

Radio Test Report

FCC Part 27 (2112.4 MHz to 2152.6 MHz)

Model: CELFI-RSCU104

FCC ID: YETCELFI-RSCU104

COMPANY: Nextivity Incorporated

12230 World Trade Drive Suite 250

San Diego, CA 92128

TEST SITE(S): Elliott Laboratories

684 W. Maude Avenue Sunnyvale, CA 94085

and 41039 Boyce Road.

Fremont, CA. 94538-2435

REPORT DATE: May 20, 2010

FINAL TEST DATES: April 26, May 3 and May 12, 2010

AUTHORIZED SIGNATORY:

David W. Bare Chief Engineer Elliott Laboratories.

Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

File: R79414 Rev 1 Page 1 of 17

Test Report Report Date: May 20, 2010

REVISION HISTORY

Rev#	Date	Comments	Modified By
1	5/20/2010	First release	

File: R79414 Rev 1 Page 2 of 17

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS	
FCC PART 27 (2110 – 2155 MHZ ADVANCED WIRELESS SERVICE)	
EXTREME CONDITIONS	
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	8
GENERAL	8
OTHER EUT DETAILS	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENTEUT INTERFACE PORTS	
EUT OPERATION	
TESTING	
GENERAL INFORMATION	
RF PORT MEASUREMENT PROCEDURES	
OUTPUT POWER	
BANDWIDTH MEASUREMENTS	
CONDUCTED SPURIOUS EMISSIONS	11
TRANSMITTER MASK MEASUREMENTS	12
FREQUENCY STABILITY	
RADIATED EMISSIONS MEASUREMENTS	
INSTRUMENTATION	
FILTERS/ATTENUATORS	
ANTENNASANTENNA MAST AND EQUIPMENT TURNTABLE	
SAMPLE CALCULATIONS	
SAMPLE CALCULATIONSSAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS	
SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONSSAMPLE CALCULATIONS –RADIATED FIELD STRENGTH	
SAMPLE CALCULATIONS –RADIATED POWER	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
APPENDIX C PHOTOGRAPHS	
APPENDIX D PROPOSED FCC ID LABEL & LABEL LOCATION	
APPENDIX E DETAILED PHOTOGRAPHS	5
APPENDIX F OPERATOR'S MANUAL	6
APPENDIX G BLOCK DIAGRAM	7
APPENDIX H SCHEMATIC DIAGRAMS	8
APPENDIX I THEORY OF OPERATION	9
APPENDIX J TUNE-UP PROCEDURE	
APPENDIX K PARTS LIST	

SCOPE

Tests have been performed on the Nextivity Incorporated model CELFI-RSCU104, pursuant to the relevant requirements of the following standard(s) in order to obtain device certification against the regulatory requirements of the Federal Communications Commission and Industry Canada.

- Code of Federal Regulations (CFR) Title 47 Part 2
- CFR 47 Part 27

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 ANSI TIA-603-C August 17, 2004

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Nextivity Incorporated model CELFI-RSCU104 and therefore apply only to the tested sample. The sample was selected and prepared by Rama Akella of Nextivity Incorporated.

File: R79414 Rev 1 Page 4 of 17

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, the device requires certification. Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Nextivity Incorporated model CELFI-RSCU104 complied with the requirements of the standards and frequency bands declared in the scope of this test report.

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

File: R79414 Rev 1 Page 5 of 17

TEST RESULTS

FCC Part 27 (2110 – 2155 MHz Advanced Wireless Service)

FCC	Canada	Description	Measured	Limit	Result
Transmitter Mo	dulation, output	power and other charac	eteristics		
§2.1033 (c) (5) §27.5 (i) (2)		Frequency range(s)	2112.4-2152.6 MHz	2110 – 2155 MHz	Complied
\$2.1033 (c) (6) \$2.1033 (c) (7) \$2.1046 \$27.50(d)		EIRP	0.019 Watts 12.7 dBm	1640 Watts 62.1 dBm	Complied
§2.1033 (c) (4)		Emission types	WCDMA	•	-
\$2.1047 \$27.53(m)(4) (6)		Emission mask Note 3	< -13dBm at both band edges	-13dBm at band edge	Complied
§2.1049		Occupied Bandwidth	4.2 MHz	-	N/A
Transmitter spu	rious emissions				
§2.1051 §2.1053		At the antenna terminals	-26.9 dBm @ 2155.23 MHz	-13 dBm	Complied
§2.1057 §27.53(h)		Field strength	-13.2dBm @ 4303.9MHz	-13 dBm eirp	Complied
Receiver spurio	us emissions				
15.109		At the antenna terminals	Note 2	2nW / 100kHz (-57dBm)	N/A
15.109		Field strength	Note 2	See limit table on page 17	N/A
Other details					
§2.1055 §27.54		Frequency stability	0.1 ppm	100 ppm Note 1	
§2.1093		RF Exposure	0.012 mW/cm^2 at 20cm	1.0 mW/cm^2	Complied
§2.1033 (c) (8)		Final radio frequency amplifying circuit's dc voltages and currents for normal operation over the power range	Refer to operational description	-	-
-	-	Antenna Gain		-	-

Notes

Note 1 – The requirement for frequency stability is that the signal remains within the allocated band. A limit of 100 ppm is being used to ensure the signal remains within the allocated band as defined by the spurious limits at the channel edges.

Note 2 - As the frequency of operation is above 960 MHz there are no technical requirements for spurious emissions from the receiver.

Note 3 – The measurement at the channel edge is made in a reference bandwidth of 1 MHz or at least 1% the emission bandwidth is used. For measurements more than 1MHz from the edge of the channel the measurement bandwidth is 1MHz.

File: R79414 Rev 1 Page 6 of 17

EXTREME CONDITIONS

Frequency stability is determined over extremes of temperature and voltage. The extremes of voltage were 85 to 115 percent of the nominal value.

The extremes of temperature were -30°C to +50°C as specified in FCC §2.1055(a)(1).

