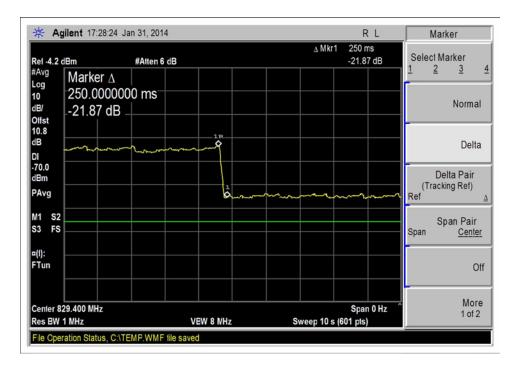
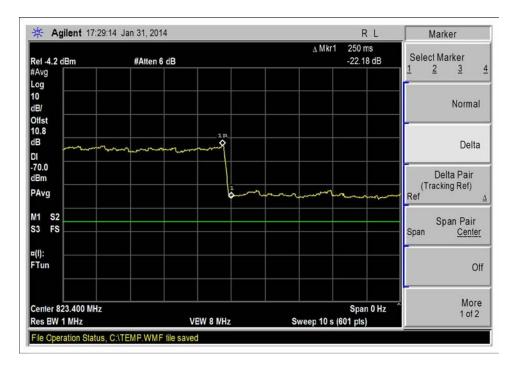



7.7(n) - (t), DL\_869-894MHz\_Test CF-3MHz

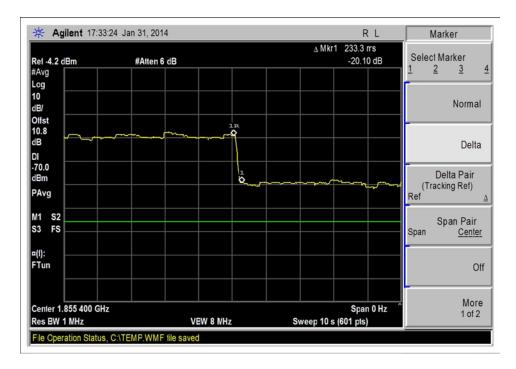






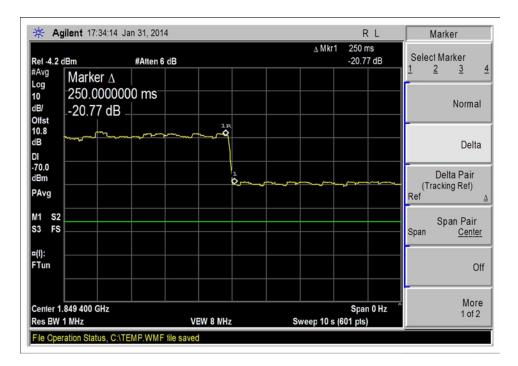




7.7(n) - (t),DL\_1930-1990MHz\_Test CF-3MHz



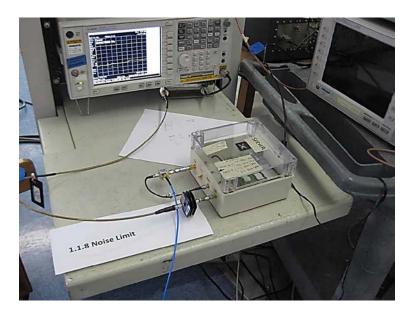

7.7(n) - (t),UL\_824-849MHz\_Test CF+3MHz






7.7(n) - (t),UL\_824-849MHz\_Test CF-3MHz

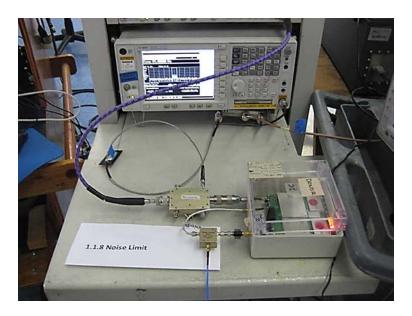



7.7(n) - (t),UL\_1850-1910MHz\_Test CF+3MHz





7.7(n) - (t),UL\_1850-1910MHz\_Test CF-3MHz


## Test Setup Photo(s)



Test Setup, Noise Limit 1

**Note:** The sign in the photo has the incorrect numbering reference. The proper reference is 7.7.





Test Setup, Noise Limit 2

**Note:** The sign in the photo has the incorrect numbering reference. The proper reference is 7.7.



## 7.8 Uplink Inactivity

### **Test Conditions / Setup**

Test Location: CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112

| Customer:<br>Specification: | <b>Nextivity, Inc.</b><br>7.8 Uplink Inactivity |            |           |
|-----------------------------|-------------------------------------------------|------------|-----------|
| Work Order #:               | 95295                                           | Date:      | 1/8/2014  |
| Test Type:                  | Conducted Emissions                             |            |           |
| Equipment:                  | Provider Specific Consumer Signal               | Sequence#: | 1         |
|                             | Booster                                         |            |           |
| Manufacturer:               | Nextivity, Inc.                                 | Tested By: | E. Wong   |
| Model:                      | CELFI-RS225CU, CELFI-RS225WU,                   |            | 110V 60Hz |
| S/N:                        | 157216000246, 157216000246                      |            |           |

### Test Equipment:

| <br>1 | <b>F</b> |                   |                |                  | -            |
|-------|----------|-------------------|----------------|------------------|--------------|
| ID    | Asset #  | Description       | Model          | Calibration Date | Cal Due Date |
|       | AN02869  | Spectrum Analyzer | E4440A         | 2/6/2013         | 2/6/2015     |
|       | AN02946  | Cable             | 32022-2-2909K- | 7/31/2013        | 7/31/2015    |
|       |          |                   | 36TC           |                  |              |
|       | AN03430  | Attenuator        | 75A-10-12      | 9/5/2013         | 9/5/2015     |

#### Equipment Under Test (\* = EUT):

| Equipment Chuer Lest ( =   | 201).           |               |              |
|----------------------------|-----------------|---------------|--------------|
| Function                   | Manufacturer    | Model #       | S/N          |
| Provider Specific Consumer | Nextivity, Inc. | CELFI-RS225CU | 157216000246 |
| Signal Booster*            |                 |               |              |
| Provider Specific Consumer | Nextivity, Inc. | CELFI-RS225WU | 157216000246 |
| Signal Booster             |                 |               |              |
|                            |                 |               |              |

#### Support Devices:

| Function         | Manufacturer | Model #      | S/N        |
|------------------|--------------|--------------|------------|
| Power Supply     | Nextivity    | WRG15F-120AB | 20120111   |
| Power Supply     | Nextivity    | WRG15F-120AB | 20120815   |
| Signal Generator | Agilent      | E4438C       | MY42082260 |
|                  |              |              |            |

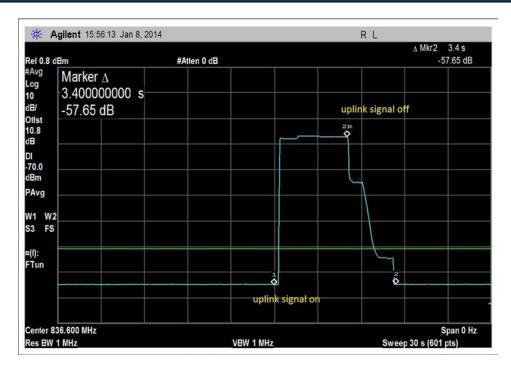
#### Test Conditions / Notes:

The EUT is provider specific signal booster pair consisted of a Window unit (WU) and a Coverage unit (CU) using proprietary 5.8 GHz Wireless interface.

