

EMC Test Report

Application for Grant of Equipment Authorization pursuant to

FCC Part 15, Subpart E

Model: CELFI-RSCU104

FCC ID: YETCELFI-RSCU104

APPLICANT: Nextivity Incorporated

12230 World Trade Drive Suite 250

San Diego, CA 92128

TEST SITE(S): **Elliott Laboratories**

41039 Boyce Road.

Fremont, CA. 94538-2435

REPORT DATE: May 20, 2010

FINAL TEST DATES: May 6, May 7 and May 20, 2010

AUTHORIZED SIGNATORY:

David W. Bare Chief Engineer Elliott Laboratories.

Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report, except where noted otherwise. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

File: R79399 Rev 1 Page 1 of 22

Test Report Report Date: May 20, 2010

REVISION HISTORY

Rev#	Date	Comments	Modified By
1	5/20/2010	First release	

File: R79399 Rev 1 Page 2 of 22

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
UNII / LELAN DEVICESGENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	/
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERALGENERAL	
OTHER EUT DETAILS.	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	10
EUT INTERFACE PORTS	
EUT OPERATION	11
TEST SITE	12
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNASANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	15
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS	18
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	19
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
FCC 15.407 (A) OUTPUT POWER LIMITS	20
SPURIOUS EMISSIONS LIMITS –UNII AND LELAN DEVICES	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONSSAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONSSAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
APPENDIX C PHOTOGRAPHS OF TEST CONFIGURATIONS	3
APPENDIX D PROPOSED FCC ID LABEL & LABEL LOCATION	4
APPENDIX E DETAILED PHOTOGRAPHS	5
APPENDIX F OPERATOR'S MANUAL	

APPENDIX G BLOCK DIAGRAM	7
APPENDIX H SCHEMATIC DIAGRAMS	8
APPENDIX I THEORY OF OPERATION	9
APPENDIX J PARTS LIST	10
ADDENDIV K DE EVDOSIDE INFODMATION	11

SCOPE

An electromagnetic emissions test has been performed on the Nextivity Incorporated model CELFI-RSCU104, pursuant to the following rules:

FCC Part 15, Subpart E requirements for UNII Devices (using FCC DA 02-2138, August 30, 2002)

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC UNII test procedure 2002-08 DA-02-2138, August 2002

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R79399 Rev 1 Page 5 of 22

STATEMENT OF COMPLIANCE

The tested sample of Nextivity Incorporated model CELFI-RSCU104 complied with the requirements of the following regulations:

FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Nextivity Incorporated model CELFI-RSCU104 and therefore apply only to the tested sample. The sample was selected and prepared by Rama Akella of Nextivity Incorporated.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

File: R79399 Rev 1 Page 6 of 22

TEST RESULTS SUMMARY

UNII/LELAN DEVICES

Operation in the 5.15 – 5.25 GHz Band

Operation in the circ cize t	y === = •••==•			
FCC Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407(e)	Indoor operation only	Refer to user's manual	N/A	Complies
15.407(a) (1)	26dB Bandwidth	40.4 MHz	Limits output power if < 20MHz	N/A
15.407 (a) (1)	Output Power	11.3 dBm (0.013 W)	17dBm (50mW)	Complies
15.407 (a) (1)	Power Spectral Density	-3.2 dBm/MHz	4 dBm/MHz	Complies
15.407(b) (6) / 15.209	Spurious Emissions below 1GHz	29.6dBµV/m @ 82.01MHz	Refer to standard	Complies (-10.4 dB)
15.407(b) (2)	Spurious Emissions above 1GHz	52.6dBuV/m @ 4199.1MHz	Refer to standard	Complies (-1.4 dB)
15.407(a)(6)	Peak Excursion Ratio	11.2 dB	< 13dB	Complies

Operation in the 5.25 – 5.35 GHz Band

FCC Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(a) (2)	26dB Bandwidth	39.7 MHz	N/A – limits output power if < 20MHz	N/A
15.407(a) (2)	Output Power	11.0 dBm (0.013 W)	24dBm (250mW)	Complies
15.407(a) (2))	Power Spectral Density	-3.7 dBm/MHz	11 dBm/MHz	Complies
15.407(b) (6) / 15.209	Spurious Emissions below 1GHz	29.6dBμV/m @ 82.01MHz	Refer to standard	Complies (-10.4 dB)
15.407(b) (2)	Spurious Emissions above 1GHz	53.3dBuV/m @ 4241.3MHz	Refer to standard	Complies (-0.7 dB)
15.407(a)(6)	Peak Excursion Ratio	9.5 dB	< 13dB	Complies

File: R79399 Rev 1 Page 7 of 22

Requirements for all U-NII bands

FCC Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407	Modulation	OFDM Digital Modulation is used	Digital modulation is required	Complies
15.31(m)	# of Test Frequencies	Measurements on three channels in each band	Device was tested on the top, bottom and center channels in each band	Complies
15.407 (c)	Operation in the absence of information to transmit	Operation would cease but operation never stops as information from cell tower will always be present	Device shall automatically discontinue operation in the absence of information to transmit	Complies
15.407 (g)	Frequency Stability	Frequency stability is better than 10ppm	Signal shall be stable	Complies
15.407 (h1)	Transmit Power Control	TPC mechanism is discussed in the Operational Description Page 5	The U-NII device shall have the capability to operate with a mean EIRP value lower than 24dBm (250mW)	Complies
15.407 (h2)	Dynamic frequency Selection (device with radar detection)	Refer to separate test report, reference R79033	Threshold -62dBm (-64dBm if eirp > 200mW) Channel Availability Check > 60s Channel closing transmission time < 260ms Channel move time < 10s Non occupancy period > 30minutes	Complies
	User Manual information	Refer to Exhibit for details		Complies

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	RF Connector	Integral antenna	Integral antenna or non standard RF connector	Complies
15.109	Receiver spurious emissions	Not applicable for receives operating in these bands	-	-
15.207	AC Conducted Emissions	49.2dBuV @ 0.173MHz	Refer to standard	Complies (-15.6dB)
15.407 (f)	RF Exposure Requirements	Refer to MPE calculations in separate Exhibit	Refer to OET 65, FCC Part 1	Complies

File: R79399 Rev 1 Page 8 of 22

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dBμV/m	25 to 1000 MHz 1000 to 40000 MHz	± 3.6 dB ± 6.0 dB
Conducted Emissions (AC Power)	dΒμV	0.15 to 30 MHz	± 2.4 dB

File: R79399 Rev 1 Page 9 of 22

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Nextivity Incorporated model CELFI-RSCU104 is part of a cellular repeater system that is designed to allow for cellular reception within a building. The CELFI-RSCU104 communicates with cellular handsets and can transmit to the CELFI-RSWU104 in the 5150-5350 MHz band. It was treated as table-top equipment during testing to simulate the end-user environment. The CELFI-RSCU104 is powered via external AC/DC adapters. The electrical rating of the adapters is 90-264VAC, 47-63 Hz, 1.0A Max.

The sample was received on April 12, 2010 and tested on May 6, May 7 and May 20, 2010. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Nextivity	CELFI-RSCU1	Cel-Fi Coverage	Various	YETCELFI-
-		Unit		RSCU104

OTHER EUT DETAILS

The communication in the U-NII bands is a nominally 40 MHz proprietary signal. The WU transmits in the 5470-5725 MHz band only and receives in the 5150-5350 MHz band in normal use. During CU synchronization, the WU receives in both 5150-5350 and 5470-5735 MHz bands. The CU transmits in the 5150-5350 MHz band and receives in the 5470-5725 MHz band. Once communication is established between the WU and CU, there is 100% usage of the TX channel for both the WU and CU.