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2) and were calculated in accordance with NAMAS document NIS 81 and M3003.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF frequency	Hz	25 to 7,000 MHz	1.7×10^{-7}
RF power, conducted	dBm	25 to 7,000 MHz	± 0.52 dB
Conducted emission of transmitter	dBm	25 to 40,000 MHz	$\pm 0.7 dB$
Conducted emission of receiver	dBm	25 to 40,000 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 40,000 MHz	± 2.5 dB
Radiated emission (field strength)	dBμV/m	25 to 1,000 MHz 1 to 40 GHz	$\pm 3.6 \text{ dB} \pm 6.0 \text{ dB}$

File: R79414 Rev 1 Page 7 of 17

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Nextivity Incorporated model CELFI-RSCU104 is part of a cellular repeater system that is designed to allow for cellular reception within a building. The CELFI-RSCU104 communicates with cellular handsets in the 2110-2155 MHz band and can transmit to the CELFI-RSWU104 in the 5150-5350 MHz band. It was treated as table-top equipment during testing to simulate the end-user environment. The CELFI-RSCU104 is powered via external AC/DC adapters. The electrical rating of the adapters is 90-264VAC, 47-63 Hz, 1.0A Max.

The sample was received on April 12, 2010 and tested on April 26, May 3 and May 12, 2010. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Nextivity	CELFI-RSCU1	Cel-Fi Coverage	Various	YETCELFI-
		Unit		RSCU104

OTHER EUT DETAILS

The communication in the U-NII bands is a nominally 40 MHz proprietary signal. The WU transmits in the 5470-5725 MHz band only and receives in the 5150-5350 MHz band in normal use. During CU synchronization, the WU receives in both 5150-5350 and 5470-5735 MHz bands. The CU transmits in the 5150-5350 MHz band and receives in the 5470-5725 MHz band. Once communication is established between the WU and CU, there is 100% usage of the TX channel for both the WU and CU.

ANTENNA SYSTEM

The antenna system consists of custom built antennas mounted inside the enclosure. They are not accessible or removable.

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 17.4 cm wide by 13.3 cm deep by 5.9 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Dell	PP18L	Laptop	37670547493	-
Dell	HA65NS1-00	Power Adaptor	CN-OHN662-	-
		_	47890-870-	
			A2C2	

File: R79414 Rev 1 Page 8 of 17

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected		Cable(s)	
Foit	То	Description	Shielded or Unshielded	Length(m)
Console	Laptop USB	Multi-conductor	Shielded	1.5
(Serial)				
AC Adapter	AC Mains	Direct Plug in	Unshielded	2.0
Power				
DC Power	AC Adapter	Two wire	Unshielded	2.0

Note: The USB port was not connected during testing. Nextivity stated that this is for loading code and therefore would not normally be connected.

EUT OPERATION

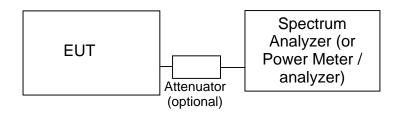
During emissions testing, the EUT was configured to transmit a modulated 100% duty cycle signal at the selected power and frequency.

File: R79414 Rev 1 Page 9 of 17

TESTING

GENERAL INFORMATION

Radiated emissions measurements were taken at the Elliott Laboratories Semi Anechoic Chambers and/or Open Area Test Site(s) listed below. The sites conform to the requirements of ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz and CISPR 16-1-4:2007 - Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4: Radio disturbance and immunity measuring apparatus Ancillary equipment Radiated disturbances. They are on file with the FCC and industry Canada.


Site	Registratio	n Numbers	Location
Site	FCC	Canada	Location
Chamber 4	211948	IC 2845B-4	41039 Boyce Road
Chamber 5	211948	IC 2845B-5	Fremont, CA 94538-2435

In the case of Open Area Test Sites, ambient levels are at least 6 dB below the specification limits with the exception of predictable local TV, radio, and mobile communications traffic.

Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements.

RF PORT MEASUREMENT PROCEDURES

Conducted measurements are performed with the EUT's rf input/output connected to the input of a spectrum analyzer, power meter or modulation analyzer. When required an attenuator, filter and/or dc block is placed between the EUT and the spectrum analyzer to avoid overloading the front end of the measurement device. Measurements are corrected for the insertion loss of the attenuators and cables inserted between the rf port of the EUT and the measurement equipment.

Test Configuration for Antenna Port Measurements

For devices with an integral antenna the output power and spurious emissions are measured as a field strength at a test distance of (typically) 3m and then converted to an eirp using a substitution measurement. All other measurements are made as detailed below but with the test equipment connected to a measurement antenna directed at the EUT.

File: R79414 Rev 1 Page 10 of 17

OUTPUT POWER

Output power is measured using a power meter and an average sensor head, a spectrum analyzer or a power meter and peak power sensor head as required by the relevant rule part(s). Where necessary measurements are gated to ensure power is only measured over periods that the device is transmitting.

Power measurements made directly on the rf power port are, when appropriate, converted to an EIRP by adding the gain of the highest gain antenna that can be used with the device under test, as specified by the manufacturer.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN. The measurement bandwidth is set to be at least 1% of the instrument's frequency span.

CONDUCTED SPURIOUS EMISSIONS

Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode measurements). Where the limits are expressed as an average power the spectrum analyzer is tunes to that frequency with a narrow span (wide enough to capture the emission and its sidebands) and the resolution and video bandwidths are adjusted as required by the reference measurement standards. For transmitter measurements the appropriate detector (average, peak, normal ,sample, quasi-peak) is used when making measurements for licensed devices. For receiver conducted spurious measurements the detector is set to peak.

File: R79414 Rev 1 Page 11 of 17

TRANSMITTER MASK MEASUREMENTS

The transmitter mask measurements are made using resolution bandwidths as specified in the pertinent rule part(s). Where narrower bandwidths are used the measurement is corrected to account for the reduced bandwidth by either using the adjacent channel power function of the spectrum analyzer to sum the power across the required measurement bandwidth. The frequency span of the analyzer is set to ensure the fundamental signal and all significant sidebands are displayed.

The top of the mask may be set by the total output power of the signal, the power of the unmodulated signal or the peak value of the signal in the reference bandwidth being used for the mask measurement.