For testing purposes, the EUT are placed on the test bench, connected via coax cable and 50 dB attenuators. Tx of WU is connected to RX of CU, RX of WU is connected to UNII TX port of CU.

Intended band of operation

UL= 824-849 MHz, 1850-1910 MHz, DL= 869-894 MHz 1930-1990 MHz,


Delta Marker 2R- marker 2 is the measured Uplink inactivity time. Test environment conditions: 23°C, 15% Relative Humidity, 100kPa

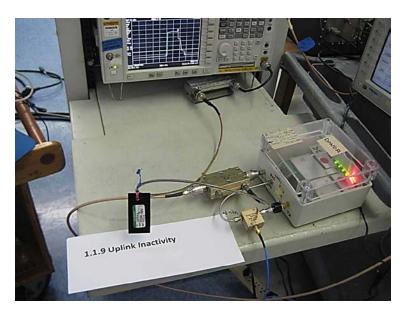


## 7.8 Summary of Results

**Pass:** As demonstrated in the test data section, the time between Cursor R2 where the uplink signal was turned off and cursor #2 where the noise level returned to the TX off level is less than 5 second.

## **Test Data**




824-849MHz



| * Agilent 16:04:18 J |             |                 | RL                | ∆ Mkr2 3.4 s     |
|----------------------|-------------|-----------------|-------------------|------------------|
| Rel 0.8 dBm          | #Atten 0 dB |                 |                   | -67.51 dB        |
| Avg                  |             |                 |                   |                  |
| Log                  |             |                 | uplink signal off |                  |
| 10<br>dB/            |             |                 | 2R                |                  |
| Olfst                |             |                 | Y                 |                  |
| 10.8                 |             |                 |                   |                  |
| dB                   |             |                 |                   |                  |
| DI                   |             |                 |                   |                  |
| 70.0                 |             |                 |                   |                  |
| dBm                  |             | 1               |                   |                  |
| PAvg                 |             |                 |                   |                  |
|                      |             |                 |                   |                  |
| W1 W2                |             |                 |                   |                  |
| S3 FS                |             |                 |                   |                  |
|                      |             |                 |                   |                  |
| ¤(1):<br>FTun        |             |                 |                   |                  |
| Tun                  |             |                 | 2-                |                  |
|                      |             | ¢               | Č.                |                  |
|                      |             | uplink signal o | n                 |                  |
|                      |             |                 |                   |                  |
| Center 1.880 000 GHz |             |                 |                   | Span 0 Hz        |
| Res BW 1 MHz         | VB          | W 1 MHz         | Swee              | p 30 s (601 pts) |

1850-1915MHz





**Note:** The sign in the photo has the incorrect numbering reference. The proper reference is 7.8.



# 7.9 Variable Booster Gain

# Test Conditions / Setup

| Test Location: | CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112 |            |              |  |
|----------------|---------------------------------------------------------------------|------------|--------------|--|
| Customer:      | Nextivity, Inc.                                                     |            |              |  |
| Specification: | 7.9 Variable Booster Gain                                           |            |              |  |
| Work Order #:  | 95295                                                               | Date:      | 1/10,16/2014 |  |
| Test Type:     | Conducted Emissions                                                 |            |              |  |
| Equipment:     | Provider Specific Consumer Signal                                   | Sequence#: | 1            |  |
|                | Booster                                                             |            |              |  |
| Manufacturer:  | Nextivity, Inc.                                                     | Tested By: | E. Wong      |  |
| Model:         | CELFI-RS225CU, CELFI-RS225WU,                                       |            | 110V 60Hz    |  |
| S/N:           | 157216000246, 157216000246                                          |            |              |  |
| Tost Fauinmont | ·•                                                                  |            |              |  |

Test Equipment:

| ID | Asset # | Description       | Model          | Calibration Date | Cal Due Date |
|----|---------|-------------------|----------------|------------------|--------------|
|    | AN02869 | Spectrum Analyzer | E4440A         | 2/6/2013         | 2/6/2015     |
|    | AN02946 | Cable             | 32022-2-2909К- | 7/31/2013        | 7/31/2015    |
|    |         |                   | 36TC           |                  |              |
|    | AN03430 | Attenuator        | 75A-10-12      | 9/5/2013         | 9/5/2015     |

| Equipment Under Test (* = EUT): |                         |               |              |  |  |  |
|---------------------------------|-------------------------|---------------|--------------|--|--|--|
| Function                        | Manufacturer            | Model #       | S/N          |  |  |  |
| Provider Specific Co            | onsumer Nextivity, Inc. | CELFI-RS225CU | 157216000246 |  |  |  |
| Signal Booster*                 | Signal Booster*         |               |              |  |  |  |
| Provider Specific Co            | onsumer Nextivity, Inc. | CELFI-RS225WU | 157216000246 |  |  |  |
| Signal Booster                  |                         |               |              |  |  |  |

### Support Devices:

| Function               | Manufacturer | Model #      | S/N        |
|------------------------|--------------|--------------|------------|
| Power Supply           | Nextivity    | WRG15F-120AB | 20120111   |
| Power Supply           | Nextivity    | WRG15F-120AB | 20120815   |
| Signal Generator       | Agilent      | E4438C       | MY42082260 |
| Base Station Simulator | Agilent      | 8960         | GB47320116 |

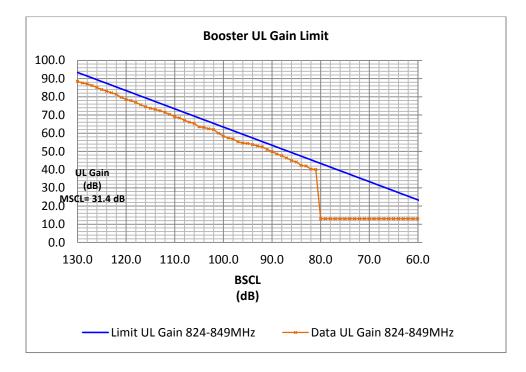


#### Test Conditions / Notes:

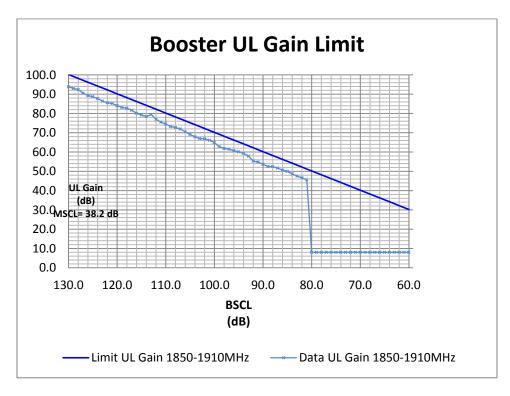
The EUT is provider specific signal booster pair consisted of a Window unit (WU) and a Coverage unit (CU) using proprietary 5.8 GHz Wireless interface.