ANTENNA SYSTEM

The antenna system consists of custom built antennas mounted inside the enclosure. They are not accessible or removable.

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It measures approximately 17.4 cm wide by 13.3 cm deep by 5.9 cm high.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Dell	PP18L	Laptop	37670547493	-
Dell	HA65NS1-00	Power Adaptor	CN-OHN662-	-
		_	47890-870-	
			A2C2	

File: R79399 Rev 1 Page 10 of 22

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected	Cable(s)		
Polt	То	Description	Shielded or Unshielded	Length(m)
Console	Laptop USB	Multi-conductor	Shielded	1.5
(Serial)				
AC Adapter	AC Mains	Direct Plug in	Unshielded	2.0
Power		_		
DC Power	AC Adapter	Two wire	Unshielded	2.0

Note: The USB port was not connected during testing. Nextivity stated that this is for loading code and therefore would not normally be connected.

EUT OPERATION

During emissions testing, the EUT was configured to transmit a modulated 100% duty cycle signal at the selected power and frequency.

File: R79399 Rev 1 Page 11 of 22

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registration Numbers		Location
Site	FCC	Canada	
Chamber 3	769238	2845B-3	41039 Boyce Road
Chamber 4	211948	2845B-4	Fremont, CA 94538-2435

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

File: R79399 Rev 1 Page 12 of 22

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R79399 Rev 1 Page 13 of 22

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

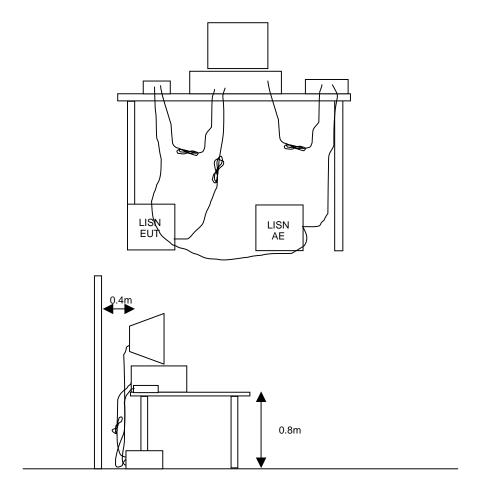
The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R79399 Rev 1 Page 14 of 22


TEST PROCEDURES

EUT AND CABLE PLACEMENT

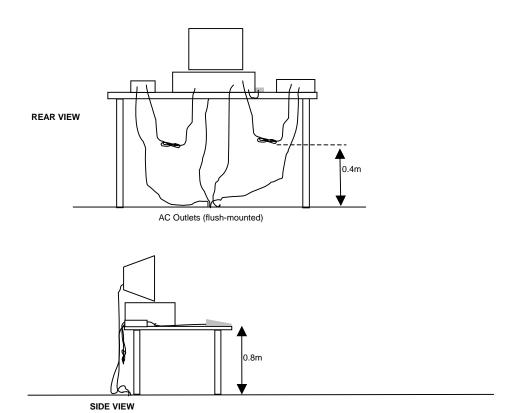
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

File: R79399 Rev 1 Page 15 of 22

RADIATED EMISSIONS

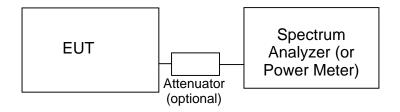

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

File: R79399 Rev 1 Page 16 of 22



Typical Test Configuration for Radiated Field Strength Measurements

File: R79399 Rev 1 Page 17 of 22

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

<u>Test Configuration for Antenna Port Measurements</u>

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

File: R79399 Rev 1 Page 18 of 22

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

File: R79399 Rev 1 Page 19 of 22

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

The peak excursion envelope is limited to 13dB.

SPURIOUS EMISSIONS LIMITS -UNII and LELAN DEVICES

The spurious emissions limits for signals below 1GHz are the FCC/RSS-GEN general limits. For emissions above 1GHz, signals in restricted bands are subject to the FCC/RSS GEN general limits. All other signals have a limit of -27dBm/MHz, which is a field strength of 68.3dBuV/m/MHz at a distance of 3m. This is an average limit so the peak value of the emission may not exceed -7dBm/MHz (68.3dBuV/m/MHz at a distance of 3m). For devices operating in the 5725-5850Mhz bands under the LELAN/UNII rules, the limit within 10Mhz of the allocated band is increased to -17dBm/MHz.

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

File: R79399 Rev 1 Page 20 of 22

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

File: R79399 Rev 1 Page 21 of 22

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

$$E = \frac{1000000 \sqrt{30 P}}{d}$$
 microvolts per meter

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

File: R79399 Rev 1 Page 22 of 22

Appendix A Test Equipment Calibration Data

Conducted Emissions	- AC Power Ports, 06-May-10			
<u>Manufacturer</u>	<u>Description</u>	Model	Asset #	Cal Due
EMCO Rohde & Schwarz	LISN, 10 kHz-100 MHz Pulse Limiter	3825/2 ESH3 Z2	1293 1594	3/12/2011 6/9/2010
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7	ESIB7	1756	3/16/2011
rtondo di Conmarz	GHz	20.5.	1100	0,10,2011
Fischer Custom	LISN, 25A, 150kHz to 30MHz,	FCC-LISN-50-25-2-	2001	10/21/2010
Comm	25 Amp,	09		
Radio Power PSD and	Spurious Emissions, 07-May-10			
Manufacturer	Description Description	<u>Model</u>	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	1386	9/2/2010
	(SA40-Blu)			
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7	ESIB7	1756	3/16/2011
	GHz			
Radiated Emissions, 1	,000 - 40,000 MHz, 07-May-10			
<u>Manufacturer</u>	Description	<u>Model</u>	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	9/2/2010
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Blue	8564E (84125C)	1393	4/14/2011
Hewlett Packard	Head (Inc W1-W4, 1742 , 1743) Blue	84125C	1620	5/4/2011
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	1729	9/25/2010
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	1730	9/25/2010
Hewlett Packard	High Pass filter, 8.2 GHz (Purple System)	P/N 84300-80039 (84125C)	1767	11/4/2010
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	1780	9/17/2010
A.H. Systems	Red System Horn, 18-40GHz	SAS-574, p/n: 2581	2161	3/5/2011
Radiated Emissions 1	000 - 18,000 MHz, 18-May-10			
Manufacturer	Description	<u>Model</u>	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	870	8/19/2010
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	6/12/2010
Hewlett Packard	High Pass filter, 8.2 GHz (Red System)	P/N 84300-80039 (84125C)	1152	9/28/2010
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	6/10/2010
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	1730	9/25/2010
Radiated Emissions. 3	80 - 1,000 MHz, 20-May-10			
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1630	31-Mar-11
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1657	23-Jun-10
Com-Power Corp.	Preamplifier, 30-1000 MHz	PA-103A	2204	26-Feb-11

File: R79399 Rev 1 Appendix Page 1 of 11

Appendix B Test Data

T78964 25 Pages

File: R79399 Rev 1 Appendix Page 2 of 11

Ellio	tt Tompany	El	MC Test Data
Client:	Nextivity, Inc.	Job Number:	J78899
Model:	Cel-Fi	T-Log Number:	T78964
		Account Manager:	Sheareen Washington
Contact:	Rama Akella		-
Emissions Standard(s):	FCC Part 15 and 27	Class:	В
Immunity Standard(s):	-	Environment:	Radio

For The

Nextivity, Inc.

Model

Cel-Fi

Date of Last Test: 5/20/2010

	All 2022 Company		
Client:	Nextivity, Inc.	Job Number:	J78899
Model:	Cal Ei	T-Log Number:	T78964
woder.	Cel-FI	Account Manager:	Sheareen Washington
Contact:	Rama Akella		
Standard:	FCC Part 15 and 27	Class:	В

Radiated Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/20/2010 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: Fremont Chamber #5 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and any local support equipment were located on the turntable for radiated emissions testing.