FREQUENCY STABILITY

The EUT is placed inside a temperature chamber with all support and test equipment located outside of the chamber. The temperature is varied across the specified frequency range in 10 degree increments with frequency measurements made at each temperature step. The EUT is allowed enough time to stabilize at each temperature variation.

The spectrum analyzer is configured to give a 5- or 6-digit display for the marker-frequency function. The spectrum analyzer's built-in frequency counter is used to measure the maximum deviation of the fundamental frequency at each temperature. Where possible the device is set to transmit an unmodulated signal. Where this is not possible the frequency drift is determined by finding a stable point on the signal (e.g. the null at the centre of an OFDM signal) or by calculating a centre frequency based on the upper and lower XdB points (where X is typically 6dB or 10dB) on the signal's skirts.

File: R79414 Rev 1 Page 12 of 17

RADIATED EMISSIONS MEASUREMENTS

Receiver radiated spurious emissions measurements are made in accordance with ANSI ANSI C63.4:2003 by measuring the field strength of the emissions from the device at a specific test distance and comparing them to a field strength limit. Where the field strength limit is specified at a longer distance than the measurement distance the measurement is extrapolated to the limit distance.

Transmitter radiated spurious emissions are initially measured as a field strength. The eirp or erp limit as specified in the relevant rule part(s) is converted to a field strength at the test distance and the emissions from the EUT are then compared to that limit. Emissions within 20dB of this limit are the subjected to a substitution measurement.

All radiated emissions measurements are performed in two phases. A preliminary scan of emissions is conducted in either an anechoic chamber or on an OATS during which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed across the complete frequency range of interest and at each operating frequency identified in the reference standard. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. Initial scans are made using a peak detector (RBW=VBW) and using scan rates to ensure that the EUT transmits before the sweep moves out of each resolution bandwidth (for transmit mode).

During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. For transmitter spurious emissions, where the limit is expressed as an effective radiated power, the eirp or erp is converted to a field strength limit.

Final measurements are made on an OATS or in a semi-anechoic chamber at the significant frequencies observed during the preliminary scan(s) using the same process of rotating the EUT and raising/lowering the measurement antenna to find the highest level of the emission. The field strength is recorded and, for receiver spurious emissions, compared to the field strength limit. For the final measurement the appropriate detectors (average, peak, normal, sample, quasi-peak) are used. For receiver measurements below 1GHz the detector is a Quasi-Peak detector, above 1GHz a peak detector is used and the peak value (RB=VB=1MHz) and average value (RB=1MHz, VB=10Hz) are recorded.

For transmitter spurious emissions, the radiated power of all emissions within 20dB of the calculated field strength limit are determined using a substitution measurement. The substitution measurement is made by replacing the EUT with an antenna of known gain (typically a dipole antenna or a double-ridged horn antenna), connected to a signal source. The output power of the signal generator is adjusted until the maximum field strength from the substitution antenna is similar to the field strength recorded from the EUT. The erp of the EUT is then calculated.

File: R79414 Rev 1 Page 13 of 17

INSTRUMENTATION

An EMI receiver as specified in CISPR 16-1-1 is used for radiated emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 7000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary.

For measurements above the frequency range of the receivers and for all conducted measurements a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis.

Measurement bandwidths for the test instruments are set in accordance with the requirements of the standards referenced in this document.

Software control is used to correct the measurements for transducer factors (e.g. antenna) and the insertion loss of cables, attenuators and other series elements to obtain the final measurement value. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are exported in a graphic and/or tabular format, as appropriate.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the EUT antenna port or receiving antenna and the test receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A combination of biconical, log periodic or bi-log antennas are used to cover the range from 30 MHz to 1000 MHz. Broadband antennas or tuned dipole antennas are used over the entire 25 to 1000 MHz frequency range as the reference antenna for substitution measurements. Above 1000 MHz, a dual-ridge guide horn antenna or octave horn antenna are used as reference and measurement antennas

The antenna calibration factors are included in site factors that are programmed into the test receivers and instrument control software when measuring the radiated field strength.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height.

Table mounted devices are placed on a non-conductive table at a height of 80 centimeters above the floor. Floor mounted equipment is placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. The EUT is positioned on a motorized turntable to allow it to be rotated during testing to determine the angel with the highest level of emissions.

File: R79414 Rev 1 Page 14 of 17

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS - CONDUCTED SPURIOUS EMISSIONS

Measurements are compared directly to the conducted emissions specification limit (decibel form). The calculation is as follows:

$$R_r - S = M$$

where:

 R_r = Measured value in dBm

S = Specification Limit in dBm

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED FIELD STRENGTH

Measurements of radiated field strength are compared directly to the specification limit (decibel form). The receiver and/or control software corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements

A distance factor is used when measurements are made at a test distance that is different to the specified limit distance by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

File: R79414 Rev 1 Page 15 of 17

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_{c} = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS -RADIATED POWER

The erp/eirp limits for transmitter spurious measurements are converted to a field strength in free space using the following formula:

$$E = \frac{\sqrt{30 PG}}{d}$$

where:

E = Field Strength in V/m

P = Power in Watts

G = Gain of isotropic antenna (numeric gain) = 1

D = measurement distance in meters

The field strength limit is then converted to decibel form (dBuV/m) and the margin of a given emission peak relative to the limit is calculated (refer to *SAMPLE CALCULATIONS –RADIATED FIELD STRENGTH*).

When substitution measurements are required (all signals with less than 20dB of margin relative to the calculated field strength limit) the eirp of the spurious emission is calculated using:

$$P_{EUT} = P_{S-}(E_{S-}E_{EUT})$$

$$P_s = G + P_{in}$$

where:

and

P_S = effective isotropic radiated power of the substitution antenna (dBm)

 P_{in} = power input to the substitution antenna (dBm)

G = gain of the substitution antenna (dBi)

 E_S = field strength the substitution antenna (dBm) at eirp P_S

 E_{EUT} = field strength measured from the EUT

Where necessary the effective isotropic radiated power is converted to effective radiated power by subtracting the gain of a dipole (2.2dBi) from the eirp value.

