Nextivity, Inc.

ADDENDUM TO TEST REPORT 95395-17

Provider Specific Consumer Signal Booster Model: Cel-Fi D32-2/4

Tested To The Following Standards:

FCC Part 27 Subpart L

Report No.: 95395-17A

Date of issue: May 8, 2014

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

the Future R esting 0 ∢ Ľ 0 m

This report contains a total of 36 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Revision History	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Conditions During Testing	5
Equipment Under Test	6
Peripheral Devices	6
FCC Part(s) 2 / 27	7
2.1049(I) Occupied Bandwidth	7
2.1051 /27.53(m) Spurious Emissions at Antenna Terminals	12
2.1053 / 27.53(m) Field Strength of Spurious Radiation	20
2.1055(a)(d) / 27.54 Frequency Stability	28
Supplemental Information	35
Measurement Uncertainty	35
Emissions Test Details	35

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Nextivity, Inc. 12230 World Trade Dr. San Diego, CA 92128 **REPORT PREPARED BY:**

Morgan Tramontin CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Representative: Michiel Lotter Customer Reference Number: 001889 Project Number: 95395

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING: March 10, 2014 March 10 – April 10, 2014

Revision History

Original: Testing of the Provider Specific Consumer Signal Booster, Cel-Fi D32-2/4 to FCC Part 27L **Addendum A:** To replace all test data, test plots and setup photos for section 2.1055(a)(d) / 27.54 Frequency Stability.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve ~ Bel

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.00.14

Site Registration & Accreditation Information

Location	CB #	TAIWAN	CANADA	FCC	JAPAN
Brea A	US0060	SL2-IN-E-1146R	3082D-1	90473	A-0147

SUMMARY OF RESULTS

Standard / Specification: FCC Part(s) 2 / 27 Subpart L

Test Procedure/Method	Description	Results
2.1046	RF Power Output	NA ¹
2.1049(I)	Occupied Bandwidth	Pass
2.1051 / 27.53(m)	Spurious Emissions at Antenna Terminals	Pass
2.1053 / 27.53(m)	Field Strength of Spurious Radiation	Pass
2.1055(a)(d) / 27.54	Frequency Stability	Pass

 $NA^{1} = A$ different standard applies; see applicable test report.

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions	
None	

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

Provider Specific Consumer Signal Booster

Manuf: Nextivity, Inc. Model: Cel-Fi D32-2/4 CU Serial: 175406000036

Provider Specific Consumer Signal Booster

Manuf: Nextivity, Inc. Model: Cel-Fi D32-2/4 NU Serial: 174406000145

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Signal Generator

Manuf: Agilent Model: E4438C Serial: MY42082260

Power Supply

Manuf: Hon-Kwang Model: HK-AX-120A150-US Serial: NA

Power Supply

Manuf: Hon-Kwang Model: HK-AX-120A150-US Serial: NA

FCC PART(S) 2 / 27

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) requirements for 47 CFR Part 2: Frequency Allocations and Radio Treaty Matters, General Rules and Regulations and Licensed Device falling under Part 27: Miscellaneous Wireless Communication Services.

2.1049(I) Occupied Bandwidth

Test Conditions / Setup

Test Location: CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112

Customer:	Nextivity, Inc.		
Specification:	Occupied Bandwidth		
Work Order #:	95395	Date:	3/12/2014
Test Type:	Conducted Emissions	Time:	09:37:42
Equipment:	Provider Specific Consumer Signal	Sequence#:	1
	Booster		
Manufacturer:	Nextivity, Inc.	Tested By:	E. Wong
Model:	Cel-Fi D32-2/4		110V 60Hz
S/N:	175406000036, 174406000145		

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
T2	AN03430	Attenuator	75A-10-12	9/5/2013	9/5/2015
T3	ANP06543	Cable	32022-29094K- 29094K-24TC	11/20/2013	11/20/2015

Function	Manufacturer	Model #	S/N
Provider Specific Co	nsumer Nextivity, Inc.	Cel-Fi D32-2/4 CU	175406000036
Signal Booster*	-		
Provider Specific Co	nsumer Nextivity, Inc.	Cel-Fi D32-2/4 NU	174406000145
Signal Booster	-		

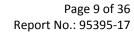
Function	Manufacturer	Model #	S/N
Signal Generator	Agilent	E4433B	US40052164
Signal Generator	Agilent	E4438C	MY42082260
Power Supply	Hon-Kwang	HK-AX-120A150-US	NA
Power Supply	Hon-Kwang	HK-AX-120A150-US	NA

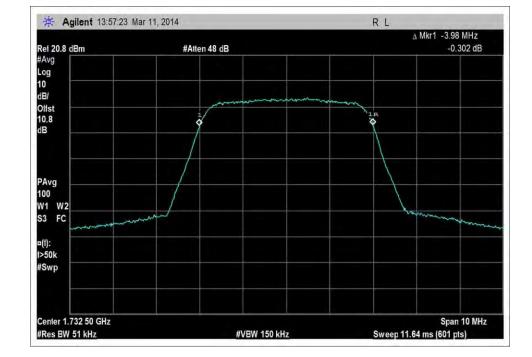
Test Conditions / Notes:

The EUT is provider specific signal booster pair consisted of a Network unit (NU) and a Coverage unit (CU) using proprietary 5.8GHz Wireless interface.

