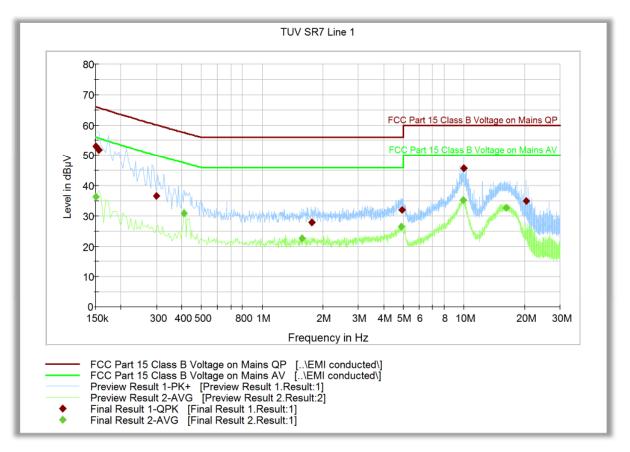
The major items of test equipment used for the above tests are identified in Section 3.1.

2.9.6 Environmental Conditions

 $\begin{array}{lll} \mbox{Ambient Temperature} & 22.2\ ^{\circ}\mbox{C} \\ \mbox{Relative Humidity} & 56.1\ \% \\ \mbox{ATM Pressure} & 98.7\ \mbox{ kPa} \end{array}$

Report No. SD72121023-1016D Rev 1.0

2.9.7 Additional Observations

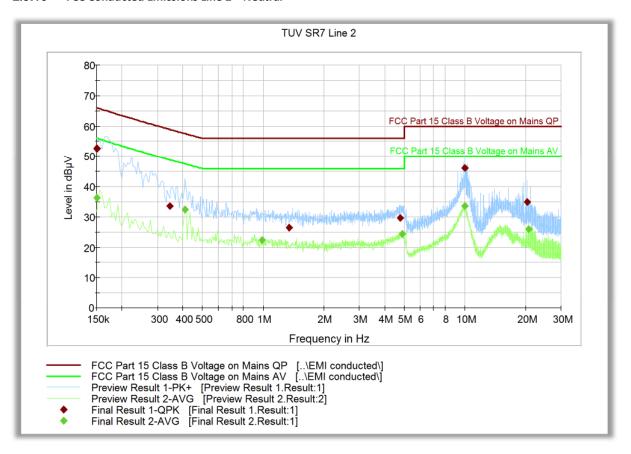

- The EUT was verified using AC adapter supplied by the manufacturer..
- EUT verified using input voltage of 120VAC 60Hz.
- There are no significant variations in test results between each operating modes. Only the Downlink operation mode observed is presented.
- Measurement was done using EMC32 automated software. Reported level is the actual level with all the correction factors factored in. Correction Factor column is for informational purposes only. See Section 2.9.8 for sample computation.

2.9.8 Sample Computation (Conducted Emission – Quasi Peak)

Measuring equipment raw me	5.5		
	Asset# 8607 (20 dB attenuator)	19.9	
	Asset# 1177 (cable)	0.15	20.7
Correction Factor (dB)	Asset# 1176 (cable)	0.35	20.7
	Asset# 7567 (LISN)	0.30	
Reported QuasiPeak Final Me	26.2		

2.9.9 Test Results - Conducted Emissions Line 1 – Hot

Quasi Peak


Frequency (MHz)	QuasiPeak (dBμV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV)
0.150000	53.1	1000.0	9.000	Off	L1	20.2	12.9	66.0
0.154500	51.8	1000.0	9.000	Off	L1	20.2	13.9	65.7
0.298500	36.5	1000.0	9.000	Off	L1	20.0	23.6	60.1
1.761000	27.8	1000.0	9.000	Off	L1	20.0	28.2	56.0
4.947000	31.9	1000.0	9.000	Off	L1	20.1	24.1	56.0
10.000500	45.8	1000.0	9.000	Off	L1	20.2	14.2	60.0
20.400000	34.9	1000.0	9.000	Off	L1	20.4	25.1	60.0

Average

Frequency (MHz)	Average (dBμV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin - Ave (dB)	Limit - Ave (dBμV)
0.150000	36.3	1000.0	9.000	Off	L1	20.2	19.7	56.0
0.411000	30.9	1000.0	9.000	Off	L1	20.0	16.6	47.5
1.572000	22.6	1000.0	9.000	Off	L1	20.0	23.4	46.0
4.893000	26.4	1000.0	9.000	Off	L1	20.1	19.6	46.0
9.919500	35.3	1000.0	9.000	Off	L1	20.2	14.7	50.0
16.188000	32.7	1000.0	9.000	Off	L1	20.3	17.3	50.0