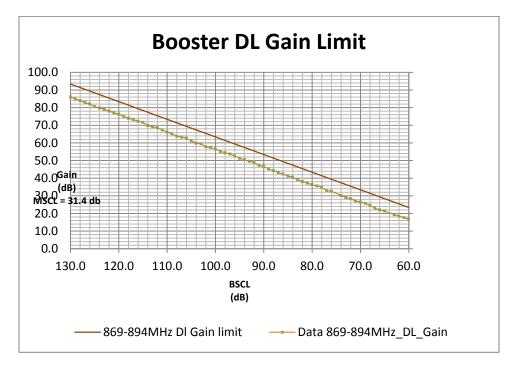
For testing purposes, the EUT are placed on the test bench, connected via coax cable and 50 dB attenuators. Tx of WU is connected to RX of CU, RX of WU is connected to UNII TX port of CU.

Intended band of operation

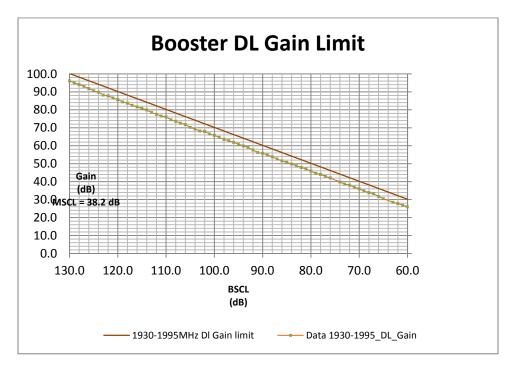

UL= 824-849 MHz, 1850-1910 MHz, DL= 869-894 MHz 1930-1990 MHz,

MSCL of 38.2 dB (1850-1910, 1930-1990MHz) and 41.4 (824-869MHz, , 869-894MHz) calculation provided in FCC submittal package.


The test was performed with the booster operating in Test mode bypassing the RF input limit function. In operation, the UL path cease transmit operation at RSSI exceeding -40dBm. The system gain presented in the UL plot, at BSCL of RSSI equivalent of -40dBm (BSCL of 80dB), the system is designed to enter transmit off and the plot represents system gain of Transmit power off.


Variable gain UL timing plot: time between market 1 and 1R is the reaction time when the BSCL dropped 20dB.

Test environment conditions: 23°C, 15% Relative Humidity, 100kPa







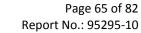


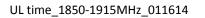





### 7.9 Summary of Results

**Pass:** As demonstrated in the test data section, the time between Cursor R1 and cursor 1 where the BSCL was reduced by 20 dB is less than 3 seconds. Computed gain is within the gain limit.


| Input power                           |       |
|---------------------------------------|-------|
|                                       | dBm   |
| UL AWGN power at server port 836.5MHz | -90.0 |
| UL AWGN Power at server port 1880MHz  | -85.0 |




| RPCH (dBm) power at Ant port | BSCL  | 1882.5MHz | 836.5MHz | 1882.5MHz | 836.5MHz |
|------------------------------|-------|-----------|----------|-----------|----------|
| RF Off                       |       | Measure   | ed Power | Computed  | UL Gain  |
| -90.0                        | 130.0 | 8.9       | -1.5     | 93.9      | 88.5     |
| -89.0                        | 129.0 | 8.0       | -2.4     | 93.0      | 87.6     |
| -88.0                        | 128.0 | 7.4       | -2.9     | 92.4      | 87.1     |
| -87.0                        | 127.0 | 5.5       | -3.8     | 90.5      | 86.2     |
| -86.0                        | 126.0 | 4.3       | -4.9     | 89.3      | 85.1     |
| -85.0                        | 125.0 | 3.7       | -6.0     | 88.7      | 84.0     |
| -84.0                        | 124.0 | 2.7       | -6.9     | 87.7      | 83.1     |
| -83.0                        | 123.0 | 1.4       | -7.8     | 86.4      | 82.3     |
| -82.0                        | 122.0 | 0.6       | -8.6     | 85.6      | 81.4     |
| -81.0                        | 121.0 | 0.2       | -10.3    | 85.2      | 79.7     |
| -80.0                        | 120.0 | -1.0      | -11.5    | 84.0      | 78.5     |
| -79.0                        | 119.0 | -1.9      | -12.1    | 83.1      | 77.9     |
| -78.0                        | 118.0 | -2.3      | -13.1    | 82.7      | 76.9     |
| -77.0                        | 117.0 | -3.3      | -14.4    | 81.7      | 75.6     |
| -76.0                        | 116.0 | -4.9      | -15.5    | 80.1      | 74.5     |
| -75.0                        | 115.0 | -5.8      | -16.3    | 79.2      | 73.7     |
| -74.0                        | 114.0 | -6.6      | -16.9    | 78.4      | 73.1     |
| -73.0                        | 113.0 | -5.6      | -17.7    | 79.4      | 72.3     |
| -72.0                        | 112.0 | -8.0      | -18.5    | 77.0      | 71.5     |
| -71.0                        | 111.0 | -9.5      | -19.7    | 75.5      | 70.3     |
| -70.0                        | 110.0 | -10.5     | -20.9    | 74.5      | 69.1     |
| -69.0                        | 109.0 | -11.8     | -21.6    | 73.2      | 68.4     |
| -68.0                        | 108.0 | -12.3     | -22.9    | 72.7      | 67.1     |
| -67.0                        | 107.0 | -13.1     | -23.9    | 72.0      | 66.1     |
| -66.0                        | 106.0 | -14.5     | -24.6    | 70.5      | 65.4     |
| -65.0                        | 105.0 | -15.9     | -26.5    | 69.1      | 63.5     |
| -64.0                        | 104.0 | -17.1     | -26.8    | 67.9      | 63.2     |
| -63.0                        | 103.0 | -18.0     | -27.6    | 67.0      | 62.4     |
| -62.0                        | 102.0 | -18.2     | -28.0    | 66.8      | 62.0     |
| -61.0                        | 101.0 | -18.9     | -30.0    | 66.1      | 60.0     |
| -60.0                        | 100.0 | -20.1     | -31.6    | 64.9      | 58.4     |
| -59.0                        | 99.0  | -22.2     | -32.6    | 62.8      | 57.4     |
| -58.0                        | 98.0  | -23.1     | -33.2    | 61.9      | 56.8     |
| -57.0                        | 97.0  | -23.5     | -34.7    | 61.5      | 55.3     |
| -56.0                        | 96.0  | -24.3     | -35.4    | 60.7      | 54.6     |
| -55.0                        | 95.0  | -24.9     | -35.6    | 60.1      | 54.4     |