File: R79414 Rev 1 Page 16 of 17

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz - 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

File: R79414 Rev 1 Page 17 of 17

Appendix A Test Equipment Calibration Data

Radio Antenna Port (Power and Spurious Emissions), 26-Apr-10				
<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Rohde & Schwarz	Power Sensor, 1 uW-100 mW, DC-18 GHz, 50ohms	NRV-Z51	1070	06-May-10
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	12-May-10
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1290	22-Oct-10
Rohde & Schwarz	EMI Test Receiver	ESIB7	1538	15-Oct-10
Signal Substitutions,		NA a dal 44	A = = = + #	Cal Dura
Manufacturer	<u>Description</u>	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18GHz	3115	868	10-Jun-10
Rohde & Schwarz	Power Sensor, 1 uW-100 mW, DC-18 GHz, 50ohms	NRV-Z51	1070	06-May-10
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	14-Apr-11
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	10-Jun-10
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	1780	17-Sep-10
Anritsu	Signal Generator, 10MHz- 20GHz	68347C	1785	18-Nov-10
Rohde & Schwarz	Power Meter, Dual Channel	NRVD	1786	05-Feb-11
Frequency Stability, 1	2-May-10	NA o de l	A = = = + #	Cal Dura
<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Agilent	PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	E4446A	2139	06-Jan-11
Thermotron	Temp Chamber (w/ F4 Watlow Controller)	S1.2	2170	29-Jun-10

File: R79414 Rev 1 Appendix Page 1 of 11

Appendix B Test Data

T79040 14 Pages

File: R79414 Rev 1 Appendix Page 2 of 11

Ellio	tt Ecompany	El	MC Test Data
Client:	Nextivity, Inc.	Job Number:	J78899
Model:	Cel-Fi	T-Log Number:	T79040
		Account Manager:	Sheareen Washington
Contact:	Rama Akella		-
Emissions Standard(s):	FCC Part 15 and 27	Class:	В
Immunity Standard(s):	-	Environment:	Radio

EMC Test Data

For The

Nextivity, Inc.

Model

Cel-Fi

Date of Last Test: 5/12/2010

E	Radio Test D		o Test Data
Client:	Nextivity, Inc.	Job Number:	J78899
Model:	Cal Ei	T-Log Number:	T79040
wodei.	Cel-FI	Account Manager:	Sheareen Washington
Contact:	Rama Akella		
Standard:	FCC Part 15 and 27	Class:	N/A

FCC Part 27 Power, Occupied Bandwidth, Frequency Stability and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

With the exception of the radiated spurious emissions tests, all measurements are made with the EUT's rf port connected to the measurement instrument via an attenuator or dc-block if necessary. All amplitude measurements are adjusted to account for the attenuation between EUT and measuring instrument. For frequency stability measurements the EUT was place inside an environmental chamber.

Radiated measurements are made with the EUT located on a non-conductive table, 3m from the measurement antenna.

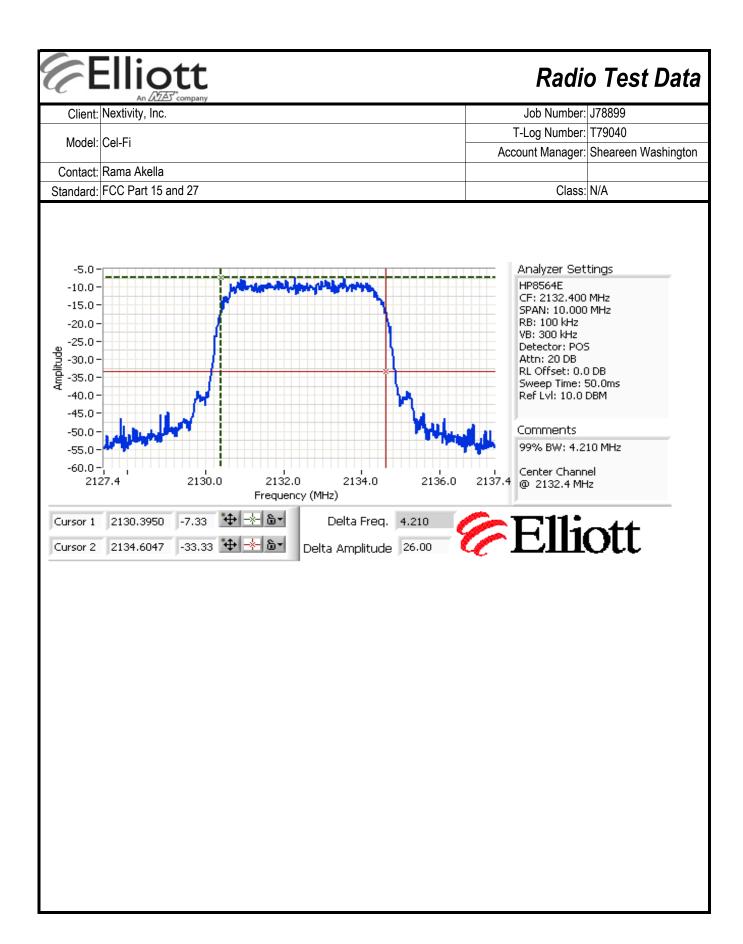
Ambient Conditions: Temperature: 19.4 °C

Rel. Humidity: 40 %

Summary of Results

Run#	Spacing	Test Performed	Limit	Pass / Fail	Result / Margin
1	100 kHz	Output Power	1640 W EIRP	Pass	12.7 dBm EIRP
I	100 KI IZ	Output Fower	1040 W LINE	Fa55	(0.019W)
2	100 kHz	99% or Occupied Bandwidth	-	-	4.2 MHz
2	100 kHz	Spurious Emissions (conducted)	-13 dBm	Pass	All emissions less than
J	100 KI IZ	Spanous Emissions (conducted)	-13 00111	F d 5 5	-13dBm
4	100 kHz	Spurious emissions (radiated)	-13 dBm	Pass	-14.4dBm @
4	Spurious emissions (radiated)		-10 00111	F d 5 5	4303.9MHz (-1.4dB)
5	100 kHz	Frequency Stability	139ppm	Pass	0.1ppm