2.9.10 FCC Conducted Emissions Line 2 – Neutral

Quasi Peak

Frequency (MHz)	QuasiPeak (dBμV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin - QPK (dB)	Limit - QPK (dBµV)
0.150000	52.6	1000.0	9.000	Off	N	20.2	13.4	66.0
0.150000	52.8	1000.0	9.000	Off	N	20.2	13.2	66.0
0.343500	33.7	1000.0	9.000	Off	N	20.0	25.2	58.9
1.342500	26.5	1000.0	9.000	Off	N	20.0	29.5	56.0
4.789500	29.7	1000.0	9.000	Off	N	20.1	26.3	56.0
10.000500	46.1	1000.0	9.000	Off	N	20.2	13.9	60.0
20.400000	35.0	1000.0	9.000	Off	N	20.4	25.0	60.0

Average

Frequency (MHz)	Average (dBμV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin - Ave (dB)	Limit - Ave (dBμV)
0.150000	36.3	1000.0	9.000	Off	N	20.2	19.7	56.0
0.150000	36.4	1000.0	9.000	Off	N	20.2	19.6	56.0
0.411000	32.6	1000.0	9.000	Off	N	20.0	14.9	47.5
0.987000	22.5	1000.0	9.000	Off	N	20.0	23.5	46.0
4.906500	24.6	1000.0	9.000	Off	N	20.1	21.4	46.0
10.005000	33.5	1000.0	9.000	Off	N	20.2	16.5	50.0
20.670000	26.1	1000.0	9.000	Off	N	20.4	23.9	50.0

Report No. SD72121023-1016D Rev 1.0

SECTION 3

TEST EQUIPMENT USED

3.1 TEST EQUIPMENT USED

List of absolute measuring and other principal items of test equipment.

ID Number (SDGE/SDRB)	Test Equipment	Туре	Serial Number	Manufacturer	Cal Date	Cal Due Date
Antenna Conduc	ted Port Setup					
7604	P-Series Power Meter	N1912A	SG45100273	Agilent	07/27/16	07/27/17
7605	50MHz-18GHz Wideband Power Sensor	N1921A	MY51100054	Agilent	04/19/16	04/19/17
7582	Signal/Spectrum Analyzer	FSW26	101614	Rhode & Schwarz	10/26/16	10/26/17
7608	Vector Signal Generator	SMBV100A	259021	Rhode & Schwarz	09/02/16	09/02/17
7562	Wideband Radio Communication Tester	CMW 500	1201.0002k50 /103829	Rhode & Schwarz	For sig	naling
8871	20dB Attenuator	18N10W-20dB	-	INMET	Verified by 75	882 and 7608
Radiated Emissio	ns					
7582	Signal/Spectrum Analyzer	FSW26	101614	Rhode & Schwarz	10/26/16	10/26/17
7608	Vector Signal Generator	SMBV100A	259021	Rhode & Schwarz	09/02/16	09/02/17
1002	Bilog Antenna	3142C	00058717	ETS-Lindgren	11/06/15	11/06/17
7575	Double-ridged waveguide horn antenna	3117	00155511	ЕМСО	05/12/16	05/12/17
1016	Pre-amplifier	PAM-0202	187	PAM	10/17/16	10/17/17
1040	EMI Test Receiver	ESU	100133	Rhode & Schwarz	10/07/16	10/07/17
1151	Pre-amplifier	TS-PR26	100026	Rhode & Schwarz	Verified by 75	82 and 7608
1153	High-frequency cable	SucoFlex 100 SX	N/A	Suhner	Verified by 75	82 and 7608
8543	High-frequency cable	Micropore 19057793	N/A	United Microwave Products	Verified by 75	82 and 7608
7562	Wideband Radio Communication Tester	CMW 500	1201.0002k50 /103829	Rhode & Schwarz	For sign	nalling
Conducted Emiss	sions					
7620	EMI Test Receiver	ESU40	100399	Rhode & Schwarz	09/09/16	09/09/17
6837	LISN	FCC-LISN-50-25- 2	5025	Fischer Custom Comm.	03/29/16	03/29/17
8822	20dB Attenuator	34-20-34	N/A	MCE / Weinschel	02/29/16	02/28/17
8824	20dB Attenuator	34-20-34	N/A	MCE / Weinschel	02/29/16	02/28/17
7562	Wideband Radio Communication Tester	CMW 500	1201.0002k50 /103829	Rhode & Schwarz	For sign	nalling

Report No. SD72121023-1016D Rev 1.0

	-	-	-	_
Λ	m	0	ri	ca

Miscellaneous							
6792	Multimeter	3478A	2911A70964	Hewlett Packard	08/29/16	08/29/17	
11312	Mini Environmental Quality Meter	850027	CF099-56010- 340	Sper Scientific	08/22/16	08/22/17	
	AC Power Supply	EW801-2-115	972430001	ELGAR	Verified by 6792		
	DC Power Supply	35010M	D102007S	Protek	Verified by 6792		
	Test Software	EMC32	V8.53	Rhode & Schwarz	N/A		