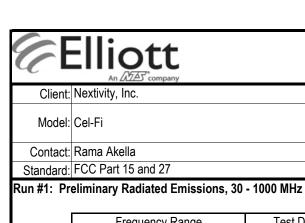
The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions: Temperature: 18.9 °C

Rel. Humidity: 33 %

Summary of Results


Run #	Test Performed	Limit	Result	Margin
2	Radiated Emissions	FCC Class B	Pass	29.6dBµV/m @ 82.01MHz
2	30 - 1000 MHz, Maximized	1 00 01000 B	1 033	(-10.4dB)

Modifications Made During Testing

No modifications were made to the EUT during testing


Deviations From The Standard

No deviations were made from the requirements of the standard.

	An ZAZZEO company		
Client:	Nextivity, Inc.	Job Number:	J78899
Model:	Cal Ei	T-Log Number:	T78964
	Cel-FI	Account Manager:	Sheareen Washington
Contact:	Rama Akella		
Standard:	FCC Part 15 and 27	Class:	В

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 - 1000 MHz	3	3	0.0

E)tt						EM(C Test Data
Client:	Nextivity, Inc	C.					ı	Job Number:	J78899
							T-'	Log Number:	T78964
Model:	Cel-Fi					ŀ		J	Sheareen Washington
Contact:	Rama Akella	a					<u>.</u>		01.00.00.00.00.00
	FCC Part 15							Class:	R
Statiuara.	1001 41.15	and E						Oldot.	В
Preliminary	/ peak readin	ons captur	red during p	re-scan					
Frequency	Level	Pol	FCC C		Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg		meters	0011111313	
46.089	42.9	V	40.0	2.9	Peak	178	1.0	 	
53.894	40.0	V	40.0	0.0	Peak	343	3.0	†	
37.242	37.9	V	40.0	-2.1	Peak	204	2.0		
46.445	37.8	V	40.0	-2.2	Peak	187	1.0		
64.192	33.0	V	40.0	-7.0	Peak	211	1.0		
74.602	32.2	V	40.0	-7.8	Peak	214	2.0		
82.009	30.9	V	40.0	-9.1	Peak	101	1.0	†	
108.778	31.9	V	43.5	-11.6	Peak	215	1.0	<u> </u>	
131.511	31.9	V	43.5	-11.6	Peak	184	1.0		•
274.145	28.8	Н	46.0	-17.2	Peak	257	3.5	T	
					T interface ca				
Frequency		Pol	FCC C		Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg		meters		
53.894	17.9	V	40.0	-22.1	QP	339	1.0	QP (1.00s)	
108.778	16.4	V	43.5	-27.1	QP	214	1.0	QP (1.00s)	
74.602	19.2	V	40.0	-20.8	QP	214	1.0	QP (1.00s)	
64.192	15.9	V	40.0	-24.1	QP	209	1.2	QP (1.00s)	
37.242	13.8	V	40.0	-26.2	QP	201	1.0	QP (1.00s)	
46.445	24.3	V	40.0	-15.7	QP	184	1.0	QP (1.00s)	
131.511	24.8	V	43.5	-18.7	QP	184	1.0	QP (1.00s)	
46.089	24.8	V	40.0	-15.2	QP	177	1.0	QP (1.00s)	
82.009	29.6	V	40.0	-10.4	QP	100	1.0	QP (1.00s)	

	The state of the s		
Client:	Nextivity, Inc.	Job Number:	J78899
Model:	Cal Ei	T-Log Number:	T78964
wodei.	Cel-F1	Account Manager:	Sheareen Washington
Contact:	Rama Akella		
Standard:	FCC Part 15 and 27	Class:	В

Run #2: Maximized Readings From Run #1

Maximized quasi-peak readings (includes manipulation of EUT interface cables)

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 - 1000 MHz	3	3	0.0

Frequency	Level	Pol	FCC C	Class B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
82.009	29.6	V	40.0	-10.4	QP	100	1.0	QP (1.00s)
46.089	24.8	V	40.0	-15.2	QP	177	1.0	QP (1.00s)
46.445	24.3	V	40.0	-15.7	QP	184	1.0	QP (1.00s)
131.511	24.8	V	43.5	-18.7	QP	184	1.0	QP (1.00s)
74.602	19.2	V	40.0	-20.8	QP	214	1.0	QP (1.00s)
53.894	17.9	V	40.0	-22.1	QP	339	1.0	QP (1.00s)

		Eliott An MAS company	EMC Test Data		
	Client:	Nextivity, Inc.	Job Number:	J78899	
	Model	Model: Cel-Fi	T-Log Number:	T78964	
	wodei.	OG!FF1	Account Manager:	Sheareen Washington	

RSS 210 and FCC 15.407 (UNII) Radiated Emissions

Class: N/A

Test Specific Details

Contact: Rama Akella Standard: FCC Part 15 and 27

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

5/7/2010

Ambient Conditions: Temperature: 20 °C

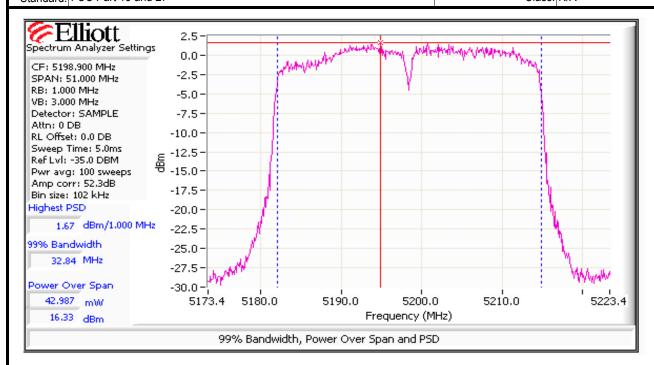
> Rel. Humidity: 32 %

Summary of Results

Run #	Run # Channel		Limit	Result / Margin		
		Power	15.407(a) (1), (2)	11.2 dBm		
	5150 - 5250MHz, Low, Middle and	PSD	15.407(a) (1), (2)	-3.4 dBm		
	High	Peak Exsursion	15.407(a) (6)	10.3 dB		
	nigii	26dB Bandwidth	15.407	40.4 MHz		
	99% Bar	99% Bandwidth	RSS 210	32.8 MHz		
1	5150-5250	Radiated Emissions,	FCC 15.209 / 15 E	50.7dBµV/m @		
	Low (5198.4 MHz)	1 - 40 GHz	FGG 13.2097 13 E	4158.8MHz (-3.3dB)		
	5150-5250	Radiated Emissions,	FCC 15.209 / 15 E	51.3dBµV/m @		
	Center (5215.2 MHz)	1 - 40 GHz	FGG 13.2097 13 E	4172.2MHz (-2.7dB)		
	5150-5250	Radiated Emissions,	FCC 15 200 / 15 F	52.6dBµV/m @		
	High (5248.8 MHz)	1 - 40 GHz	FCC 15.209 / 15 E	4199.1MHz (-1.4dB)		
		Power 15.407(a) (1), (2)		11.0 dBm		
	5250 - 5350MHz, Low, Middle and	PSD	15.407(a) (1), (2)	-3.7 dBm		
	High	Peak Exsursion	15.407(a) (6)	9.5 dB		
	riigii	26dB Bandwidth	15.407	32.8 MHz 50.7dBµV/m @ 4158.8MHz (-3.3dB) 51.3dBµV/m @ 4172.2MHz (-2.7dB) 52.6dBµV/m @ 4199.1MHz (-1.4dB) 11.0 dBm -3.7 dBm 9.5 dB 39.7 MHz 32.8 MHz 51.9dBµV/m @ 4214.4MHz (-2.1dB) 52.4dBµV/m @ 4227.9MHz (-1.6dB) 53.3dBµV/m @		
		99% Bandwidth	RSS 210	32.8 MHz		
2	5250-5350	Radiated Emissions,	FCC 15.209 / 15 E	51.9dBµV/m @		
	Low (5268 MHz)	1 - 40 GHz	FGG 13.2097 13 E	4214.4MHz (-2.1dB)		
	5250-5350	Radiated Emissions,	FCC 15.209 / 15 E	52.4dBµV/m @		
	Center (5284.8 MHz)	1 - 40 GHz	100 13.2037 13 E	4227.9MHz (-1.6dB)		
	5250-5350	Radiated Emissions,	FCC 15.209 / 15 E	53.3dBµV/m @		
	High (5301.6 MHz)	1 - 40 GHz	1 00 13.203 / 13 E	4241.3MHz (-0.7dB)		