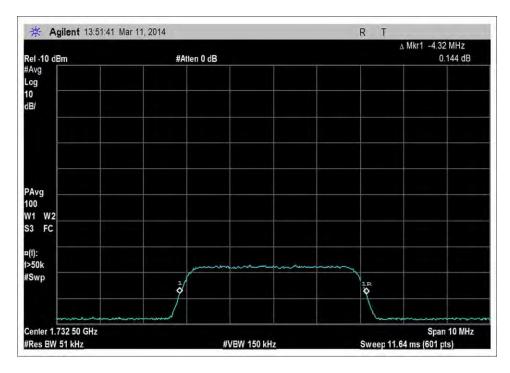
The EUT is manufacturer configurable to operate in relay bandwidth of 5MHz, 10MHz, 15MHz and 20MHz within the CMRS band by setting the bandwidth and center frequency of programmable Spectrum Block Filter, Gain and other operational parameter based on received public land mobile network (PLMN) ID. For testing purposes, only spectrum block filter of 5MHz will be evaluated.

The two EUT are placed on the test bench, connected via coax cable, combiner and 50 dB attenuators. The unit not under evaluation is placed in shielded enclosure to improve RF isolation. UNII Tx /RX port of NU is connected to UNII TX/RX port of CU.


Evaluation are conducted at Donor power Port band 2 and band 4, Server port band 2 and band 4.

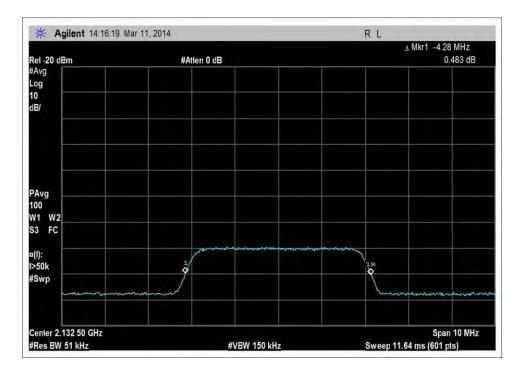

Signal: 4.1MHz AWGN.

UL = 1850-1915MHz, 1710-1755MHz, DL = 1930-1990MHz, 2110-2155MHz.

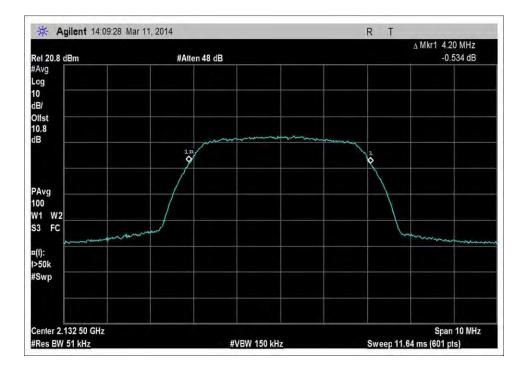

Test environment conditions: Temperature - 24°C Relative Humidity - 21% Pressure - 100kPa

Testing is performed in accordance with Provider Specific Booster test procedure 935210 D04 Provider Specific Booster Measurement DR06-41704, dated 03/06/14.

UL_1710-1755MHz_41AWGN_output



UL_1710-1755MHz_41AWGN_input


CARCE A Testing the Future LABORATORIES, INC.

Test Data

DL_2110-2155MHz_41AWGN_input_-70dBm

DL_2110-2155MHz_41AWGN_output

Test Setup Photo

Antenna Port Measurement

Page 11 of 36 Report No.: 95395-17

2.1051 / 27.53(m) Spurious Emissions at Antenna Terminals

Test Conditions / Setup

Test Location: CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112

Customer: Specification: Work Order #:	Nextivity, Inc. 47 CFR §27.53(m) Spurious Emissions 95395	Date:	3/12/2014
Test Type:	Conducted Emissions	Time:	09:37:42
Equipment:	Provider Specific Consumer Signal	Sequence#:	1
	Booster		
Manufacturer:	Nextivity, Inc.	Tested By:	E. Wong
Model:	Cel-Fi D32-2/4		110V 60Hz
S/N:	175406000036, 174406000145		

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
T2	AN03430	Attenuator	75A-10-12	9/5/2013	9/5/2015
Т3	ANP06543	Cable	32022-29094K-	11/20/2013	11/20/2015
			29094K-24TC		
T4	ANdBm	Unit Conversion		2/10/2014	2/10/2016

Function	Manufacturer	Model #	S/N
Provider Specific Co	onsumer Nextivity, Inc.	Cel-Fi D32-2/4 CU	175406000036
Signal Booster			
Provider Specific Co	onsumer Nextivity, Inc.	Cel-Fi D32-2/4 NU	174406000145
Signal Booster	-		

Function	Manufacturer	Model #	S/N
Signal Generator	Agilent	E4438C	MY42082260
Power Supply	Hon-Kwang	HK-AX-120A150-US	NA
Power Supply	Hon-Kwang	HK-AX-120A150-US	NA

Test Conditions / Notes:

The EUT is provider specific signal booster pair consisted of a Network unit (NU) and a Coverage unit (CU) using proprietary 5.8GHz Wireless interface.