| -54.0 | 94.0 | -25.7 | -36.2 | 59.3 | 53.8 |
|-------|------|-------|-------|------|------|
| -53.0 | 93.0 | -27.1 | -37.0 | 57.9 | 53.0 |
| -52.0 | 92.0 | -29.7 | -37.5 | 55.3 | 52.5 |
| -51.0 | 91.0 | -30.2 | -38.9 | 54.8 | 51.1 |
| -50.0 | 90.0 | -31.4 | -40.1 | 53.6 | 49.9 |
| -49.0 | 89.0 | -32.5 | -41.4 | 52.5 | 48.6 |
| -48.0 | 88.0 | -32.6 | -42.3 | 52.4 | 47.7 |
| -47.0 | 87.0 | -33.3 | -43.6 | 51.7 | 46.4 |
| -46.0 | 86.0 | -34.4 | -45.0 | 50.6 | 45.0 |
| -45.0 | 85.0 | -35.0 | -45.8 | 50.0 | 44.2 |
| -44.0 | 84.0 | -36.4 | -47.7 | 48.6 | 42.3 |
| -43.0 | 83.0 | -37.5 | -48.0 | 47.5 | 42.0 |
| -42.0 | 82.0 | -38.4 | -49.7 | 46.6 | 40.3 |
| -41.0 | 81.0 | -39.4 | -49.9 | 45.6 | 40.1 |
| -40.0 | 80.0 | -77.0 | -77.0 | 8.0  | 13.0 |
| -39.0 | 79.0 | -77.0 | -77.0 | 8.0  | 13.0 |
| -38.0 | 78.0 | -77.0 | -77.0 | 8.0  | 13.0 |
| -37.0 | 77.0 | -77.0 | -77.0 | 8.0  | 13.0 |
| -36.0 | 76.0 | -77.0 | -77.0 | 8.0  | 13.0 |
| -35.0 | 75.0 | -77.0 | -77.0 | 8.0  | 13.0 |
| -34.0 | 74.0 | -77.0 | -77.0 | 8.0  | 13.0 |
| -33.0 | 73.0 | -77.0 | -77.0 | 8.0  | 13.0 |
| -32.0 | 72.0 | -77.0 | -77.0 | 8.0  | 13.0 |
| -31.0 | 71.0 | -77.0 | -77.0 | 8.0  | 13.0 |
| -30.0 | 70.0 | -77.0 | -77.0 | 8.0  | 13.0 |
| -29.0 | 69.0 | -77.0 | -77.0 | 8.0  | 13.0 |
| -28.0 | 68.0 | -77.0 | -77.0 | 8.0  | 13.0 |
| -27.0 | 67.0 | -77.0 | -77.0 | 8.0  | 13.0 |
| -26.0 | 66.0 | -77.0 | -77.0 | 8.0  | 13.0 |
| -25.0 | 65.0 | -77.0 | -77.0 | 8.0  | 13.0 |
| -24.0 | 64.0 | -77.0 | -77.0 | 8.0  | 13.0 |
| -23.0 | 63.0 | -77.0 | -77.0 | 8.0  | 13.0 |
| -22.0 | 62.0 | -77.0 | -77.0 | 8.0  | 13.0 |
| -21.0 | 61.0 | -77.0 | -77.0 | 8.0  | 13.0 |
| -20.0 | 60.0 | -77.0 | -77.0 | 8.0  | 13.0 |





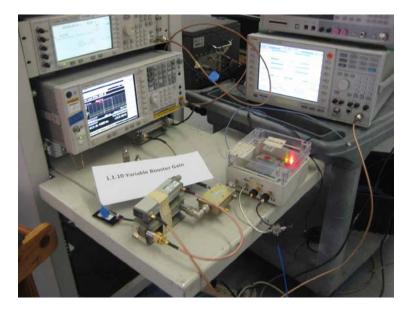




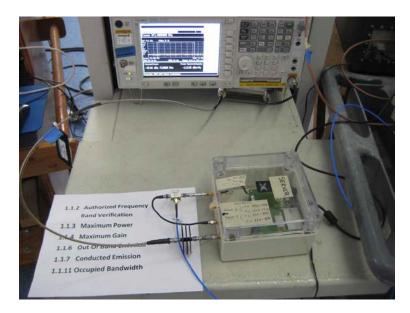
UL time\_824-849MHz

<u>ekc</u> **Testing the Future** LABORATORIES, INC.

🔆 Agilent 14:34:04 Jan 10, 2014


## **Test Data**

R L


∆ Mkr1 466.7 ms



## **Test Setup Photo(s)**



**Note:** The sign in the photo has the incorrect numbering reference. The proper reference is 7.9.



**Note:** The sign in the photo has the incorrect numbering reference. The proper reference is 7.9.



## 7.11 Anti-oscillation

### **Test Conditions / Setup**

Test Location: CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112

| Customer:      | Nextivity, Inc.                   |            |           |
|----------------|-----------------------------------|------------|-----------|
| Specification: | 7.11 Oscillation Detection        |            |           |
| Work Order #:  | 95295                             | Date:      | 1/9/2014  |
| Test Type:     | Conducted Emissions               |            |           |
| Equipment:     | Provider Specific Consumer Signal | Sequence#: | 1         |
|                | Booster                           | -          |           |
| Manufacturer:  | Nextivity, Inc.                   | Tested By: | E. Wong   |
| Model:         | CELFI-RS225CU, CELFI-RS225WU,     |            | 110V 60Hz |
| S/N:           | 157216000246, 157216000246        |            |           |