Elliott An Was company	EMC Test Data			
Client: Nextivity, Inc.	Job Number:	J78899		
Model: Cel-Fi	T-Log Number:			
	Account Manager:	Sheareen Washington		
Contact: Rama Akella				
Standard: FCC Part 15 and 27	Class:	N/A		
Modifications Made During Testing No modifications were made to the EUT during testing				
Deviations From The Standard				
No deviations were made from the requirements of the standard.				

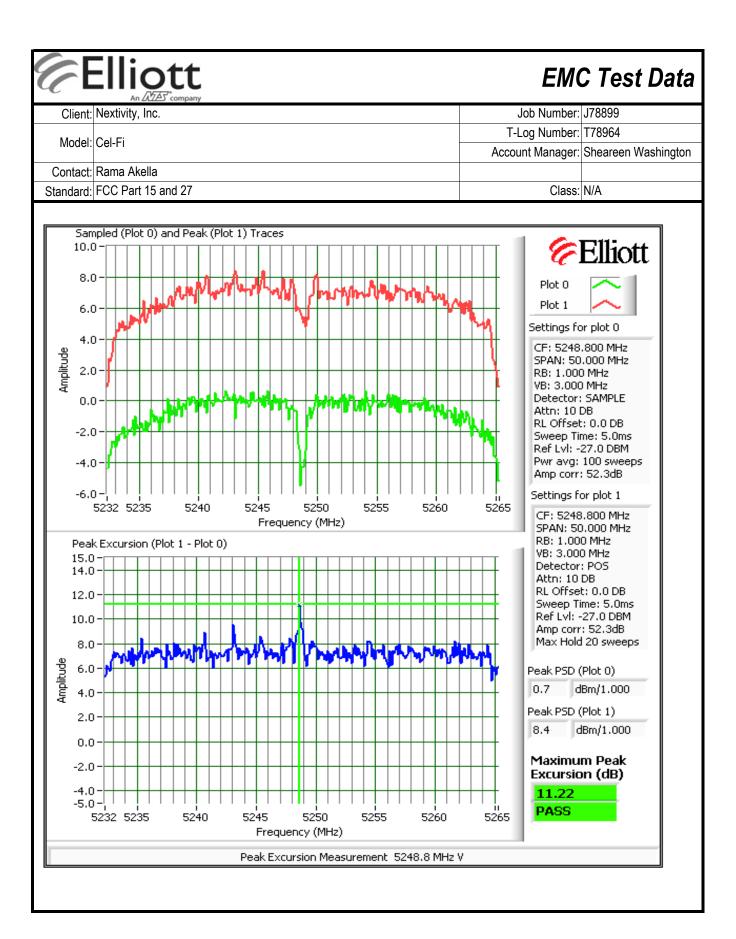
Elliott EMC Test Data Client: Nextivity, Inc. Job Number: J78899 T-Log Number: T78964 Model: Cel-Fi Account Manager: Sheareen Washington Contact: Rama Akella Standard: FCC Part 15 and 27 Class: N/A Run #1, Radiated Spurious Emissions, 30 - 40,000 MHz. Operation in the 5150-5250 MHz Band Date of Test: 5/7/2010 8:24 Config. Used: 1 Test Engineer: David Bare Config Change: None EUT Voltage: 120V/60Hz Test Location: Fremont Chamber #3 Run #1a: Power Measurements from Field Strength EUT Antenna Gain (dBi): 5.1 Fundamental Signal Field Strength 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments dBμV/m Pk/QP/Avg MHz v/h Limit Margin degrees meters 5198.400 94.7 ٧ NA AVG 79 POS; RB 1 MHz; VB: 10 Hz 1.1 ٧ 5198.400 103.5 PΚ 79 1.1 POS; RB 1 MHz; VB: 10 MHz NA 5215.200 95.2 ٧ NA AVG 94 1.1 POS; RB 1 MHz; VB: 10 Hz 5215.200 104.0 ٧ NA PK 94 1.1 POS; RB 1 MHz; VB: 10 MHz 94.1 ٧ NA AVG 93 POS: RB 1 MHz: VB: 10 Hz 5248.800 1.1 103.1 V NA PΚ 93 POS; RB 1 MHz; VB: 10 MHz 5248.800 1.1 5248.800 90.6 Н NA **AVG** 258 1.7 POS; RB 1 MHz; VB: 10 Hz 5248.800 100.0 Н NA PΚ 258 1.7 POS; RB 1 MHz; VB: 10 MHz NA 5215.200 Н AVG 258 POS; RB 1 MHz; VB: 10 Hz 91.8 1.6 5215.200 101.5 Н PΚ 258 1.6 POS; RB 1 MHz; VB: 10 MHz NA POS; RB 1 MHz; VB: 10 Hz 5198.400 91.6 Н NA AVG 258 1.6 Н PΚ 258 5198.400 101.2 NA 1.6 POS; RB 1 MHz; VB: 10 MHz Software Output Power¹ dBm Power PSD² dBm/MHz Frequency Bandwidth Result Setting (Watts) <u>9</u>9%⁴ Calculated FCC Limit RSS Limit³ Calculated (MHz) 26dB Limit 5198.4 Note 5 40.4 32.8 11.2 17.0 0.013 -3.4 4.0 4.9 Pass 5215.2 40.4 32.8 11.3 17.0 0.013 -3.2 4.0 4.9 Pass Note 5 39.1 32.9 17.0 -4.4 5248.8 Note 5 10.6 0.011 4.0 4.9 Pass Output power measured using a spectrum analyzer reading in dBm corrected to field strength by adding antenna factor + cable loss and converted to EIRP value by adding 11.7dB (-95.3 dBuV/m -> dBm + 107 dBm -> dBuV). This is noted as Amp Note 1: corr in plots. Subtracting the EUT antenna gain from this value results in output power (see plots below): RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50 MHz (method 1 of DA-02-2138A1). Note 2: Measured using the same analyzer settings used for output power. For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average Note 3: PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount that the measured value exceeds the average by more than 3dB.