The EUT is manufacturer configurable to operate in relay bandwidth of 5MHz, 10MHz, 15MHz and 20MHz within the CMRS band by setting the bandwidth and center frequency of programmable Spectrum Block Filter, Gain and other operational parameter based on received public land mobile network (PLMN) ID. For testing purposes, only spectrum block filter of 5MHz will be evaluated.

The two EUTs are placed on the test bench, connected via coax cable, combiner and 50 dB attenuators. The unit not under evaluation is placed in shielded enclosure to improve RF isolation. UNII Tx /RX port of NU is connected to UNII TX/RX port of CU. Evaluation is conducted at Donor Port and Server Port.

Signal: 4.1MHz AWGN.

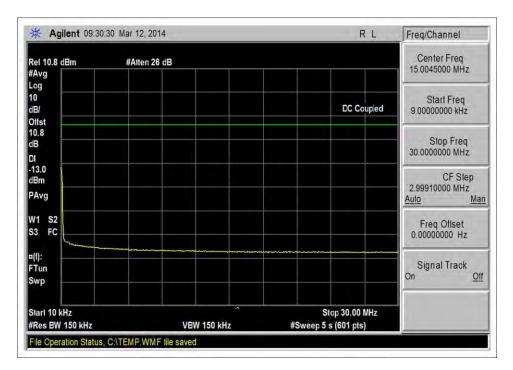
UL = 1710-1755MHz DL = 2110-2155MHz

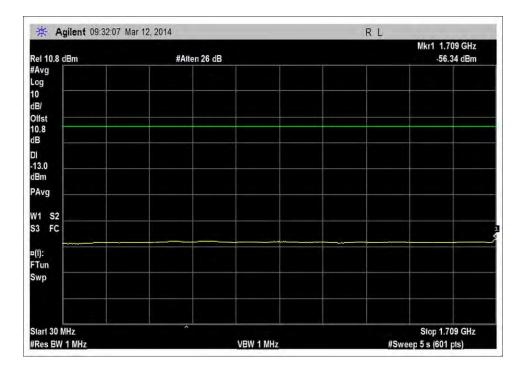
Frequency range of measurement = 9kHz - 22GHz. 9kHz-150kHz;RBW=200Hz,VBW=200Hz, 150kHz-30MHz;RBW=9kHz,VBW=9kHz; 30MHz-1000MHz;RBW=120kHz,VBW=120kHz 1000MHz-22000MHz;RBW=1MHz,VBW=1MHz.

Test environment conditions: Temperature - 24°C Relative Humidity - 21% Pressure - 100kPa

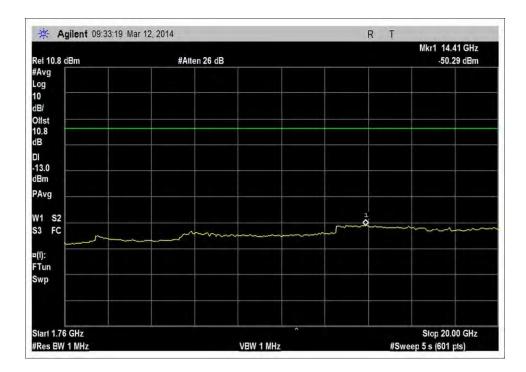
Testing is performed in accordance with Provider Specific Booster test procedure 935210 D04 Provider Specific Booster Measurement DR06-41704, dated 03/06/14.

Summary: No emissions were found, presented data represents noise floor level.

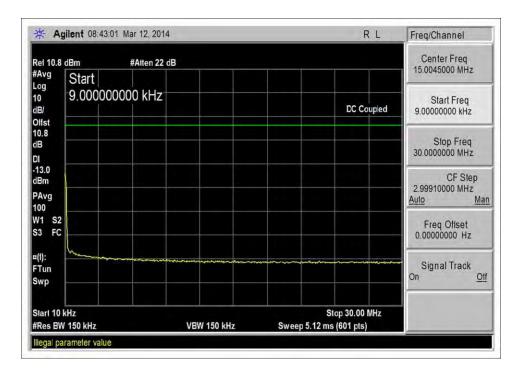

Ext A	Attn: 0 dB										
Meas	urement Data:	Re	eading lis	ted by ma	ırgin.			Test Lea	d: Ant Port	ţ	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	14410.000	-61.1	+0.0	+9.4	+1.2	+107.0	+0.0	56.5	94.0	-37.5	Ant P
	Μ										
									UL 1710-1	1755MHz	
2	2 14430.000	-65.1	+0.0	+9.4	+1.2	+107.0	+0.0	52.5	94.0	-41.5	Ant P
	М										
									DL 2110-2	2155MHz	