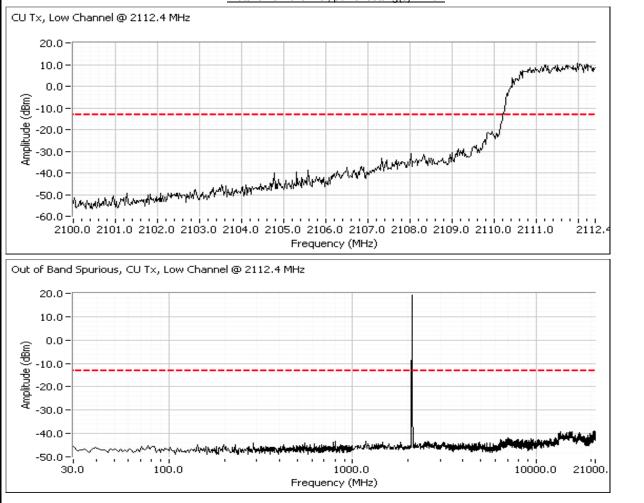
Modifications Made During Testing


No modifications were made to the EUT during testing

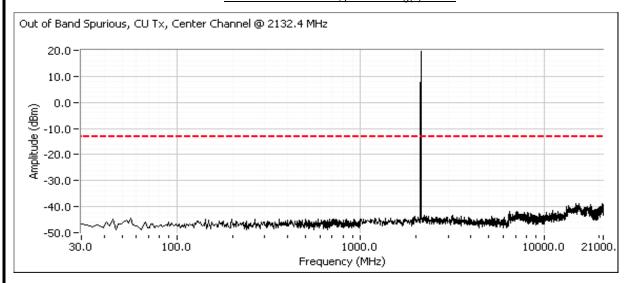
Deviations From The Standard

No deviations were made from the requirements of the standard.

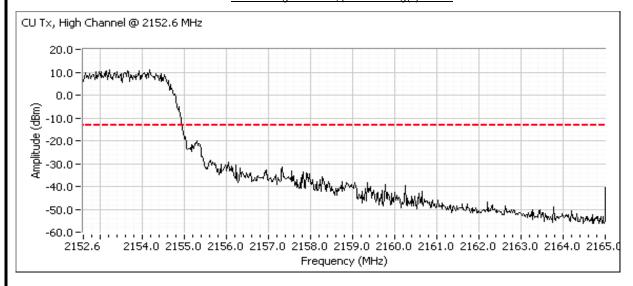
	Elliott An 公名子 company Nextivity, Inc.						Job Number:	o Test	
Cilent.	. INEXIIVILY, IIIC.						Log Number:		
Model:	Cel-Fi							Sheareen W	/achinatan
Cambaati	Rama Akella					ACCOL	ını ıvlanager.	Sheareen w	rasnington
							Class	NI/A	
	FCC Part 15 and 27						Class	IN/A	
	I: Output Power Date: 4/26/2010 Engineer: Rafael Varelas Location: FT Chamber #5								
Dale.									
Cable + Cor	mbiner Loss: <mark>7.8 dB</mark> Cable ID(s): EL441, EL4	12, 1876	At	Attenuator: tenuator IDs:			Total Loss:	18.2 dB	
Cable + Cor	Cable ID(s): EL441, EL4		At		2100	EI	Total Loss:		wer (Peak)
Cable + Cor	Cable ID(s): EL441, EL4 Frequency (MHz)			tenuator IDs:		EI dBm	RP W		wer (Peak) mW
Cable + Cor Power Setting ² Max	Cable ID(s): EL441, EL4 Frequency (MHz) 2112.4	Output	Power	tenuator IDs:	2100		RP W 0.011	Output Po	. ` ′
Cable + Cor Power Setting ² Max Max	Cable ID(s): EL441, EL4 Frequency (MHz) 2112.4 2132.4	Output (dBm) ¹ 9.4 11.7	Power mW 8.7 14.7	Antenna Gain (dBi) 1.0 1.0	Result Pass Pass	dBm 10.4 12.7	RP W 0.011 0.019	Output Por (dBm) ³ 21.5 23.7	mW 141.3 234.4
Cable + Cor Power Setting ² Max	Cable ID(s): EL441, EL4 Frequency (MHz) 2112.4	Output (dBm) ¹ 9.4	Power mW 8.7	Antenna Gain (dBi)	2100 Result Pass	dBm 10.4	RP W 0.011	Output Por (dBm) ³ 21.5	mW 141.3
Power Setting ² Max Max Max	Cable ID(s): EL441, EL4 Frequency (MHz) 2112.4 2132.4 2152.6	Output (dBm) 1 9.4 11.7 11.5	Power mW 8.7 14.7 14.1	Antenna Gain (dBi) 1.0 1.0 1.0	Result Pass Pass	dBm 10.4 12.7	RP W 0.011 0.019	Output Por (dBm) ³ 21.5 23.7	mW 141.3 234.4
Cable + Cor Power Setting ² Max Max	Cable ID(s): EL441, EL4 Frequency (MHz) 2112.4 2132.4	Output (dBm) 1 9.4 11.7 11.5 using an ave	Power mW 8.7 14.7 14.1	Antenna Gain (dBi) 1.0 1.0 1.0 meter	Result Pass Pass Pass	dBm 10.4 12.7 12.5	RP W 0.011 0.019 0.018	Output Por (dBm) ³ 21.5 23.7	mW 141.3 234.4


Radio Test Data Client: Nextivity, Inc. Job Number: J78899 T-Log Number: T79040 Model: Cel-Fi Account Manager: Sheareen Washington Contact: Rama Akella Standard: FCC Part 15 and 27 Class: N/A Run #2: Signal Bandwidth Date: 4/26/2010 Rafael Varelas Location: FT Chamber #5 Engineer: Power Resolution Bandwidth (MHz) Frequency (MHz) Bandwidth Setting 26dB 99% 2112.4 100kHz Max 4.7 4.2 2132.4 Max 100kHz 4.68 4.2 2152.6 Max 100kHz 4.66 4.2 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB Note 1: 100.0 Analyzer Settings HP8564E 95.0 CF: 2132,400 MHz 90.0 SPAN: 10,000 MHz RB: 100 kHz 85.0 VB: 300 kHz Detector: POS 80.0 Attn: 20 DB 75.0 RL Offset: 0.0 DB Sweep Time: 50.0ms 70.0 Ref Lvl: 117.0 DBUV 65.0 60.0 Comments 26dB BW: 4,683 MHz 55.0 50.0 Center Channel @ 2132.4 MHz 2132.0 2134.0 2136.0 2137.4 2130.0 2127.4 Frequency (MHz) **⊕** -*- **6**-99.67 Cursor 1 2134.8500 Delta Freq. 2130.1667 73.67 Delta Amplitude 26.00 Cursor 2

