

Intertek 731 Enterprise Drive Lexington, KY 40510

Tel 859 226 1000 Fax 859 226 1040

www.intertek.com

Powercast Corporation TEST REPORT

SCOPE OF WORK

EMC TESTING - POWERCAST RFID READER MODEL PCR91501

STANDARDS

Title 47 CFR Part 15 Subpart B ICES-003 Issue 7

REPORT NUMBER

105207900LEX-001

ISSUE DATE

12/12/2022

PAGES

17

DOCUMENT CONTROL NUMBER

Non-Specific EMC Report Shell Rev. December 2017 © 2017 INTERTEK

EMC TEST REPORT

(FULL COMPLIANCE)

Report Number: 105207900LEX-001

Project Number: G105207900

Report Issue Date: 12/12/2022

Model(s) Tested: Powercast RFID Reader model PCR91501

Standards: Title 47 CFR Part 15 Subpart B

ICES-003 Issue 7

Tested by: Intertek Testing Services NA, Inc. 731 Enterprise Dr. Lexington, KY 40510 USA Client:
Powercast Corporation
620 Alpha Drive
Pittsburgh, PA 15238-2912
USA

Report prepared by

Report reviewed by

Seth Parker, Associate Engineer

Cul R

Brian Lackey, Team Leader

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Date: 12/12/2022

Table of Contents

1	Introduction and Conclusion	4
2	Test Summary	4
3	Client Information	5
4	Description of Equipment under Test and Variant Models	6
5	System Setup and Method	7
6	Radiated Emissions	8
7	Conducted Emissions	. 13
8	Revision History	. 16

Date: 12/12/2022

Page 4 of 17

1 **Introduction and Conclusion**

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested complies with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

2 **Test Summary**

Section	Test full name	Result
6	Radiated Emissions (ANSI C63.4: 2014)	Pass
7	Conducted Emissions (ANSI C63.4: 2014)	Pass

Report Number: 105207900LEX-001

Date: 12/12/2022

3 Client Information

This product was tested at the request of the following:

	Client Information					
Client Name:	Powercast Corporation					
Address:	620 Alpha Drive					
	Pittsburgh, PA 15238-2912					
	USA					
Contact: Jason Gill						
Telephone:	+1 (413) 923-4796					
Email:	jgill@powercastco.com					
	Manufacturer Information					
Manufacturer Name:	Powercast Corporation					
Manufacturer Address: 620 Alpha Drive						
	Pittsburgh, PA 15238-2912					
	USA					

Date: 12/12/2022

4 Description of Equipment under Test and Variant Models

Equipment Under Test					
Product Name	Powercast RFID Reader				
Model Number	PCR91501				
Test Start Date	10/3/2022				
Test End Date	10/19/2022				
Device Received Condition	Good				
Test Sample Type	Pre-Production				
Transmit Band 902 MHz – 928 MHz					
Test Channels	906.36 MHz, 915 MHz, 924 MHz				
Equipment Time	Frequency Hopping Spread Spectrum (FHSS)				
Antenna Make, Model, and Gain ¹	PCR91501 Integrated Patch Antenna				
Peak gain 3.8 (5.8 dBi, 3.65 dBd)					
Input Rating 5V 1A USB-C					
Description of Equipment Under Test (provided by client)					
RFID Reader.	RFID Reader.				

4.1 Variant Models:

There were no variant models covered by this evaluation.

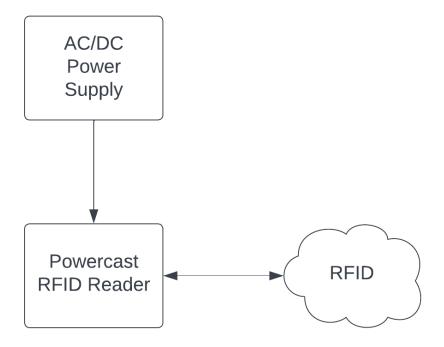
¹ This information was provided by the client and deviations from these values may affect compliance. Intertek does not make any claim of compliance for other than these values.

Report Number: 105207900LEX-001

Date: 12/12/2022

5 System Setup and Method

5.1 Method:


Configuration as required by ANSI C63.4: 2014

No.	Descriptions of EUT Exercising
1	The EUT was powered by 120V/60Hz and configured to transmit continuously.
2	The EUT was powered by 120V/60Hz. The transmitter was idle to measure unintentional emissions above
	1GHz.

	Cables							
ID	Description	Length (m)	Shielding	Ferrites	Termination			
1	USB-C2	2	No	No	AC/DC Adapter			

Support Equipment							
Description	Manufacturer	Model Number	Serial Number				
None	-	-	-				

5.2 EUT Block Diagram:

Date: 12/12/2022

6 Radiated Emissions

6.1 Method

Tests are performed in accordance with ANSI C63.4: 2014

TEST SITE: 10m ALSE

Site Designation: 10m Chamber

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	3.9dB	6.3 dB
Radiated Emissions, 3m	30-1000 MHz	4.0dB	6.3 dB
Radiated Emissions, 3m	1-6 GHz	4.7dB	5.2 dB
Radiated Emissions, 3m	6-15 GHz	4.7dB	5.5 dB
Radiated Emissions, 3m	15-18 GHz	4.7dB	5.5 dB
Radiated Emissions, 3m	18-40 GHz	4.7dB	5.5 dB

As shown in the table above our radiated emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required.