Power settings - Chain 1: 5150-5250 MHz VGA set to 3 and Power Amp on; Chain 2: 5150-5250 MHz VGA set to 4 and

Note 4: 99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB

Note 5:

Power Amp on

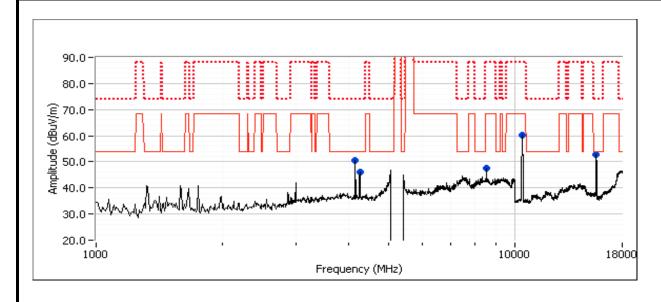

E E	Elliott An OZAS company	EMO	C Test Data
	Nextivity, Inc.	Job Number:	J78899
Model:	Cal Ei	T-Log Number:	T78964
Model.	Cel-FI	Account Manager:	Sheareen Washington
Contact:	Rama Akella		
Standard:	FCC Part 15 and 27	Class:	N/A

Peak Excursion Measurement

Device meets the requirement for the peak excursion

Freq	Peak Exc	ursion(dB)
(MHz)	Value	Limit
5198.4	10.3	13.0
5215.2	9.0	13.0
5248.8	11.2	13.0

	All 2022 Company		
Client:	Nextivity, Inc.	Job Number:	J78899
Model:	T-Log Number: T78964		T78964
Model.	المارية	Account Manager:	Sheareen Washington
Contact:	Rama Akella		
Standard:	FCC Part 15 and 27	Class:	N/A


Run #1b: Low Channel

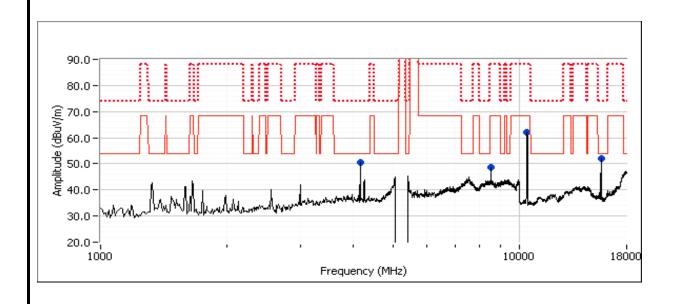
Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4158.750	50.7	V	54.0	-3.3	AVG	250	1.6	MHz; VB: 10 Hz
4158.780	52.6	V	74.0	-21.4	PK	250	1.6	MHz; VB: 1 MHz
4264.010	44.0	V	54.0	-10.0	AVG	97	1.9	MHz; VB: 10 Hz
4263.890	48.4	V	74.0	-25.6	PK	97	1.9	MHz; VB: 1 MHz
8528.100	47.7	V	68.3	-20.6	Peak	57	1.6	
15595.270	48.1	V	54.0	-5.9	AVG	108	1.3	MHz; VB: 10 Hz
15595.070	59.6	V	74.0	-14.4	PK	108	1.3	MHz; VB: 1 MHz
10404.480	57.3	V	68.3	-11.0	AVG	263	1.8	MHz; VB: 10 Hz
10410.280	67.8	V	88.3	-20.5	PK	263	1.8	MHz; VB: 1 MHz

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the **average** limit was set to -27dBm/MHz (~68dBuV/m).

Note 2: Near Field Scan 18-40 GHz did not have any significant spurs

	All 2022 Company		
Client:	Nextivity, Inc.	Job Number:	J78899
Model:	T-Log Number: T78964		T78964
Model.	المارية	Account Manager:	Sheareen Washington
Contact:	Rama Akella		
Standard:	FCC Part 15 and 27	Class:	N/A


Run #1c: Center Channel

Spurious Radiated Emissions:

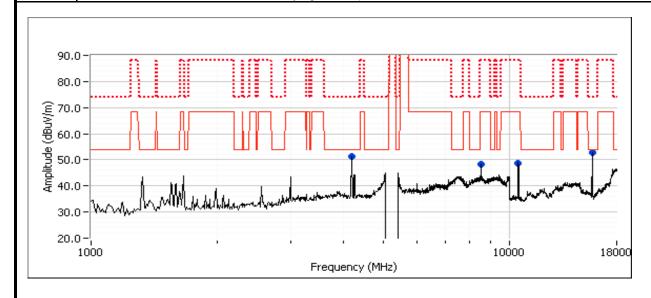
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4172.190	51.3	V	54.0	-2.7	AVG	251	1.6	MHz; VB: 10 Hz
4172.160	53.1	V	74.0	-20.9	PK	251	1.6	MHz; VB: 1 MHz
15647.350	49.6	V	54.0	-4.4	AVG	109	1.2	MHz; VB: 10 Hz
15651.690	60.9	V	74.0	-13.1	PK	109	1.2	MHz; VB: 1 MHz
10428.720	55.5	V	68.3	-12.8	AVG	291	1.4	MHz; VB: 10 Hz
10425.780	66.4	V	88.3	-21.9	PK	291	1.4	MHz; VB: 1 MHz
8528.170	48.7	V	68.3	-19.6	Peak	56	1.6	

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the **average** limit was set to -27dBm/MHz (~68dBuV/m).

Note 2: Near Field Scan 18-40 GHz did not have any significant spurs

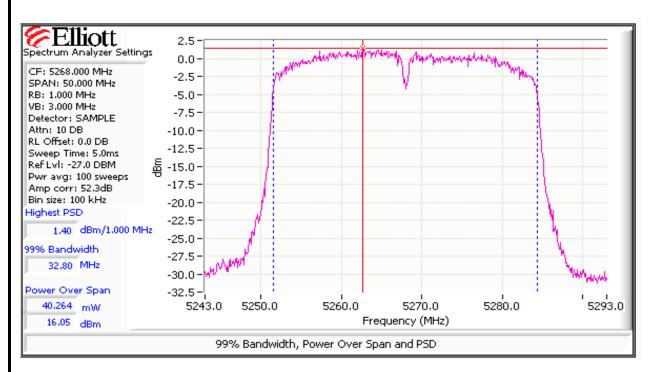
Elliott An OVER Company

EMC Test Data


	All DOZES Company		
Client:	Nextivity, Inc.	Job Number:	J78899
Madalı	Cel-Fi	T-Log Number:	T78964
Model.	Cel-F1	Account Manager:	Sheareen Washington
Contact:	Rama Akella		
Standard:	FCC Part 15 and 27	Class:	N/A

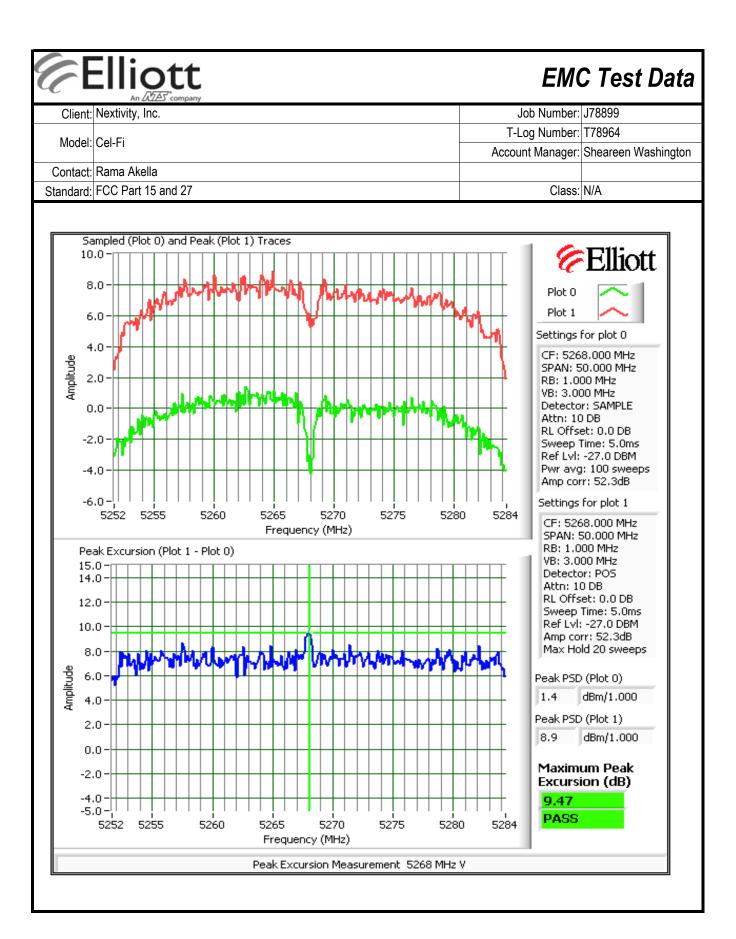
Run #1d: High Channel

Spurious Radiated Emissions:


Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4199.050	52.6	V	54.0	-1.4	AVG	260	1.2	MHz; VB: 10 Hz
4199.090	54.3	V	74.0	-19.7	PK	260	1.2	MHz; VB: 1 MHz
8528.110	48.4	V	68.3	-19.9	Peak	58	1.6	
10481.580	48.5	V	68.3	-19.8	Peak	270	1.3	
15742.780	49.2	V	54.0	-4.8	AVG	109	1.1	MHz; VB: 10 Hz
15746.510	60.7	V	74.0	-13.3	PK	109	1.1	MHz; VB: 1 MHz

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the **average** limit was set to -27dBm/MHz (~68dBuV/m).