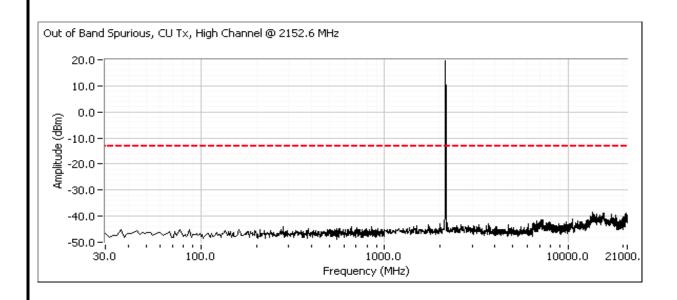
Radio Test Data Client: Nextivity, Inc. Job Number: J78899 T-Log Number: T79040 Model: Cel-Fi Account Manager: Sheareen Washington Contact: Rama Akella Standard: FCC Part 15 and 27 Class: N/A Run #3: Out of Band Spurious Emissions, Conducted Location: FT Chamber #5 Date: 4/26/2010 Engineer: Rafael Varelas Frequency (MHz) Limit Result 2112.4 -13dBm Pass 2132.4 -13dBm **Pass** 2152.6 -13dBm Pass


The limit is taken from FCC Part 27.53(h), (1 MHz RB and 3 MHz VB), for BE plots 100kHz RB and 100kHz VB were used. At bandedges, RW can be lowered to 1% of the 26dB bandwidth

Plots for low channel, power setting(s) = Max



E E	Eliott An AZES company	Radio	o Test Data
	Nextivity, Inc.	Job Number:	J78899
Madalı	Model: Cel-Fi	T-Log Number:	T79040
wodei.	Cel-FI	Account Manager:	Sheareen Washington
Contact:	Rama Akella		
Standard:	FCC Part 15 and 27	Class:	N/A


Plots for center channel, power setting(s) = Max

Plots for high channel, power setting(s) = Max

	Eliott An AZAS company	Radio	o Test Data
Client:	Nextivity, Inc.	Job Number:	J78899
Model:	0-1 5:	T-Log Number:	T79040
wodei.	Oël-FI	Account Manager:	Sheareen Washington
Contact:	Rama Akella		
Standard:	FCC Part 15 and 27	Class:	N/A

Frequency	Level				Detector	Comments
MHz	dBm	Lead	Limit	Margin	QP/Ave	
2155.230	-26.9	RF Port	-13.0	-13.9	Ave	RB = 50 kHz, VB = 100 KHz
2109.799	-26.0	RF Port	-13.0	-13.0	Ave	RB = 50 kHz, VB = 100 KHz

Elliott An MISS company

Radio Test Data

	An A(ZA) company		
Client:	Nextivity, Inc.	Job Number:	J78899
Madalı	Cel-Fi	T-Log Number:	T79040
Model.	Cel-FI	Account Manager:	Sheareen Washington
Contact:	Rama Akella		
Standard:	FCC Part 15 and 27	Class:	N/A

Run #4: Out of Band Spurious Emissions, Radiated

Conducted limit (dBm): -13
Approximate field strength limit @ 3m: 82.3

The limit is taken from FCC Part 27.53(h), (1 MHz RB and 3 MHz VB)

Run #4a - Preliminary measurements - chamber scans

Date: 5/4/2010 Engineer: Rafael Varelas Location: FT Chamber #5

Frequency	Level	Pol	FCC 9	90.210	Detector	Azimuth	Height	Comments	Channel
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1711.170	88.1	V	-	-	Peak	200	1.3	ESG generator	Low
2112.490	102.1	V	-	-	Peak	63	1.0	Fundamental	Low
4224.760	58.3	V	82.2	-23.9	Peak	55	1.3		Low
10560.000	48.9	V	82.2	-33.3	Peak	157	1.6		Low
1732.710	88.4	Н	_	_	Peak	126	1.3	ESG generator	Middle
2132.950	102.0	V	-	-	Peak	20	1.0	Fundamental	Middle
4264.820	68.7	V	82.2	-13.5	Peak	29	1.6		Middle
8529.730	56.4	V	82.2	-25.8	Peak	156	1.6		Middle
10653.330	50.0	V	82.2	-32.2	Peak	38	1.3		Middle
				0.0					
1752.540	90.0	Н	-	-	Peak	129	1.3	ESG generator	High
2152.660	101.9	V	-	-	Peak	19	1.0	Fundamental	High
4305.660	72.9	V	82.2	-9.3	Peak	59	1.3		High
6463.330	60.8	V	82.2	-21.4	Peak	25	1.3		High
8610.510	60.6	V	82.2	-21.6	Peak	162	1.6		High
10760.000	52.9	V	82.2	-29.3	Peak	302	1.3		High
12906.670	53.2	V	82.2	-29.0	Peak	359	1.9		High

Note 1: The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free space propagation equation: E=√(30PG)/d. This limit is conservative - it does not consider the presence of the ground plane and, for erp limits, the dipole gain (2.2dBi) has not been included. The erp or eirp for all signals with less than **20dB** of margin relative to this field strength limit is determined using substitution measurements.

Note 2: Measurements are made with the antenna port terminated.