Test Equipment:

| ID | Asset # | Description          | Model          | Calibration Date | Cal Due Date |
|----|---------|----------------------|----------------|------------------|--------------|
|    | AN02869 | Spectrum Analyzer    | E4440A         | 2/6/2013         | 2/6/2015     |
|    | AN02946 | Cable                | 32022-2-2909К- | 7/31/2013        | 7/31/2015    |
|    |         |                      | 36TC           |                  |              |
|    | C00082  | RF Coupler           | 722-10-1.500V  | 8/21/2013        | 8/21/2015    |
|    | AN02475 | 1 dB step Attenuator | 8494B          | 6/17/2013        | 6/17/2015    |
|    | AN03429 | 10dB step Attenuator | 8496B          | 9/5/2013         | 9/5/2015     |
|    | AN03430 | Attenuator           | 75A-10-12      | 9/5/2013         | 9/5/2015     |

| Equipment Under      | <i>Test</i> (* = EUT):  |               |              |  |
|----------------------|-------------------------|---------------|--------------|--|
| Function             | Manufacturer            | Model #       | S/N          |  |
| Provider Specific Co | onsumer Nextivity, Inc. | CELFI-RS225CU | 157216000246 |  |
| Signal Booster*      |                         |               |              |  |
| Provider Specific Co | onsumer Nextivity, Inc. | CELFI-RS225WU | 157216000246 |  |
| Signal Booster       |                         |               |              |  |

#### Support Devices:

| Function     | Manufacturer | Model #      | S/N      |  |
|--------------|--------------|--------------|----------|--|
| Power Supply | Nextivity    | WRG15F-120AB | 20120111 |  |
| Power Supply | Nextivity    | WRG15F-120AB | 20120815 |  |

Test Conditions / Notes:

The EUT is provider specific signal booster pair consisted of a Window unit (WU) and a Coverage unit (CU) using proprietary 5.8 GHz Wireless interface.

For testing purposes, the EUT are placed on the test bench, connected via coax cable and 50 dB attenuators.

Tx of WU is connected to RX of CU, RX of WU is connected to UNII TX port of CU.

Intended band of operation

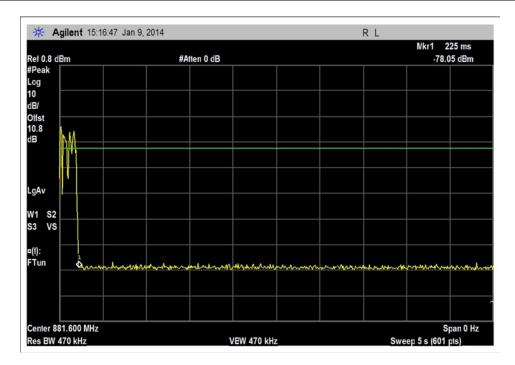
UL= 824-849 MHz, 1850-1910 MHz,

DL= 869-894 MHz 1930-1990 MHz,

A fixed 40 dB attenuation to simulate with required isolation is included in the test setup for the specific booster design to operate in this mode. No bandpass filter is required.

Peak detector was employed for Timing measurement to enable video trigger . Additional measurement with RMS detector to show compliance with -70dBm/MHz limit after successful mitigation.

Plots with 120 second sweep demonstrate the booster does not re-start upon the first mitigation.

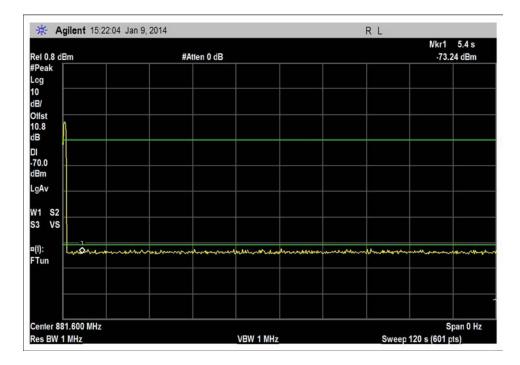

Test environment conditions: 23°C, 15% Relative Humidity, 100kPa



### 7.11 Summary of Results

**Pass:** All detectable oscillation was mitigated within 3 seconds and the device remains inactive without restarting. The captured level after mitigation is below -70dBm/MHz.

## **Test Data**




DL\_869-894MHz\_single



| Ref 0.8 dBm | #^* | len 0 dB |      | Vkr1 225 ms<br>→83.67 dBm |
|-------------|-----|----------|------|---------------------------|
| Avg         | ##I |          |      | -83.67 GBIII              |
| .og         |     |          |      |                           |
| 0           |     |          |      |                           |
| iB/         |     |          |      |                           |
| Difst       |     |          | <br> |                           |
| I0.8<br>IB  |     |          |      |                           |
|             |     |          |      |                           |
|             |     |          |      |                           |
| 70.0<br>iBm |     |          |      |                           |
|             |     |          |      |                           |
| PAvg        |     |          |      |                           |
| V1 S2       |     |          |      |                           |
| 53 FS       |     |          |      |                           |
|             |     |          |      |                           |
| :(1):       |     |          |      |                           |
| (í):<br>Tun |     |          |      |                           |
|             |     |          |      |                           |
|             |     |          |      |                           |
|             |     |          |      |                           |
|             |     |          |      |                           |

DL\_869-894MHz\_single\_-70dBm

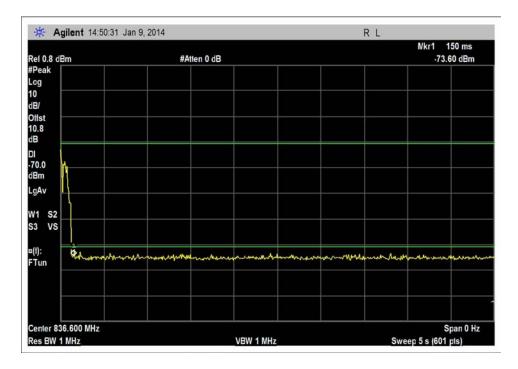


DL\_869-894MHz\_single\_120sec

| DL_1930 | )-1995MHz_ | single | -70dBm |
|---------|------------|--------|--------|
|         |            |        |        |

| * Agilent 15:35:05 J | an 9, 2014 |   | RL   |                             |
|----------------------|------------|---|------|-----------------------------|
| el 0.8 dBm           | #Atten 0 d | B |      | Wkr1 233.3 ms<br>-83.35 dBm |
| vg                   |            |   |      |                             |
| g                    |            |   |      |                             |
|                      |            |   |      |                             |
| //<br>fst            |            |   |      |                             |
| .8                   |            |   |      |                             |
|                      |            |   |      |                             |
|                      |            |   |      |                             |
| 0.0                  |            |   |      |                             |
|                      |            |   |      |                             |
| lvg                  |            |   |      |                             |
| 1 \$2                |            |   |      |                             |
| FS                   |            |   |      |                             |
|                      |            |   |      |                             |
| ):                   |            |   |      |                             |
| 1un                  |            |   |      |                             |
| <b>◇</b>             |            |   | ~~~~ |                             |
|                      |            |   |      |                             |
|                      |            |   |      |                             |