		JJ(EMO	C Test	Data
Client:	Nextivity, Inc).					,	Job Number:	J78899	
	0.15						T-l	Log Number:	T78964	
Model:	Cel-Fi						Accou	unt Manager:	Sheareen W	ashingtor
Contact:	Rama Akella	l								
Standard:	FCC Part 15	and 27						Class:	N/A	
[Te Te Zun #2a: Pe	Date of Test: st Engineer: est Location: ower Measu	5/7/2010 David W. Ba Chamber #3 rements from	re	·	Cor E	onfig. Used: ifig Change: UT Voltage:	1	5.1		
	al Signal Fie		15 200	/ 15.247	Detector	Λ =:	l laialat	C		
requency	Level	Pol		_	Detector	Azimuth	Height	Comments		
MHz 5268.000	dBμV/m	v/h V	Limit	Margin	Pk/QP/Avg	degrees	meters	DOC: DD 41	MU=. \/D. 10	U=
5268.000	94.8 103.6	V	NA NA	-	AVG PK	92 92	1.1 1.1		MHz; VB: 10 MHz; VB: 10	
5284.800	94.4	V	NA NA	_	AVG	91	1.1	,	MHz; VB: 10	
5284.800	103.7	V	NA NA	-	PK	91	1.1	,	MHz; VB: 10	
301.600	92.9	V	NA NA		AVG	92	1.0		MHz; VB: 10	
301.600	101.9	V	NA NA	-	PK	92	1.0	,	MHz; VB: 10	
301.600	90.7	H	NA NA	-	AVG	257	1.5		MHz; VB: 10	
301.600	99.5	H	NA NA	-	PK	257	1.5	,	MHz; VB: 10	
5284.800	92.0	H	NA NA		AVG	260	1.7		MHz; VB: 10	
5284.800	102.1	H	NA NA		PK	260	1.7		MHz; VB: 10	
5268.000	91.9	H	NA NA		AVG	259	1.7		MHz; VB: 10	
5268.000	101.9	H	NA	-	PK	259	1.7		MHz; VB: 10	
	<u> </u>			<u> </u>					· · · · · · · · · · · · · · · · · · ·	
requency	Software	Band	width	Output Po	ower ¹ dBm	Power	Р	SD ² dBm/MF	17	
(MHz)	Setting	26dB	99% ⁴	Calculated	-	(Watts)		FCC Limit		Resu
5268	Note 5	39.7	32.8	11.0	24.0	0.012	-3.7	11.0	11.0	Pass
5284.8	Note 5	39.1	32.8	10.2	24.0	0.010	-3.9	11.0	11.0	Pass
5301.6	Note 5	39.6	32.7	9.3	24.0	0.009	-4.9	11.0	11.0	Pass
	Output powe	or magazirad	uoina a anaa	trum analyza	er reading in o	NDm correct	ad to field atr	anath by add	ina antonna t	ootor .
	cable loss ar corr in plots. RBW=1MHz over 50 MHz	nd converted Subtracting , VB=3 MHz, z (method 1 c	to EIRP value the EUT anto sample dete of DA-02-213	ue by adding enna gain fro ector, power 8A1).	11.7dB (-95. om this value averaging on	3 dBuV/m -> results in ou (transmitted	dBm + 107 tput power (s	dBm -> dBu\ see plots belo	/). This is not ow):	ed as Ar
Note 2:										
Note 3:	10dBm/MHz PSD (calcula	Measured using the same analyzer settings used for output power. For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount that the measured value exceeds the average by more than 3dB.								
Note 4:					S GEN - RB	1% of spar	and VB >=3	BxRB		
Note 5:					A set to 3 an				MHz, VGA	set to 3 a
NIOTO 6	Power Amp									


	Elliott	EMO	C Test Data
Client:	Nextivity, Inc.	Job Number:	J78899
Model:	Cal Ei	T-Log Number:	T78964
Model.	Cel-FI	Account Manager:	Sheareen Washington
Contact:	Rama Akella		
Standard:	FCC Part 15 and 27	Class:	N/A

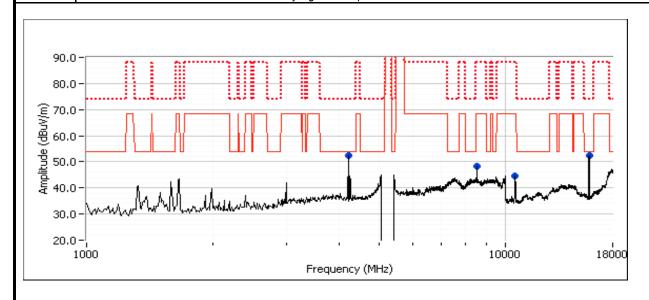
Peak Excursion Measurement

Device meets the requirement for the peak excursion

Freq	Peak Excursion(dB)			
(MHz)	Value	Limit		
5268	9.5	13.0		
5284.8	9.4	13.0		
5301.6	9.2	13.0		

EMC Test Data

	All DOZES Company		
Client:	Nextivity, Inc.	Job Number:	J78899
Madalı	Cel-Fi	T-Log Number:	T78964
Model.	Cel-F1	Account Manager:	Sheareen Washington
Contact:	Rama Akella		
Standard:	FCC Part 15 and 27	Class:	N/A


Run #2b: Low Channel

Spurious Radiated Emissions:

Note: If device is not for indoor use only then measure 5250 MHz band edge to comply with -68.3dBuV/m limit

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4214.410	51.9	V	54.0	-2.1	AVG	289	1.4	MHz; VB: 10 Hz
4214.390	53.6	V	74.0	-20.4	PK	289	1.4	MHz; VB: 1 MHz
15807.560	48.6	V	54.0	-5.4	AVG	106	1.0	MHz; VB: 10 Hz
15796.420	60.9	V	74.0	-13.1	PK	106	1.0	MHz; VB: 1 MHz
10526.520	44.7	V	68.3	-23.6	Peak	272	1.3	
8528.100	48.4	V	68.3	-19.9	Peak	54	1.6	

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the **average** limit was set to - 27dBm/MHz (~68dBuV/m).