Radio Test Data Job Number: J78899 Client: Nextivity, Inc. T-Log Number: T79040 Model: Cel-Fi Account Manager: Sheareen Washington Contact: Rama Akella Standard: FCC Part 15 and 27 Class: N/A Plots for low channel, power setting(s) = Max CU, Low Channel @ 2112.4 MHz 110.0 100.0 90.0-Amplitude (dBuV/m) 80.0-70.0 60.0 50.0 40.0 30.0-10000 1000 Frequency (MHz) CU, Low Channel @ 2112.4 MHz 90.0 80.0 Amplitude (dBuV/m) 90.0 20.0 20.0 40.0 30.0 - , , 10000 11000 12000 15000 13000 14000 16000 17000 18000 Frequency (MHz)

Radio Test Data Client: Nextivity, Inc. Job Number: J78899 T-Log Number: T79040 Model: Cel-Fi Account Manager: Sheareen Washington Contact: Rama Akella Standard: FCC Part 15 and 27 Class: N/A Plots for center channel, power setting(s) = Max CU, Middle Channel @ 2132.4 MHz 110.0 100.0 90.0 Amplitude (dBuV/m) 80.0 70.0 60.0 50.0 40.0 30.0-10000 1000 Frequency (MHz) CU, Middle Channel @ 2132.4 MHz 90.0 80.0 Amplitude (dBuV/m) 0.00 20.00 20.00 40.0 30.0 - | , , 15000 10000 11000 12000 13000 14000 16000 17000 18000 Frequency (MHz)

Radio Test Data Client: Nextivity, Inc. Job Number: J78899 T-Log Number: T79040 Model: Cel-Fi Account Manager: Sheareen Washington Contact: Rama Akella Standard: FCC Part 15 and 27 Class: N/A Plots for high channel, power setting(s) = Max CU, High Channel @ 2152.6 MHz 110.0 100.0 90.0 Amplitude (dBuV/m) 80.0 70.0 60.0 50.0 40.0 30.0-10000 1000 Frequency (MHz) CU, High Channel @ 2152.6 MHz 90.0 80.0 Amplitude (dBuV/m) 90.0 90.0 90.0 40.0 30.0 - | | 15000 10000 11000 12000 16000 17000 18000 13000 14000 Frequency (MHz)

	Ellic	ott						Radio	o Test	Data				
	Nextivity, Inc	A company						Job Number:	J78899					
								Log Number:						
Model:	: Cel-Fi							unt Manager:		/ashington				
Contact:	Rama Akella	 1					7,000	ant manager.	Circuit Con 11	aoriii igioi i				
Standard:	FCC Part 15	and 27						Class:	N/A					
			surements	and Substit	ution Measu	rements								
Date:	5/4/2010	_		Rafael Vare			FT Chambe	r #5						
EUT Field S	trength		J											
Frequency	Level	Pol	FCC 9	90.210	Detector	Azimuth	Height	Comments		Channel				
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters							
4224.360	69.5	V	82.2	-12.7	PK	50	1.3	RB 1 MHz; \	VB: 1 MHz	Low				
4267.200	77.5	V	82.2	-4.7	PK	55	1.7	RB 1 MHz; \	VB: 1 MHz	Middle				
6457.200	75.1	V	82.2	-7.1	PK	24	1.7	RB 1 MHz; \	VB: 1 MHz	High				
4303.880	85.0	V	82.2	2.8	PK	39	1.7	RB 1 MHz; \	VB: 1 MHz	High				
8609.640	67.5	V	82.2	-14.7	PK	164	1.7	RB 1 MHz; \	VB: 1 MHz	High				
Note 1:	The field strength limit in the tables above was calculated from the erp/eirp limit detailed in the standard using the free space propagation equation: $E=\sqrt{(30PG)/d}$. This limit is conservative - it does not consider the presence of the ground plane and, for erp limits, the dipole gain (2.2dBi) has not been included. The erp or eirp for all signals with less than 20dB of margin													
	relative to th	is field streng	gth limit is de	termined us	ing substitutio	n measurem	ients.	relative to this field strength limit is determined using substitution measurements. Measurements are made with the antenna port terminated.						
Note 2:						n measurem	ents.			margin				
Note 2: Substitution Vertical		nts are made				n measurem	nents.							
Substitution Vertical	Measuremen	nts are made	with the ant		rminated.	n measurem		eirp Limit	erp Limit	Margin				
Substitution Vertical	Measuremen	nts are made ents	with the ant	enna port te	rminated.			eirp Limit dBm	erp Limit dBm					
Substitution Vertical Frequency	Measuremen n measurem Substitu	nts are made ents ution measur	with the ant	enna port te	rminated.	Γ measurem	ents			Margin				
Substitution Vertical Frequency MHz	Measurement n measurem Substitut Pin ¹	ents are made ents ution measur Gain ²	ements FS ³	enna port te Site Factor ⁴	rminated. EU ⁻ FS ⁵	Γ measuremo eirp (dBm)	ents erp (dBm)	dBm		Margin dB				
Substitution Vertical Frequency MHz 4303.880	Measurement n measurem Substitu Pin ¹ -19.7	ents ution measur Gain² 10.2	ements FS ³ 88.7	Site Factor ⁴ 98.2	FS ⁵ 85.0	Γ measurem eirp (dBm) -13.2	ents erp (dBm) -15.4	dBm -13.0		Margin dB -0.2				
Substitution Vertical Frequency MHz 4303.880 4224.360	Measurement Substitut Pin¹ -19.7 -19.8	ents ution measur Gain² 10.2 10.2	ements FS ³ 88.7 89.2	Site Factor ⁴ 98.2 98.8	FS ⁵ 85.0 69.5	F measureme eirp (dBm) -13.2 -29.3	ents erp (dBm) -15.4 -31.5	dBm -13.0 -13.0		Margin dB -0.2 -16.3				
Substitution Vertical Frequency MHz 4303.880 4224.360 4267.200	Measurement Substitut Pin ¹ -19.7 -19.8 -19.5	ents ution measur Gain² 10.2 10.2 10.2	ements FS ³ 88.7 89.2 90.0	Site Factor ⁴ 98.2 98.8 99.3	FS ⁵ 85.0 69.5 77.5	Γ measureme eirp (dBm) -13.2 -29.3 -21.8	ents erp (dBm) -15.4 -31.5 -24.0	dBm -13.0 -13.0 -13.0		Margin dB -0.2 -16.3 -8.8				
Substitution Vertical Frequency MHz 4303.880 4224.360 4267.200 6457.200 8609.640	Neasurement Substitut Pin ¹ -19.7 -19.8 -19.5 -19.6 -19.7	ents ution measur Gain² 10.2 10.2 10.2 10.2 10.9	ements FS ³ 88.7 89.2 90.0 89.2 90.0	Site Factor ⁴ 98.2 98.8 99.3 97.7 98.8	FS ⁵ 85.0 69.5 77.5 75.1 67.5	F measureme eirp (dBm) -13.2 -29.3 -21.8 -22.6	ents erp (dBm) -15.4 -31.5 -24.0 -24.8	dBm -13.0 -13.0 -13.0 -13.0		Margin dB -0.2 -16.3 -8.8 -9.6				
Substitution Vertical Frequency MHz 4303.880 4224.360 4267.200 6457.200 8609.640	Substitu Pin¹ -19.7 -19.8 -19.5 -19.6 -19.7 Pin is the inp	ents ution measur Gain² 10.2 10.2 10.2 10.9 ution measur	ements FS ³ 88.7 89.2 90.0 89.2 90.0	Site Factor ⁴ 98.2 98.8 99.3 97.7 98.8	FS ⁵ 85.0 69.5 77.5 75.1 67.5	F measureme eirp (dBm) -13.2 -29.3 -21.8 -22.6	ents erp (dBm) -15.4 -31.5 -24.0 -24.8	dBm -13.0 -13.0 -13.0 -13.0		Margin dB -0.2 -16.3 -8.8 -9.6				
Substitution Vertical Frequency MHz 4303.880 4224.360 4267.200 6457.200 8609.640 Note 1:	Substitute Pin ¹ -19.7 -19.8 -19.5 -19.6 -19.7 Pin is the ing Gain is the g	ents ution measur Gain² 10.2 10.2 10.2 10.9 utt power (dEpain (dBi) for	ements FS³ 88.7 89.2 90.0 89.2 90.0 8m) to the su the substitut	Site Factor ⁴ 98.2 98.8 99.3 97.7 98.8	FS ⁵ 85.0 69.5 77.5 75.1 67.5	F measureme eirp (dBm) -13.2 -29.3 -21.8 -22.6 -31.3	ents erp (dBm) -15.4 -31.5 -24.0 -24.8	dBm -13.0 -13.0 -13.0 -13.0		Margin dB -0.2 -16.3 -8.8 -9.6				
Substitution Vertical Frequency MHz 4303.880 4224.360 4267.200 6457.200	Substitute Pin1 -19.7 -19.8 -19.5 -19.6 -19.7 Pin is the input Gain is the general Pin is the field of the substitute o	ents ution measur Gain² 10.2 10.2 10.2 10.9 ut power (dE jain (dBi) for d strength (d	ements FS³ 88.7 89.2 90.0 89.2 90.0 8m) to the suthe substitut BuV/m) mea	Site Factor ⁴ 98.2 98.8 99.3 97.7 98.8 sbstitution arion antenna	FS ⁵ 85.0 69.5 77.5 75.1 67.5	F measureme eirp (dBm) -13.2 -29.3 -21.8 -22.6 -31.3	ents erp (dBm) -15.4 -31.5 -24.0 -24.8 -33.5	dBm -13.0 -13.0 -13.0 -13.0 -13.0		Margin dB -0.2 -16.3 -8.8 -9.6				