DL\_1930-1995MHz\_single

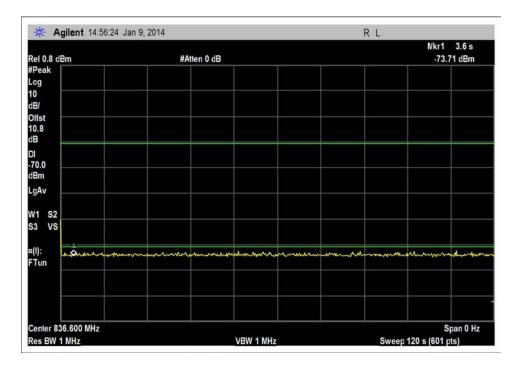

| el 0.8 dBm                              |      | tten 0 dB |         |          |    |                                        | Nkr1 23 | 3.3 ms<br>44 dBm |
|-----------------------------------------|------|-----------|---------|----------|----|----------------------------------------|---------|------------------|
| Peak                                    | #A   | tien v dB |         |          |    |                                        | -73.4   |                  |
| og                                      |      |           |         |          |    |                                        |         |                  |
| ) – – – – – – – – – – – – – – – – – – – |      |           |         |          |    |                                        |         |                  |
| 3/                                      |      |           |         |          |    |                                        |         |                  |
| lfst                                    |      |           |         |          |    |                                        |         |                  |
| ).8<br>3                                |      |           |         |          |    |                                        |         |                  |
| ° (M)                                   |      |           |         |          |    |                                        |         |                  |
| 0.0                                     |      |           |         |          |    |                                        |         |                  |
| 3m                                      |      |           |         |          |    |                                        |         |                  |
| Av                                      |      |           |         |          |    |                                        |         |                  |
|                                         |      |           |         |          |    |                                        |         |                  |
| 1 S2                                    |      |           |         |          |    |                                        |         |                  |
| 3 VS                                    |      |           |         |          |    |                                        |         |                  |
| 1): &<br>Tun                            | mana | and when  | mmunder | - Multim | mm | ······································ | marchan | , margan         |
|                                         |      |           |         |          |    |                                        |         |                  |
|                                         |      |           |         |          |    |                                        |         |                  |
|                                         |      |           |         |          |    |                                        |         |                  |
|                                         |      |           |         |          |    |                                        |         |                  |



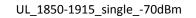


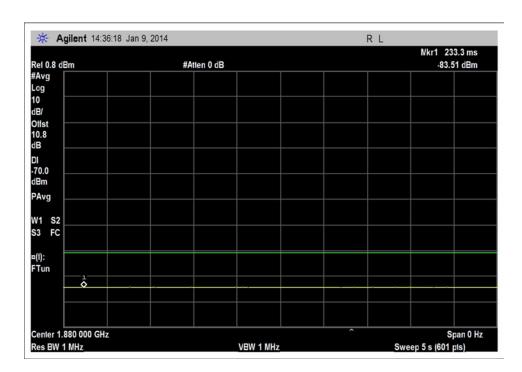
| * Agilent 15:38:20  | 0 Jan 9, 2014         |           | RI         | L                |                  |
|---------------------|-----------------------|-----------|------------|------------------|------------------|
| Rel 0.8 dBm         | #Atten 0 dB           |           |            | Nkr1<br>-72      | 5.6 s<br>.77 dBm |
| Peak                |                       |           |            |                  |                  |
| og                  |                       |           |            |                  |                  |
| 0                   |                       |           |            |                  |                  |
| B/                  |                       |           |            |                  |                  |
| lfst                |                       |           |            |                  |                  |
| 0.8<br>B            |                       |           |            |                  |                  |
|                     |                       |           |            |                  |                  |
| l<br>'0.0           |                       |           |            |                  |                  |
| Bm                  |                       |           |            |                  |                  |
| gAv                 |                       |           |            |                  |                  |
| yAv                 |                       |           |            |                  |                  |
| 1 S2                |                       |           |            |                  |                  |
| 3 VS                |                       |           |            |                  |                  |
|                     |                       |           |            |                  |                  |
| (I):                | man man and many many | man man   | markondena | multiment        | man              |
| lun                 |                       |           |            |                  |                  |
|                     |                       |           |            |                  |                  |
|                     |                       |           |            |                  |                  |
|                     |                       |           |            |                  |                  |
| enter 1.960 000 GHz |                       |           |            |                  | Span 0 Hz        |
| es BW 1 MHz         |                       | VBW 1 MHz |            | Sweep 120 s (601 |                  |

DL\_1930-1995MHz\_single\_120sec




UL\_824-849MHz\_single





| Avg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | el 0.8 dBm   | #Atten 0 di | 5        | Wkr1 150 ms<br>-83.99 dBm |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|----------|---------------------------|
| og<br>0<br>B/<br>D/list<br>0.8<br>B<br>H<br>r0.0<br>Bm<br>Avg<br>/1 S2<br>3 FS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | #Atten o di | <b>-</b> | -65.55 0011               |
| 0 B/ Hfst 0.8 B H H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |             |          |                           |
| B/     Image: Constraint of the second of the |              |             |          |                           |
| 0.8<br>B<br>D<br>TO.0<br>Em<br>PAvg<br>V1 S2<br>3 FS<br>(I):<br>Tun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B/           |             |          |                           |
| B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mst          |             |          |                           |
| M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M     M <td>0.8</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8          |             |          |                           |
| 70.0<br>IBm<br>PAvg<br>V1 S2<br>S3 FS<br>V(1):<br>Tun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | iB           |             |          |                           |
| iBm     iBm       PAvg     iBm       S3 FS     iBm       i(l):     iBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | וכ           |             |          |                           |
| PAvg N1 S2 S3 FS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |             |          |                           |
| N1 S2<br>S3 FS<br>s(():<br>Tun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |             |          |                           |
| 33 FS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PAvg         |             |          | <br>                      |
| 33 FS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |             |          |                           |
| און):<br>ידעה                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N1 S2        |             |          | <br>                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53 FS        |             |          |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |          | <br>                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4(I):<br>Tup |             |          |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |          |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>ہ</u>     |             |          |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |          |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |             |          |                           |