Elliott

EMC Test Data


	All 2022 Company		
Client:	Nextivity, Inc.	Job Number:	J78899
Madali	Cel-Fi	T-Log Number:	T78964
Model.	Cel-F1	Account Manager:	Sheareen Washington
Contact:	Rama Akella		
Standard:	FCC Part 15 and 27	Class:	N/A

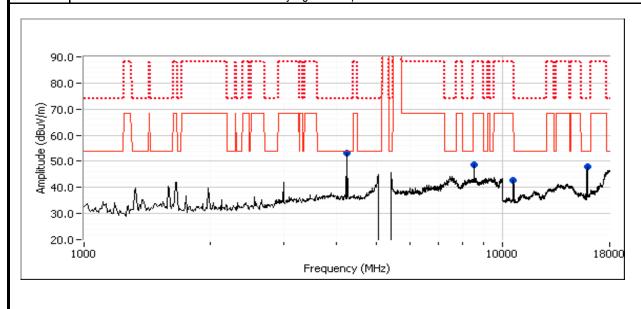
Run #2c: Center Channel

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209) / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4227.860	52.4	V	54.0	-1.6	AVG	293	1.5	MHz; VB: 10 Hz
4227.840	54.0	V	74.0	-20.0	PK	293	1.5	MHz; VB: 1 MHz
8528.100	48.9	V	68.3	-19.4	Peak	58	1.6	
10569.630	43.0	V	68.3	-25.3	Peak	280	1.3	
15848.370	48.0	V	54.0	-6.0	AVG	112	1.1	MHz; VB: 10 Hz
15846.570	60.9	V	74.0	-13.1	PK	112	1.1	MHz; VB: 1 MHz

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the **average** limit was set to -27dBm/MHz (~68dBuV/m).

EMC Test Data


	An ZAZZS company		
Client:	Nextivity, Inc.	Job Number:	J78899
Model:	Cal Ei	T-Log Number:	T78964
Model.	Cel-FI	Account Manager:	Sheareen Washington
Contact:	Rama Akella		
Standard:	FCC Part 15 and 27	Class:	N/A

Run #2d: High Channel

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4241.320	53.3	V	54.0	-0.7	AVG	291	1.5	MHz; VB: 10 Hz
4241.270	54.7	V	74.0	-19.3	PK	291	1.5	MHz; VB: 1 MHz
15904.690	46.5	V	54.0	-7.5	AVG	119	1.0	MHz; VB: 10 Hz
15903.960	58.2	V	74.0	-15.8	PK	119	1.0	MHz; VB: 1 MHz
10605.040	40.8	V	54.0	-13.2	AVG	119	1.5	MHz; VB: 10 Hz
10606.440	52.1	V	74.0	-21.9	PK	119	1.5	MHz; VB: 1 MHz
8528.100	48.6	V	68.3	-19.7	Peak	46	1.6	

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the **average** limit was set to - 27dBm/MHz (~68dBuV/m).

EMC Te			
Client:	Nextivity, Inc.	Job Number:	J78899
Model:	Cal Ei	T-Log Number:	T78964
Model.	Cel-FI	Account Manager:	Sheareen Washington
Contact:	Rama Akella		
Standard:	FCC Part 15 and 27	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/7/2010 Config. Used: 1

Test Engineer: David W. Bare Config Change: None

Test Location: FT Chamber#3 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 20 °C

Rel. Humidity: 32 %

Summary of Results

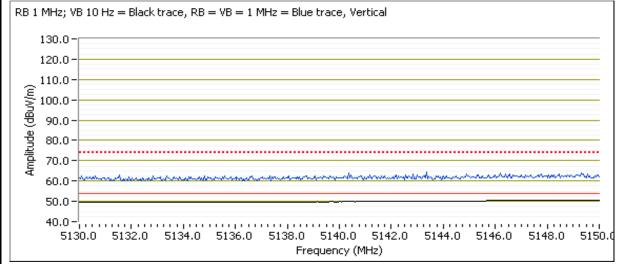
Run#	Mode	Channel	Power Setting	Test Performed	Limit	Result / Margin
1	-	5150-5250 Low	Note 1	Restricted Band Edge at 5150 MHz	15.209	47.7dBµV/m @ 5149.8MHz (-6.3dB)
2	1	5250-5350 High	Note 2	Restricted Band Edge at 5350 MHz	15.209	43.1dBµV/m @ 5350.2MHz (-10.9dB)

Modifications Made During Testing

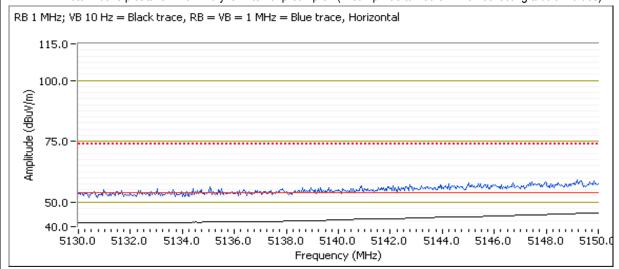
No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.


Note 1.	Power settings - Chain 1: 5150-5250 MHz VGA set to 3 and Power Amp on; Chain 2: 5150-5250 MHz VGA set to 4 and
NOLE 1.	Power Amp on
	Danis and Chair 4, 5050 5250 MHz VOA and to 2 and Danis Anna and Obelia 0, 5050 5250 MHz VOA and to 2 and
NOIE 2.	Power settings - Chain 1: 5250-5350 MHz VGA set to 3 and Power Amp on; Chain 2: 5250-5350 MHz, VGA set to 3 and Power Amp on

Elliott

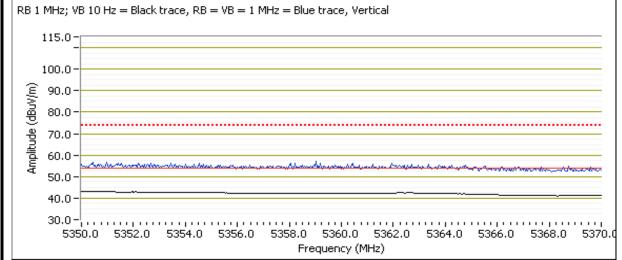

EMC Test Data

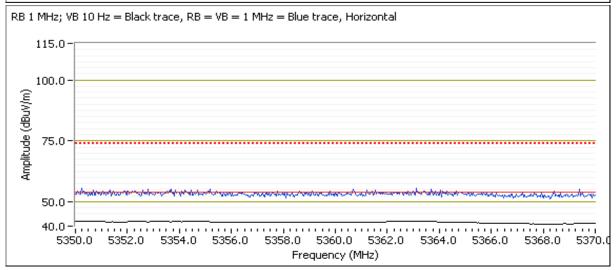
	All Dates Company							
Client:	Nextivity, Inc.	Job Number:	J78899					
Model:	Cal Ei	T-Log Number:	T78964					
	Cel-FI	Account Manager:	Sheareen Washington					
Contact:	Rama Akella							
Standard:	FCC Part 15 and 27	Class:	N/A					

Run #1, Radiated Spurious Emissions, Band Edge, Operation in the 5150-5250 MHz Band

Note: Above plot taken with Analyzer internal preamp off (Preamp was turned on when collecting tabular values)

5150 MHz Band Edge Signal Radiated Field Strength


Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5149.800	47.7	V	54.0	-6.3	AVG	79	1.1	POS; RB 1 MHz; VB: 10 Hz
5148.090	60.5	V	74.0	-13.5	PK	79	1.1	POS; RB 1 MHz; VB: 10 MHz
5149.990	45.6	Н	54.0	-8.4	AVG	258	1.6	POS; RB 1 MHz; VB: 10 Hz
5149.140	59.3	Н	74.0	-14.7	PK	258	1.6	POS; RB 1 MHz; VB: 10 MHz
								-


Elliott

EMC Test Data

All Deed Company							
Client:	Nextivity, Inc.	Job Number:	J78899				
Model:	Cal Ei	T-Log Number:	T78964				
	Ce I-FI	Account Manager:	Sheareen Washington				
Contact:	Rama Akella						
Standard:	FCC Part 15 and 27	Class:	N/A				

Run #2, Radiated Spurious Emissions, Band Edge, Operation in the 5250-5350 MHz Band