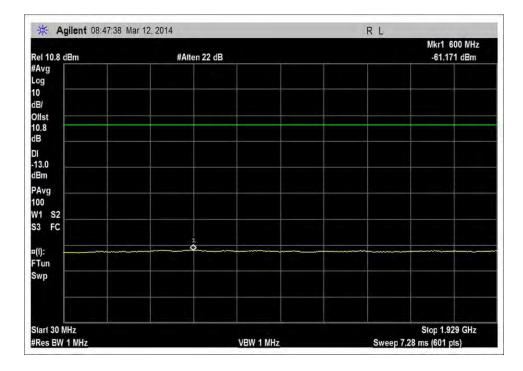

Test Data

	LIMIT LINE FOR SPURIOUS CONDUCTED EMISSION				
	REQUIRED ATTENUATION = 43+10 LOG P DB				
Limit line (dBuV)	= V _{dBuv} - Attenuation				
V_{dBuV}	$= 20 Log \frac{V}{1 x 10^{-6}}$				
	$= 20 \left(Log V - Log 1 x 10^{-6} \right)$				
	$= 20 Log V - 20 Log 1 x 10^{-6}$				
	= 20 Log V - 20 (-6)				
	= 20 Log V + 120				
Attenuatio n	= $43 + 10 \text{ Log P}$ = $43 + 10 \text{ Log } \frac{\text{V}^2}{R}$				
	= 43+10 (Log V ² - Log R)				
	= 43+10(2 Log V - Log R)				
	= 43 + 20 Log V - 10 Log R				
Limit line =	$ = V_{dBuv} - Attenuation = 20 Log V + 120 - (43 + 20 Log V - 10Log R) = 20 Log V + 120 - 43 - 20 Log V + 10Log R 20 Log V + 120 - 43 - 20 Log V + 10Log R = 120 - 43 + 10 Log 50 Note : R = 50 \Omega = 120 - 43 + 16.897 = 94 dBuV at any power level $				

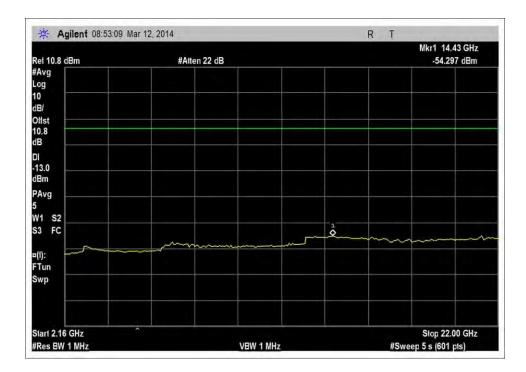


UL_1710-1755MHz_9kHz-30MHz

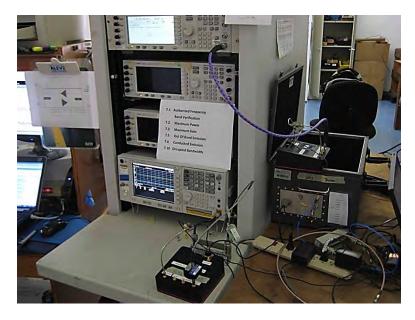

UL_1710-1755MHz_30-1709MHz



UL_1710-1755MHz_1756-20000MHz



DL_2110-2155MHz_30-2109MHz



DL_2110-2155MHz_2156-22000MHz

Test Setup Photo

Antenna Port Measurement

Page 19 of 36 Report No.: 95395-17

2.1053 / 27.53(m) Field Strength of Spurious Radiation

Test Conditions / Setup

Test Location:	CKC Laboratories • 110 Olinda Place • Brea,	CA 92823 • 71	4-993-6112
Customer: Specification:	Nextivity, Inc. 47 CFR §27.53(m) Spurious Emissions		
Work Order #:	95395	Date:	3/20/2014
Test Type:	Radiated Scan	Time:	10:17:56
Equipment:	Provider Specific Consumer Signal	Sequence#:	2
	Booster		
Manufacturer:	Nextivity, Inc.	Tested By:	E. Wong
Model:	Cel-Fi D32-2/4		
S/N:	175406000036, 174406000145		