UL\_824-849MHz\_single\_-70dBm



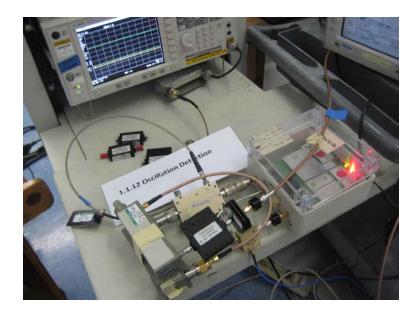
UL\_824-849MHz\_single\_120sec





UL\_1850-1915\_single

|             |       |                    |              |         | Nkr1 23 |       |
|-------------|-------|--------------------|--------------|---------|---------|-------|
| el 0.8 dBm  | #Att  | en 0 dB            |              |         | -74.2   | 2 dBm |
| Peak        |       |                    |              |         |         |       |
| g           |       |                    |              |         |         |       |
|             |       |                    |              |         |         |       |
| 3/          |       |                    |              |         |         |       |
| list<br>0.8 |       |                    |              |         |         |       |
| 3           |       |                    |              |         |         |       |
|             |       |                    |              |         |         |       |
| 0.0         |       |                    |              |         |         |       |
| 3m          |       |                    |              |         |         |       |
| Av          |       |                    |              |         |         |       |
|             |       |                    |              |         |         |       |
| 1 S2        |       |                    |              |         |         |       |
| vs          |       |                    |              |         |         |       |
|             |       |                    |              |         |         |       |
| 1): Homen   |       |                    |              |         |         |       |
| Tun         | mound | and the server and | mans when we | man man | man     | www.  |
|             |       |                    |              |         |         |       |
|             |       |                    |              |         |         |       |
|             |       |                    |              |         |         |       |
|             |       |                    |              |         |         |       |






| * Agilent 14:40:3   | 4 Jan 9, 2014            |           | RL                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|--------------------------|-----------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ef 0.8 dBm          | #Atten 0 d               | B         |                          | ₩kr1 5.6 s<br>-72.47 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Peak                |                          |           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| og                  |                          |           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0                   |                          |           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3/                  |                          |           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| lfst<br>).8         |                          |           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                   |                          |           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                          |           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.0                 |                          |           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3m                  |                          |           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Av                  |                          |           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                          |           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 S2                |                          |           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 VS                |                          |           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                   |                          |           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1): UniQuenne       | ender and and the second | mannahana | men when when the second | Meren and and the second and the second and the second sec |
|                     |                          |           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                          |           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                          |           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                          |           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| enter 1.880 000 GHz |                          |           |                          | Span 0 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| es BW 1 MHz         |                          | VBW 1 MHz | 9                        | weep 120 s (601 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

UL\_1850-1915\_single\_120sec

# Test Setup Photo(s)



**Note:** The sign in the photo has the incorrect numbering reference. The proper reference is 7.11.



# 7.13 Spectrum Block Filtering

Not applicable to this device because it does not contain block filtering.



## 7.14 Out of Band Gain Limits

### **Test Conditions / Setup**

| CKC Laboratories • 110 Olinda Place • Brea, CA 92823 • 714-993-6112 |                                                                                                                                                                               |                                                                                                                                                        |  |  |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Nextivity, Inc.                                                     |                                                                                                                                                                               |                                                                                                                                                        |  |  |
| 7.14 Out of Band gain.                                              |                                                                                                                                                                               |                                                                                                                                                        |  |  |
| 95295                                                               | Date:                                                                                                                                                                         | 1/30/2014                                                                                                                                              |  |  |
| Conducted Emissions                                                 |                                                                                                                                                                               |                                                                                                                                                        |  |  |
| Provider Specific Consumer Signal                                   | Sequence#:                                                                                                                                                                    | 1                                                                                                                                                      |  |  |
| Booster                                                             |                                                                                                                                                                               |                                                                                                                                                        |  |  |
| Nextivity, Inc.                                                     | Tested By:                                                                                                                                                                    | S. Yamamoto                                                                                                                                            |  |  |
| CELFI-RS225CU, CELFI-RS225WU,                                       |                                                                                                                                                                               | 110V 60Hz                                                                                                                                              |  |  |
| 157216000246, 157216000246                                          |                                                                                                                                                                               |                                                                                                                                                        |  |  |
|                                                                     | Nextivity, Inc.<br>7.14 Out of Band gain.<br>95295<br>Conducted Emissions<br>Provider Specific Consumer Signal<br>Booster<br>Nextivity, Inc.<br>CELFI-RS225CU, CELFI-RS225WU, | Nextivity, Inc.7.14 Out of Band gain.95295Date:Conducted EmissionsProvider Specific Consumer SignalBoosterNextivity, Inc.CELFI-RS225CU, CELFI-RS225WU, |  |  |

Test Equipment:

| Asset # | Description       | Model                  | Calibration Date | Cal Due Date |
|---------|-------------------|------------------------|------------------|--------------|
| 02869   | Spectrum Analyzer | E4440A                 | 2/6/2013         | 2/6/2015     |
| 02946   | Cable             | 32022-2-2909К-<br>36TC | 7/31/2013        | 7/31/2015    |
| 01705   | Attenuator        | 8496B                  | 6/17/2013        | 6/17/2015    |
| 03430   | Attenuator        | 75A-10-12              | 9/5/2013         | 9/5/2015     |

#### Equipment Under Test (\* = EUT):

| Function                   | Manufacturer    | Model #       | S/N          |
|----------------------------|-----------------|---------------|--------------|
| Provider Specific Consumer | Nextivity, Inc. | CELFI-RS225CU | 157216000246 |
| Signal Booster*            |                 |               |              |
| Provider Specific Consumer | Nextivity, Inc. | CELFI-RS225WU | 157216000246 |
| Signal Booster             |                 |               |              |

### Support Devices:

| Function         | Manufacturer | Model #      | S/N        |
|------------------|--------------|--------------|------------|
| Power Supply     | Nextivity    | WRG15F-120AB | 20120111   |
| Power Supply     | Nextivity    | WRG15F-120AB | 20120815   |
| Signal Generator | Agilent      | E4438C       | MY42082260 |

Test Conditions / Notes:

The EUT is provider specific signal booster pair consisted of a Window unit (WU) and a Coverage unit (CU) using proprietary 5.8 GHz Wireless interface.

For testing purposes, the EUT are placed on the test bench, connected via coax cable and 50 dB attenuators. Tx of WU is connected to RX of CU, RX of WU is connected to UNII TX port of CU. Intended band of operation

UL= 824-849 MHz, 1850-1910 MHz,

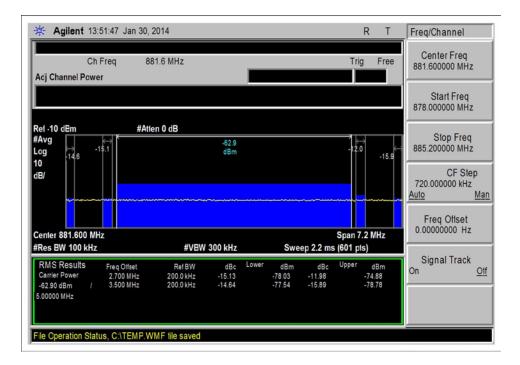
DL= 869-894 MHz 1930-1990 MHz,

Signal generator RF output power set at -60dBm, 10 MHz AWGN , Booster DL Gain = 70dB, Booster UL Gain = 70dB Test environment conditions:  $26^{\circ}$ C, 31%, 100kPa