5350 MHz Band Edge Signal Radiated Field Strength

Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5350.200	43.1	V	54.0	-10.9	AVG	92	1.0	POS; RB 1 MHz; VB: 10 Hz
5353.130	56.7	V	74.0	-17.3	PK	92	1.0	POS; RB 1 MHz; VB: 10 MHz
5350.410	41.9	Н	54.0	-12.1	AVG	257	1.5	POS; RB 1 MHz; VB: 10 Hz
5353.650	54.3	Н	74.0	-19.7	PK	257	1.5	POS; RB 1 MHz; VB: 10 MHz

	Eliott An WZAS company	EMC Test Data			
Client:	Nextivity, Inc.	Job Number:	J78899		
Model:	Cal Ei	T-Log Number:	T78964		
wodei.	Oei-Fi	Account Manager:	Sheareen Washington		
	Rama Akella				
Standard:	FCC Part 15 and 27	Class:	В		

Conducted Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/6/2010 Config. Used: 1
Test Engineer: Vishal Narayan Config Change: None

Test Location: Fremont Chamber #4 EUT Voltage: 230V/50Hz and 120V/60Hz

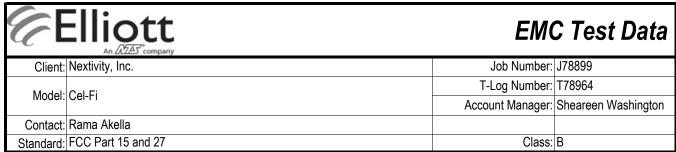
General Test Configuration

For tabletop equipment, the EUT was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment.

Ambient Conditions: Temperature: 20 °C

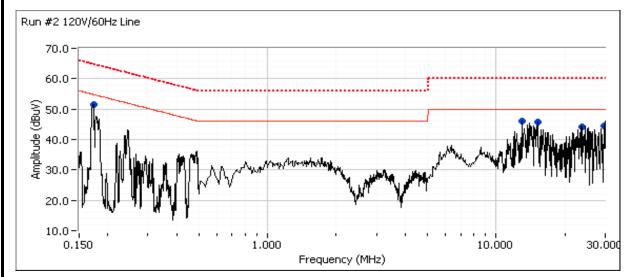
Rel. Humidity: 40 %

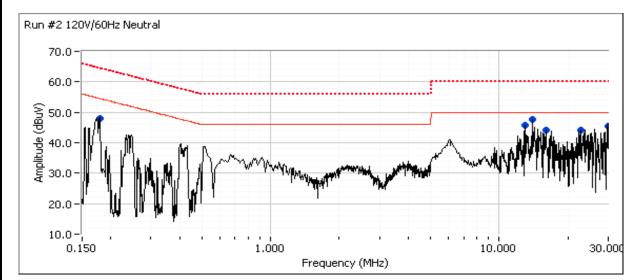
Summary of Results


Run # Test Performed		Limit	Result	Margin
2	CE, AC Power,120V/60Hz	FCC 15.207(a)	Pass	49.2dBµV @ 0.173MHz (-15.6dB)

Modifications Made During Testing

No modifications were made to the EUT during testing


Deviations From The Standard


No deviations were made from the requirements of the standard.

Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz

CU S/N:102952000227

E	Ellic	ott					EMC Test Data
Client:	Nextivity, Inc	C. company					Job Number: J78899
							T-Log Number: T78964
Model:	Cel-Fi						Account Manager: Sheareen Washington
Contact:	Rama Akella	а					, , ,
Standard:	FCC Part 15	and 27					Class: B
	on of Run #2					*	
						s. average limit)	
Frequency	Level	AC		5.207(a)	Detector	Comments	
MHz	dBμV	Line	Limit	Margin	QP/Ave		
13.921	47.8	Neutral	50.0	-2.2	Peak		
0.173	51.4	Line	54.8	-3.4	Peak		
13.013	46.2	Line	50.0	-3.8	Peak		
15.051	45.7	Line	50.0	-4.3	Peak		
13.011	45.6	Neutral	50.0	-4.4	Peak		
29.758	45.4	Neutral	50.0	-4.6	Peak		
29.701	44.4	Line	50.0	-5.6	Peak		
15.969	44.3	Neutral	50.0	-5.7	Peak		
22.658	44.2	Neutral	50.0	-5.8	Peak		
23.568	44.1	Line	50.0	-5.9	Peak		
0.179	48.1	Neutral	54.5	-6.4	Peak		
	1	verage readi			I =	Ta .	
Frequency	Level	AC		5.207(a)	Detector	Comments	
MHz	dBμV	Line	Limit	Margin	QP/Ave	05// 00 \	
0.173	49.2	Line	64.8	-15.6	QP	QP (1.00s)	
13.921	44.4	Neutral	60.0	-15.6	QP	QP (1.00s)	
23.568	43.9	Line	60.0	-16.1	QP	QP (1.00s)	
13.013	43.3	Line	60.0	-16.7	QP	QP (1.00s)	
13.011	43.1	Neutral	60.0	-16.9	QP	QP (1.00s)	
22.658	42.8	Neutral	60.0	-17.2	QP	QP (1.00s)	
0.179	47.3	Neutral	64.5	-17.2	QP	QP (1.00s)	
29.758	41.3	Neutral	60.0	-18.7	QP	QP (1.00s)	
15.051	39.9	Line	60.0	-20.1	QP	QP (1.00s)	
29.701	38.7	Line	60.0	-21.3	QP	QP (1.00s)	
15.969	37.0	Neutral	60.0	-23.0	QP	QP (1.00s)	
0.173	31.6	Line	54.8	-23.2	AVG	AVG (0.10s)	
0.179	31.2	Neutral	54.5	-23.3	AVG	AVG (0.10s)	
13.011	24.7	Neutral	50.0	-25.3	AVG	AVG (0.10s)	
13.013	24.4	Line	50.0	-25.6	AVG	AVG (0.10s)	
23.568	24.0	Line	50.0	-26.0	AVG	AVG (0.10s)	
13.921	24.0	Neutral	50.0	-26.0	AVG	AVG (0.10s)	
22.658	22.8	Neutral	50.0	-27.2	AVG	AVG (0.10s)	
29.758	21.4	Neutral	50.0	-28.6	AVG	AVG (0.10s)	
15.051	20.6	Line	50.0	-29.4	AVG	AVG (0.10s)	
	19.4	Line	50.0	-30.6	AVG	AVG (0.10s)	
29.701 15.969	19.4	LIIIO	00.0	00.0	AVG	AVG (0.10s)	

Appendix C Photographs of Test Configurations

Uploaded as a separate exhibit

File: R79399 Rev 1 Appendix Page 3 of 11

Appendix D Proposed FCC ID Label & Label Location

Uploaded as a separate exhibit

File: R79399 Rev 1 Appendix Page 4 of 11

Appendix E Detailed Photographs

Uploaded as a separate exhibit

File: R79399 Rev 1 Appendix Page 5 of 11

Appendix F Operator's Manual

Uploaded as a separate exhibit

File: R79399 Rev 1 Appendix Page 6 of 11

Appendix G Block Diagram

Uploaded as a separate exhibit

File: R79399 Rev 1 Appendix Page 7 of 11

Appendix H Schematic Diagrams

Uploaded as a separate exhibit

File: R79399 Rev 1 Appendix Page 8 of 11

Appendix I Theory of Operation

Uploaded as a separate exhibit

File: R79399 Rev 1 Appendix Page 9 of 11

Appendix J Parts List

Uploaded as a separate exhibit

File: R79399 Rev 1 Appendix Page 10 of 11

Appendix K RF Exposure Information

Uploaded as a separate exhibit

File: R79399 Rev 1 Appendix Page 11 of 11