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	2/6/2013	2/6/2015
	AN01995	Biconilog Antenna	CBL6111C	5/16/2012	5/16/2014
	ANP05198	Cable-Amplitude 15	8268	12/11/2012	12/11/2014
		to 45degC (dB)			
	ANP05050	Cable	RG223/U	1/21/2013	1/21/2015
	AN00309	Preamp	8447D	3/29/2012	3/29/2014
	AN00314	Loop Antenna	6502	6/29/2012	6/29/2014
T2	AN00786	Preamp	83017A	6/20/2012	6/20/2014
Т3	AN00849	Horn Antenna	3115	4/13/2012	4/13/2014
T4	ANP05563	Cable	ANDL-1-PNMN-	8/7/2012	8/7/2014
			48		
T5	AN02946	Cable	32022-2-2909К-	7/31/2013	7/31/2015
			36TC		
Т6	AN03385	High Pass Filter	11SH10-	6/5/2013	6/5/2015
			3000/T10000-		
			0/0		
	AN01413	Horn Antenna-ANSI	84125-80008	11/9/2012	11/9/2014
		C63.5 (dB/m)			
	AN02749	High Pass Filter	9SH10-	9/25/2013	9/25/2015
			1000/T10000-		
			O/O		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Provider Specific Consumer	Nextivity, Inc.	Cel-Fi D32-2/4 CU	175406000036
Signal Booster	-		
Provider Specific Consumer	Nextivity, Inc.	Cel-Fi D32-2/4 NU	174406000145
Signal Booster	-		

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	Agilent	E4438C	MY42082260
Power Supply	Hon-Kwang	HK-AX-120A150-US	NA
Power Supply	Hon-Kwang	HK-AX-120A150-US	NA

Test Conditions / Notes:

The EUT is provider specific signal booster pair consisted of a Network unit (NU) and a Coverage unit (CU) using proprietary 5.8GHz Wireless interface.

The EUT is manufacturer configurable to operate in relay bandwidth of 5MHz, 10MHz, 15MHz and 20MHz within the CMRS band by setting the bandwidth and center frequency of programmable Spectrum Block Filter, Gain and other operational parameter based on received public land mobile network (PLMN) ID. For testing purposes, only spectrum block filter of 5MHz will be evaluated.

Evaluation of CU

CU is placed on the Styrofoam platform. NU placed in shielded enclosure to improve RF isolation. DL RF signal from a base station simulator is sent to the NU via an antenna placed inside the shielded enclosure. The applied DL signal is send to the CU via 5.8GHz link and transmitted via the unit under test.

Evaluation of NU

NU is placed on the Styrofoam platform. CU placed in shielded enclosure to improve RF isolation. DL RF signal from a base station simulator is sent to the NU via an antenna placed in close proximity of the NU. On the CU side, UL signal is sent to the CU via an antenna placed in the shielded enclosure, The UL signal is send to the NU via 5.8 GHz link and transmitted via the unit under test.

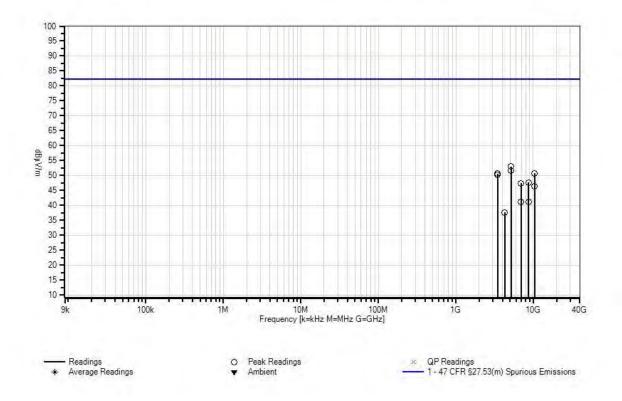
Laptop is connected to maintenance port for configuration and monitoring purposes.

Signal: 4.1 MHz AWGN. Freq Range UL = 1710-1755MHz DL = 1 2110-2155MHz UL: 1732.5MHz DL: 2132.5MHz

Frequency range of measurement = 9 kHz- 22 GHz 9kHz -150kHz; RBW=200Hz, VBW=200Hz 150kHz-30MHz RBW=9kHz, VBW=9kHz 30MHz-1000MHz; RBW=120kHz, VBW=120kHz 1000MHz-2000MHz; RBW=1MHz, VBW=1MHz

Test environment conditions: Temperature - 24°C Relative Humidity - 21% Pressure - 100kPa

Testing is performed in accordance with Provider Specific Booster test procedure 935210 D04 Provider Specific Booster Measurement DR06-41704, dated 03/06/14.