Report No. SD72121023-1016D Rev 1.0

3.2 MEASUREMENT UNCERTAINTY

For a 95% confidence level, the measurement uncertainties for defined systems are:

3.2.1 Conducted Measurements

	Contribution	Probability Distribution Type	Probability Distribution x _i	Standard Uncertainty u(x _i)	[u(x _i)]²
1	Receiver/Spectrum Analyzer	Rectangular	0.36	0.21	0.04
2	Cables	Rectangular	0.50	0.29	0.08
3	LISN	Rectangular	0.66	0.38	0.15
4	Attenuator	Rectangular	0.30	0.17	0.03
5	EUT Setup	Rectangular	1.00	0.58	0.33
			Combined	d Uncertainty (u₀):	0.80
			Coverage Factor (k):		2
		Expanded Uncertainty:		1.59	

3.2.2 Radiated Measurements (Below 1GHz)

	Contribution	Probability Distribution Type	Probability Distribution x _i	Standard Uncertainty u(x _i)	[u(x _i)] ²
1	Receiver/Spectrum Analyzer	Rectangular	0.45	0.26	0.07
2	Cables	Rectangular	0.50	0.29	0.08
3	Preamp	Rectangular	0.50	0.29	0.08
4	Antenna	Rectangular	0.75	0.43	0.19
5	Site	Rectangular	2.70	1.56	2.43
6	EUT Setup	Rectangular	1.00	0.58	0.33
			Combined	d Uncertainty (uc):	1.78
		Co	verage Factor (k):	2	
			Expar	nded Uncertainty:	3.57

3.2.3 Radiated Emission Measurements (Above 1GHz)

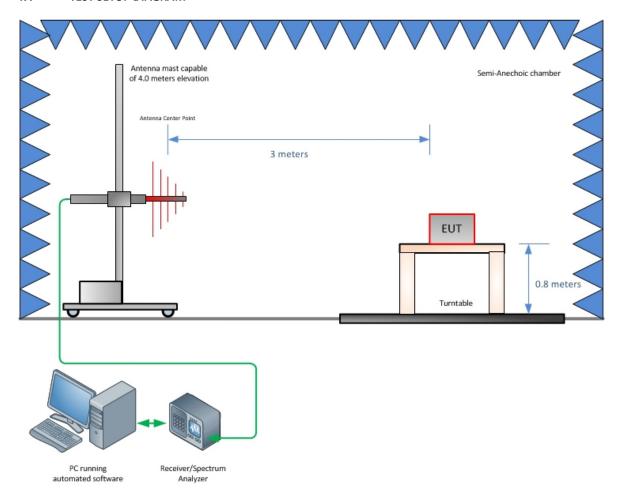
	Contribution	Probability Distribution Type	Probability Distribution xi	Standard Uncertainty u(x _i)	[u(x _i)] ²
1	Receiver/Spectrum Analyzer	Rectangular	0.57	0.33	0.11
2	Cables	Rectangular	0.70	0.40	0.16
3	Preamp	Rectangular	0.50	0.29	0.08
4	Antenna	Rectangular	0.37	0.21	0.05
5	Site	Rectangular	2.70	1.56	2.43
6	EUT Setup	Rectangular	1.00	0.58	0.33
			Combined Uncertainty (u _c):		1.78
			Co	verage Factor (k):	2
			Expanded Uncertainty:		3.56

Report No. SD72121023-1016D Rev 1.0

3.2.4 Conducted Antenna Port Measurement

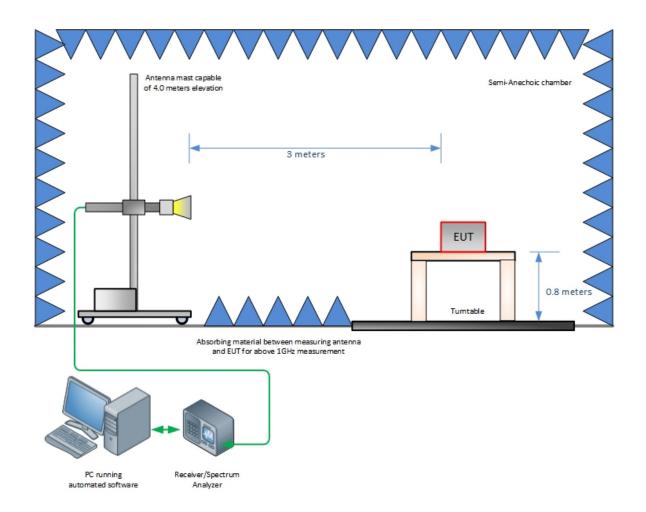
	Contribution	Probability Distribution Type	Probability Distribution x _i	Standard Uncertainty u(x _i)	[u(x _i)]²
1	Receiver/Spectrum Analyzer	Rectangular	0.57	0.33	0.11
2	Cables	Rectangular	0.50	0.29	0.08
3	EUT Setup	Rectangular	1.00	0.58	0.33
			Combined	l Uncertainty (u₀):	0.72
			Coverage Factor (k):		2
			Expanded Uncertainty:		1.45