Radio Test Data

	All 2/22 Company		
Client:	Nextivity, Inc.	Job Number:	J78899
Madali	Cel-Fi	T-Log Number:	T79040
Model.	Cel-F1	Account Manager:	Sheareen Washington
Contact:	Rama Akella		
Standard:	FCC Part 15 and 27	Class:	N/A

Run #5: Frequency Stability

Date: 5/12/2010 Engineer: Mehran Birgani Location: Radio Lab

Nominal Frequency: 2152.6000 MHz

Frequency Stability Over Temperature

The EUT was soaked at each temperature for a minimum of 30 minutes prior to making the measurements to ensure the EUT and chamber had stabilized at that temperature.

Temperature	Frequency Measured	<u>Drift</u>		
(Celsius)	(MHz)	(Hz)	(ppm)	
-30	2152.599949	-51	0.0	
-20	2152.600287	287	0.1	
-10	2152.600197	197	0.1	
0	2152.600130	130	0.1	
10	2152.600225	225	0.1	
20	2152.599995	-5	0.0	
30	2152.599935	-65	0.0	
40	2152.599945	-55	0.0	
50	2152.599984	-16	0.0	
	Worst case:	287	0.1	

Frequency Stability Over Input Voltage

Nominal Voltage is 120VAC.

· · · · · · · · · · · · · · · · · · ·						
<u>Voltage</u>	Frequency Measured	<u>Drift</u>				
(AC)	(MHz)	(Hz)	(ppm)			
102.0	2152.600035	35	0.0			
138.0	2152.600020	20	0.0			
	Worst case:	35	0.1			

Note 1: Maximum drift of fundamental frequency was 0 Hz before it shut down at 86.4 VAC.

Appendix C Photographs

Uploaded as a separate exhibit

File: R79414 Rev 1 Appendix Page 3 of 11

Appendix D Proposed FCC ID Label & Label Location

Uploaded as a separate exhibit

File: R79414 Rev 1 Appendix Page 4 of 11

Appendix E Detailed Photographs

Uploaded as a separate exhibit

File: R79414 Rev 1 Appendix Page 5 of 11

Appendix F Operator's Manual

Uploaded as a separate exhibit

File: R79414 Rev 1 Appendix Page 6 of 11

Appendix G Block Diagram

Uploaded as a separate exhibit

File: R79414 Rev 1 Appendix Page 7 of 11

Appendix H Schematic Diagrams

Uploaded as a separate exhibit

File: R79414 Rev 1 Appendix Page 8 of 11

Appendix I Theory of Operation

Uploaded as a separate exhibit

File: R79414 Rev 1 Appendix Page 9 of 11

Appendix J Tune-up Procedure

Uploaded as a separate exhibit

File: R79414 Rev 1 Appendix Page 10 of 11

Appendix K Parts List

Uploaded as a separate exhibit

File: R79414 Rev 1 Appendix Page 11 of 11