Ext Attn: 0 dB

Measu	rement Data:	Re	eading list	ted by ma	argin.		Te	est Distanc	e: 3 Meters	5	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	5196.580M	50.5	+0.0	-37.5	+33.6	+5.0	+0.0	53.0	82.2	-29.2	Vert
			+1.2	+0.2					UL_1732.5	5MHz	
2	5197.420M	49.1	+0.0	-37.5	+33.6	+5.0	+0.0	51.6	82.2	-30.6	Horiz
			+1.2	+0.2					UL_1732.5	5MHz	
3	10393.420	40.7	+0.0	-36.2	+36.9	+7.8	+0.0	50.7	82.2	-31.5	Vert
	М		+1.5	+0.0							
									UL_1732.5	5MHz	
4	3465.420M	51.2	+0.0	-38.4	+32.5	+3.9	+0.0	50.6	82.2	-31.6	Horiz
			+0.9	+0.5					UL_1732.5	5MHz	
5	3464.580M	50.9	+0.0	-38.4	+32.5	+3.9	+0.0	50.3	82.2	-31.9	Vert
			+0.9	+0.5					UL_1732.5	5MHz	
6	8661.420M	40.6	+0.0	-37.1	+36.1	+6.7	+0.0	47.7	82.2	-34.5	Vert
			+1.3	+0.1					UL_1732.5	5MHz	
7	6929.420M	42.9	+0.0	-37.2	+34.5	+6.0	+0.0	47.4	82.2	-34.8	Vert
			+1.2	+0.0					UL_1732.5	5MHz	
8	10393.420	36.4	+0.0	-36.2	+36.9	+7.8	+0.0	46.4	82.2	-35.8	Horiz
	М		+1.5	+0.0							
									UL_1732.5	5MHz	
9	8661.420M	34.1	+0.0	-37.1	+36.1	+6.7	+0.0	41.2	82.2	-41.0	Horiz
			+1.3	+0.1					UL_1732.5	5MHz	
10	6929.420M	36.6	+0.0	-37.2	+34.5	+6.0	+0.0	41.1	82.2	-41.1	Horiz
			+1.2	+0.0					UL_1732.5	5MHz	
11	4265.000M	38.9	+0.0	-37.9	+31.3	+4.3	+0.0	37.6	82.2	-44.6	Horiz
			+0.8	+0.2					DL 2132.5	MHz	

Date: 3/20/2014 Time: 10:17:56 Nextivity, Inc. WO#: 95395 47 CFR §27.53(m) Spurious Emissions Test Distance: 3 Meters Sequence#: 2 Ext ATTN: 0 dB

Test Data

LIMIT LINE FOR SPURIOUS RADIATED EMISSION

REQUIRED ATTENUATION = 43+10 LOG P (DB)

For radiated spurious emission measured at 3 meter test distance,

Required attenuation	=	43+10 Log P _{t at 3 meter} dB
Limit line (dBuV)	=	E _{dBuv} - Attenuation

 E_{dBuv} = Measured field strength at 3 meter in dBuV/m

Power Density (Isotropic)

$$P_{\rm D} = \frac{P_{\rm t}}{4\pi r^2}$$

P_D = Power Density in Watts /m² Pt = Average Transmit Power r = Test distance

Field Intensity E (V/m)

$$E = \sqrt{P_D x 377}$$

$$\sqrt{P_t x 377}$$

$$E = \frac{4\pi r^2}{4\pi r^2}$$

$$E = \sqrt{\frac{P_t \ x \ 30}{r^2}}$$

$$P_{t} = \left(\frac{E^{2} x r^{2}}{30}\right)$$

 $10 \text{ Log P}_{t} = 10 \text{ Log E}^{2} (V/m) + 10 \text{ Log r}^{2} - 10 \text{ Log } 30$

 $10 \text{ Log P}_t = 20 \text{ Log E} (V/m) + 20 \text{ Log } r - 10 \text{ Log } 30$

At 3 meter, r = 3 m

 $10 \text{ Log P}_t = 20 \text{ Log E} (V/m) + 20 \text{ Log } 3 - 10 \text{ Log } 30$

 $10 \text{ Log P}_{t} = 20 \text{ Log E} (V/m) + 9.54 - 14.77$

 $10 \text{ Log P}_t = 20 \text{ Log E} (V/m) - 5.23$

<u>Since 20 Log E (V/m) = 20 Log E (uV/m) –120</u>

 $10 \text{ Log P}_{t} = 20 \text{ Log E} (uV/m) - 120 - 5.23$

 $10 \text{ Log P}_{t} = 20 \text{ Log E} (uV/m) - 125.23$

```
Limit line (dBuV) at 3 meter
                                                 E_{dBuv} – Attenuation
                                       =
                                                           E dBuy - (43+10 Log Pt at 3 meter )
                                                 =
                                                           E_{dBuv} - 43 - 10 Log P_{t \, at \, 3 \, meter}
                                                 =
                                                           E_{dBuv} - 43 - (20 \text{ Log E} (uV/m) - 125.23)
                                                 =
                                                           E <sub>dBuv</sub> - 43 - 20 Log E (uV/m) + 125.23
                                                 =
                                                           E <sub>dBuv</sub> - 20 Log E (uV/m) + 82.23
                                                 =
Since 20 Log E(uV/m) = E in dBuV/m
                                                           E-dBuv - E-dBuv + 82.23
                                                 =
  Radiated Emission limit 3 meter =
                                                           82.23 dBuV at any power level measured in dBuV
```


Test Setup Photos

Coverage Unit

Coverage Unit

Network Unit

Network Unit

2.1055(a)(d) / 27.54 Frequency Stability

Test Conditions / Setup

Test Location:	CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112				
Customer: Specification:	Nextivity, Inc. 7.15 Frequency Stability, 27.54				
Work Order #:	95395	Date:	3/12/2014		
Test Type:	Conducted Emissions	Time:	09:37:42		
Equipment:	Provider Specific Consumer Signal	Sequence#:	1		
	Booster				
Manufacturer:	Nextivity, Inc.	Tested By:	E. Wong		
Model:	Cel-Fi D32-2/4		110V 60Hz		
S/N:	175406000036, 174406000145				