Report No. SD72121023-1016D Rev 1.0

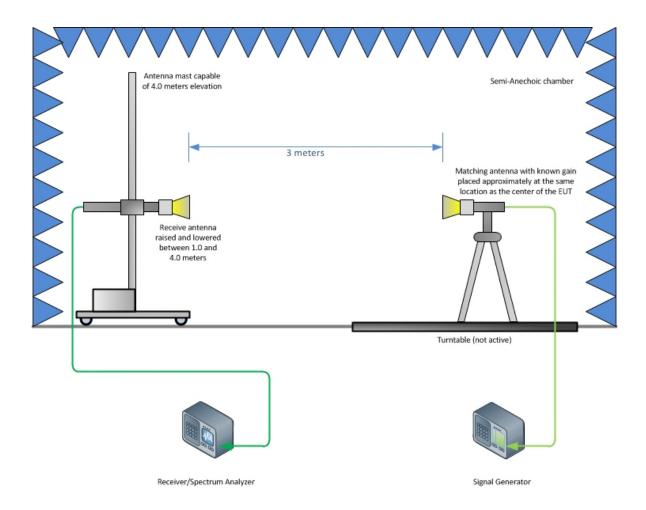


SECTION 4

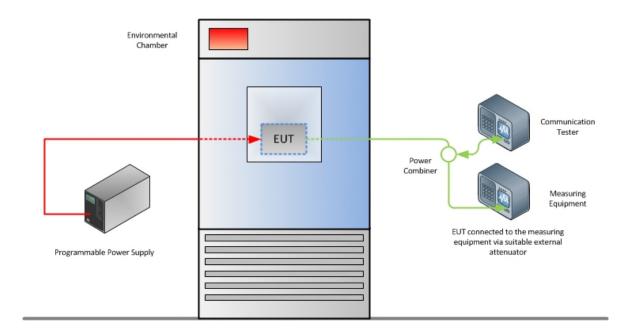
DIAGRAM OF TEST SETUP


4.1 TEST SETUP DIAGRAM

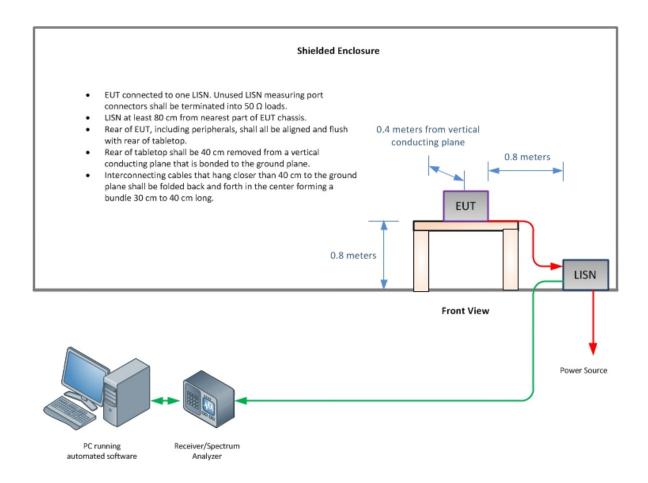
Radiated Emission Test Setup (Below 1GHz)


Report No. SD72121023-1016D Rev 1.0

Radiated Emission Test Setup (Above 1GHz)



Substitution Test Method (Above 1GHz, if applicable)


Report No. SD72121023-1016D Rev 1.0

Frequency Stability Test Comfiguration

Conducted Emissions Test Configuration (if applicable)

Report No. SD72121023-1016D Rev 1.0

SECTION 5

ACCREDITATION, DISCLAIMERS AND COPYRIGHT

5.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

TÜV SÜD America Inc.'s reports apply only to the specific sample tested under stated test conditions. It is the manufacturer's responsibility to assure the continued compliance of production units of this model. TÜV SÜD America, Inc. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD America, Inc.'s issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and TÜV SÜD America, Inc., extracts from the test report shall not be reproduced, except in full without TÜV SÜD America, Inc.'s written approval.

This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the federal government.

TÜV SÜD America, Inc. and its professional staff hold government and professional organization certifications for AAMI, ACIL, AEA, ANSI, IEEE, A2LA, NIST and VCCI.

A2LA Cert. No. 2955.13