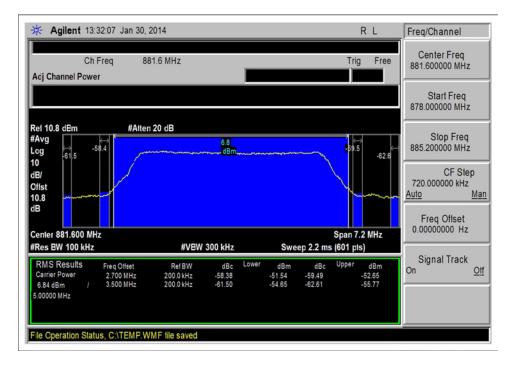


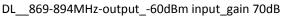
# 7.14 Summary of Results

**Pass:** As shown by the data below.

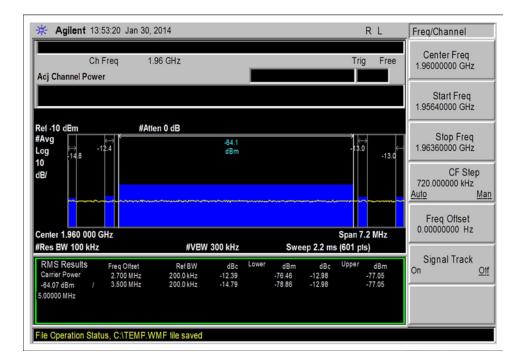

| Results          |        |          |        |       |
|------------------|--------|----------|--------|-------|
| Input            |        |          |        |       |
|                  | -1 MHz | -0.2 MHz | 0.2MHz | 1MHz  |
| UL: 1850-1910MHz | -77.6  | -79.8    | -76.8  | -81.1 |
| UL: 824-849MHz   | -76.6  | -75.1    | -75.5  | -78.7 |
| DL: 1930-1990MHz | -77.5  | -78.0    | -74.9  | -78.8 |
| DL: 869-894MHz   | -78.9  | -76.5    | -77.1  | -77.1 |

| Output           |        |          |        |       |
|------------------|--------|----------|--------|-------|
|                  | -1 MHz | -0.2 MHz | 0.2MHz | 1MHz  |
| UL: 1850-1910MHz | -51.86 | -51.17   | -44.57 | -48.7 |
| UL: 824-849MHz   | -46.38 | -44.52   | -44.6  | -47.1 |
| DL: 1930-1990MHz | -51.9  | -49.1    | -47.8  | -50.5 |
| DL: 869-894MHz   | -54.7  | -51.5    | -52.7  | -55.8 |

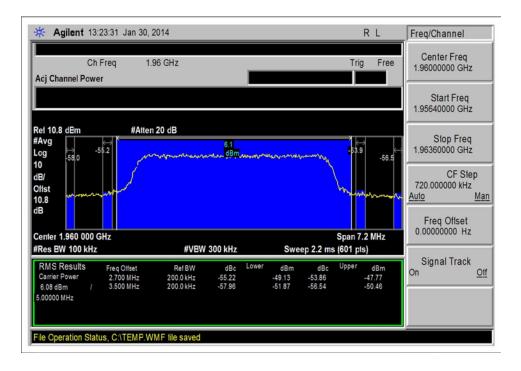

| Gain             |        |          |        |      |
|------------------|--------|----------|--------|------|
|                  | -1 MHz | -0.2 MHz | 0.2MHz | 1MHz |
| UL: 1850-1910MHz | 25.7   | 28.6     | 32.2   | 32.4 |
| UL: 824-849MHz   | 30.2   | 30.6     | 30.9   | 31.6 |
| DL: 1930-1990MHz | 25.7   | 28.9     | 27.1   | 28.3 |
| DL: 869-894MHz   | 24.2   | 24.9     | 24.4   | 21.3 |
| Limit            | 45.0   | 60.0     | 60.0   | 45.0 |




### **Test Data**

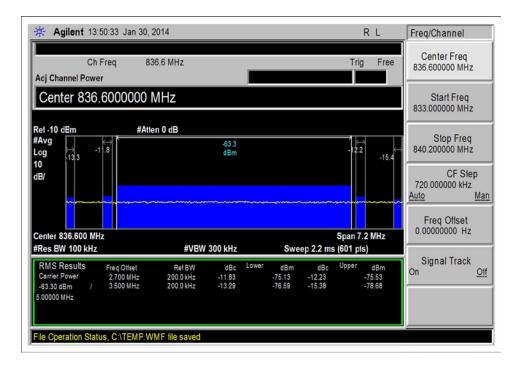


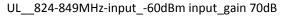

DL\_\_869-894MHz-input\_-60dBm input\_gain 70dB

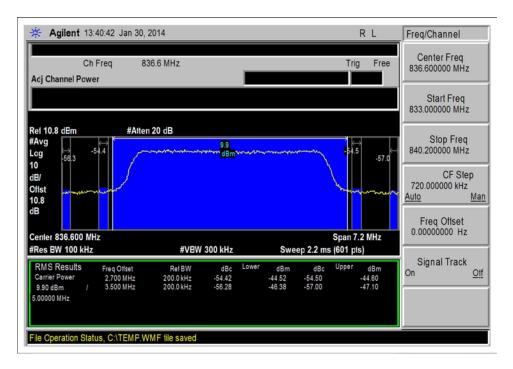


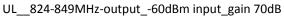




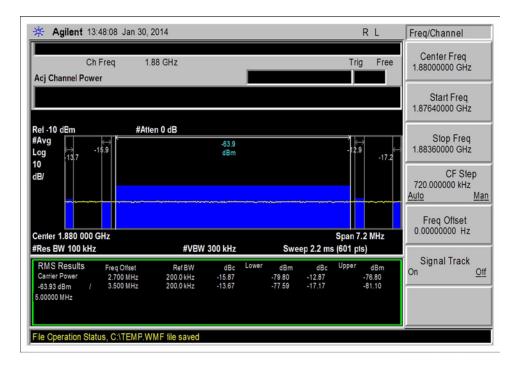





DL\_\_1930-1990MHz-input\_-60dBm input\_gain 70dB

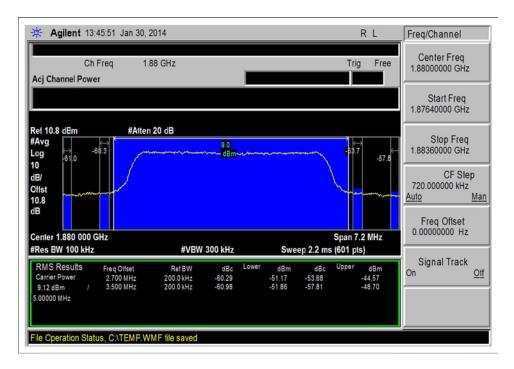


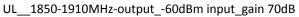


DL\_\_1930-1990MHz-output\_-60dBm input\_gain 70dB




















# **Test Setup Photo(s)**