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
T2	AN03430	Attenuator	75A-10-12	9/5/2013	9/5/2015
Т3	ANP06543	Cable	32022-29094K-	11/20/2013	11/20/2015
			29094K-24TC		
	AN01878	Temperature Chamber	S 1.2 Mini-Max	4/2/2013	4/2/2015
	AN02549	Data Acquisition	34970A	10/9/2012	10/9/2014
	AN01849	HP 20 Channel Multiplexer Card	34901A	10/9/2012	10/9/2014

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Provider Specific Consumer	Nextivity, Inc.	Cel-Fi D32-2/4 CU	175406000036
Signal Booster*			
Provider Specific Consumer	Nextivity, Inc.	Cel-Fi D32-2/4 NU	174406000145
Signal Booster			

Support Devices:

Function	Manufacturer	Model #	S/N
Signal Generator	Agilent	E4438C	MY42082260
Power Supply	Hon-Kwang	HK-AX-120A150-US	NA
Power Supply	Hon-Kwang	HK-AX-120A150-US	NA

Test Conditions / Notes:

The EUT is provider specific signal booster pair consisted of a Network unit (NU) and a Coverage unit (CU) using proprietary 5.8 GHz Wireless interface.

The EUT is manufacturer configurable to operate in relay bandwidth of 5 MHz, 10MHz, 15 MHz and 20 MHz within the CMRS band by setting the bandwidth and center frequency of programmable Spectrum Block Filter, Gain and other operational parameter based on received public land mobile network (PLMN) ID. For testing purposes, only spectrum block filter of 5 MHz will be evaluated.

The two EUT are placed on the test bench, connected via coax cable, combiner and 50 dB attenuators. The unit not under evaluation is placed in shielded enclosure to improve RF isolation.

UNII Tx /RX port of NU is connected to UNII TX/RX port of CU.

Evaluation are conducted at Donor power Port band 2 and band 4, Server port band 2 and band 4

Signal: 4.1 MHz AWGN.

UL= 1850-1915 MHz, 1710-1755MHz, DL= 1930-1990 MHz, 2110-2155MHz.

Test environment conditions: 24°C, 21% Relative Humidity, 100kPa

Testing is performed in accordance with Provider Specific Booster test procedure 935210 D04 Provider Specific Booster Measurement DR06-41704, dated 03/06/2014.

With the following deviation:

Due to the narrowband rejection circuit, a 4.1MHz AWGN signal was used instead of CW. The measured frequency at -10dBc was used as reference frequency at nominal voltage and room temperature. Frequency deviation in MHz was measured at each temperature and voltage extreme and compared again the maximum allowed deviation to ensure the fundamental emission stays within the authorized frequency block.

The maximum allowable deviation is measured with compliant Out of Band Emission (OBE) measurement (ie same RF output power level and OBE as measured in 7.5) using the blockedge frequency as reference frequency point and then adjust the center frequency of the spectrum analyzer to the point where 1MHz outside the authorized freq block increased and reached the OBE limit of -13dBm.

The frequency difference between the blockedge frequency and (blockedge freq + offset) frequency Compliant and the later condition is the maximum allowable frequency drift to ensure the fundamental emission stays within the authorized frequency block.

Test Data

Summary

Pass, the device complies with the requirement, stays within the authorized frequency block with measured frequency drift of not exceeding the maximum allowable freq drift of 275kHz in the uplink 1710-1755MHz band and 420kHz in the DI 2110-2115MHz band.

Procedure Sec #	Guidance Description	FCC Sec #	FCC Rule Description	
7.15	Frequency Stability ¹	2.1055 / 22/24/27 ¹	Frequency Stability ¹	

§27.54 Frequency stability.

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

Result

Frequency Stability

Date:	26-Mar-14		
Test Engineer:	E. Wong		
Device Model #:			
Operating Voltage:	110	VDC/VAC	
Frequency Limit:	0.275	MHz	0.420 MHz

Temperature

Variations

		UL 1752.5	Dev. (MHz)	ΙΓ	DL 2132.5 (MHz)	Dev. (MHz)
Reference Frec	Reference Frequency:				2130.30800	
Temp (C)	Voltage					
-30	110	1730.32500	0.075000		2130.33300	0.025000
-20	110	1730.41700	0.017000		2130.33300	0.025000
-10	110	1730.42500	0.025000		2130.31700	0.009000
0	110	1730.41700	0.017000		2130.32500	0.017000
10	110	1730.41700	0.017000		2130.33300	0.025000
20	110	1730.42200	0.022000		2130.32500	0.017000
30	110	1730.41700	0.017000		2130.33300	0.025000
40	110	1730.43300	0.033000		2130.33300	0.025000
50	110	1730.42500	0.025000		2130.31700	0.009000

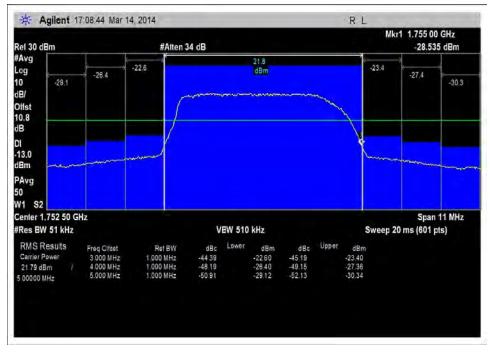
Voltage Variations (±15%)

V					_		
	20	93.5	1730.43300	0.033000		2130.33300	0.025000
	20	110	1730.42200	0.022000		2130.32500	0.017000
	20	126.5	1730.43300	0.033000		2130.32500	0.017000
Max Deviat	ion (N	/IHz)		0.075000]		0.025000
Max Deviati	on (%)		0.004334			0.001174

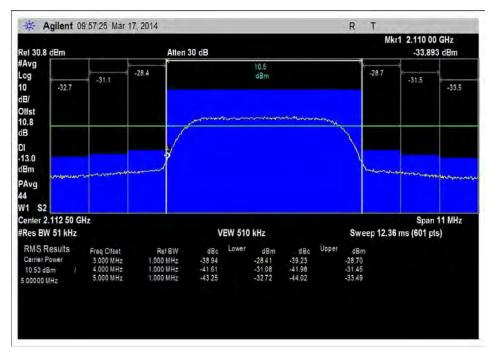
x Deviation (%)	0.004334	0.001174
	PASS	PASS

To calculate Frequency drift limit:

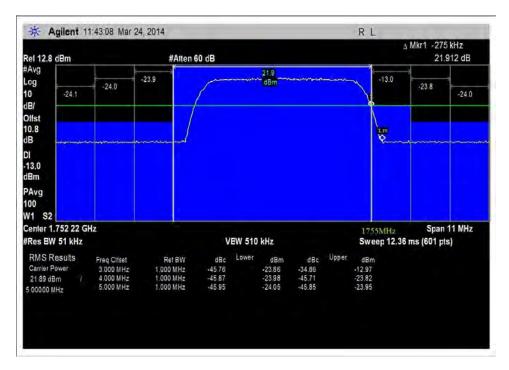
The Provider specific booster employs unique product design where the frequency of transmitted signal and the relayed spectrum block filter is determined by an oscillator. The device can only transmit at predetermined frequency IAW with 3GPP channel plan and the device can only transmit a wide band signal. The temperature stability test described below evaluates frequency drift of both the regenerated signal and the spectrum block filter.


Due to the limitation of equipment setup, the temperature stability was evaluated by measuring the frequency drift at temperature extreme and compared against a maximum allowable temperature drift at nominal temperature. (Freq drift limit) instead of a real time "out of block" measurement at temperature extreme.

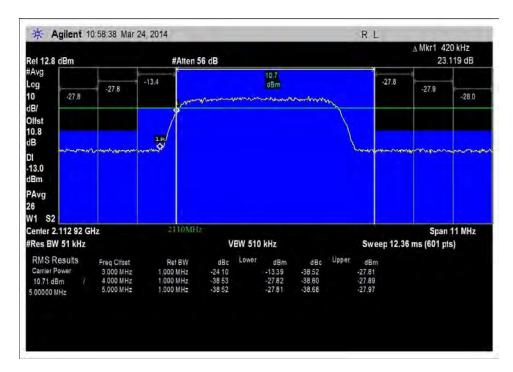
The following Out of Band Emission plot was captured at nominal temperature. The power integration of the Adjacent Chanel Power of the spectrum analyzer was used for this measurement.


The worst case out of band emission at 1 MHz outside the authorized band was measure first, (note: the cursors presented on the plots are set at band edges 2110MHz DL, 1755MHz UL)

Test Plots



UL 1710-1755, cursor set at 1755MHz. Channel power 1 MHz outside the band is -23.4dBm



DL 2100-2155MHz, cursor set at 2110MHz. Channel power 1 MHz outside the band is -28.4dBm Step 2, to determine the Frequency drift limit, the Center frequency of the spectrum analyzer was adjusted until the channel power 1 MHz outside the band is -13dBm/MHz.

UL 1710-1755MHz, cursor set at 1755.275MHz. Channel power 1 MHz outside the band is – 13 Bm, meaning the max allowed frequency drift is 0.275MHz before the worst case emission exceeds the OBE limit.

DL 2110-2155MHz, cursor set at 2109.58MHz. Channel power 1 MHz outside the band is – 13 Bm, meaning the max allowed frequency drift is 0.420MHz before the worst case emission exceeds the OBE limit.

Test Setup Photo(s)

Temperature Test 1

Temperature Test 2

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit.

SAMPLE CALCULATIONS						
	Meter reading (dBµV)					
+	Antenna Factor	(dB)				
+	Cable Loss	(dB)				
-	Distance Correction	(dB)				
-	Preamplifier Gain	(dB)				
=	Corrected Reading	(dBµV/m)				

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE					
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING		
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz		
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz		
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz		
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz		
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz		

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.