Date: 12/12/2022

6.2 Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB\mu V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = $52.0 \text{ dB}\mu\text{V}$ AF = 7.4 dB/mCF = 1.6 dBAG = 29.0 dBFS = $32 \text{ dB}\mu\text{V/m}$

To convert from dB μ V to μ V or mV the following was used:

UF = $10^{(NF / 20)}$ where UF = Net Reading in μV NF = Net Reading in $dB\mu V$

Example:

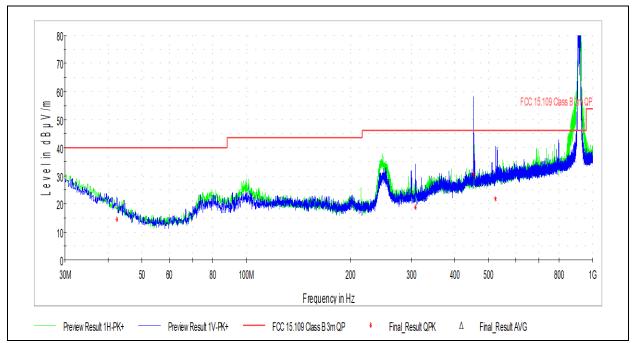
FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0UF = $10^{(32 \text{ dB}\mu\text{V}/20)} = 39.8 \mu\text{V/m}$

Date: 12/12/2022

6.3 Test Equipment Used:

Description	Asset	Manufacturer	Model	Cal Date	Cal Due
EMI Test Receiver	8181	Rohde & Schwarz	ESW44	11/16/2021	11/16/2022
Bilog Antenna	3133	ETS	3142C	8/10/2022	8/10/2023
Horn Antenna	4001	ETS	3117	2/23/2022	2/23/2023
System Controller	4096	ETS Lindgren	2090	Verify at	Verify at
				Time of Use	Time of Use
System Controller	3957	Sunol Sciences	SC99V	Verify at	Verify at
				Time of Use	Time of Use
Preamplifier	3918	Rohde & Schwarz	TS-PR18	1/13/2022	1/13/2023
Coaxial Cable	3074			1/13/2022	1/13/2023
Coaxial Cable	2588			1/13/2022	1/13/2023
Coaxial Cable	2593			1/13/2022	1/13/2023
Coaxial Cable	8185			1/13/2022	1/13/2023
Coaxial Cable	8188			1/13/2022	1/13/2023
Coaxial Cable	3339			1/13/2022	1/13/2023
Preamplifier	3919	Rohde & Schwarz	TS-PR3	1/13/2022	1/13/2023
Coaxial Cable	3172			1/13/2022	1/13/2023
Coaxial Cable	2590			1/13/2022	1/13/2023
Coaxial Cable	8186			1/13/2022	1/13/2023
Coaxial Cable	8187			1/13/2022	1/13/2023

6.4 Software Utilized:


Name	Manufacturer	Version
EMC32	Rohde & Schwarz	Version 10.60.20

6.5 Results:

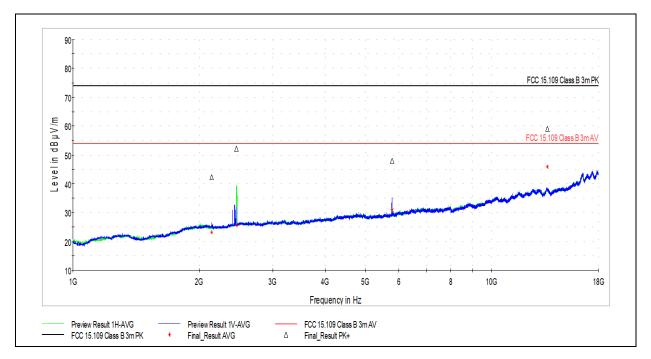
The sample tested was found to Comply.

Date: 12/12/2022

6.6 Plots/Data: Radiated Emissions, 30MHz - 1GHz

Note: The peak from 902-928MHz is the intentional emissions from the device

Frequency	QuasiPeak	Limit	Margin	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(kHz)	(cm)		(deg)	(dB/m)
42.286667	14.48	40.000	25.52	120.000	100.0	V	182.0	18.83
307.635556	18.80	46.021	27.22	120.000	353.0	V	0.0	23.86
453.351111	30.37	46.021	15.65	120.000	307.0	V	324.0	27.85
523.999444	21.85	46.021	24.17	120.000	339.0	V	339.0	29.47


Test Personnel:	Seth Parker	Test Date:	10/3/2022
Supervising/Reviewing Engineer:		_	
(Where Applicable)	Brian Lackey	Limit Applied:	Class B
	FCC Part 15.109		
Product Standard:	ICES-003	Ambient Temperature:	23.1C
	120V/60Hz to AC/DC	_	
Input Voltage:	adapter	Relative Humidity:	63.9%
Pretest Verification w / Ambient		_	
Signals or BB Source:	Yes	Atmospheric Pressure:	983.3mbar

Deviations, Additions, or Exclusions: None

Note: the limits used above are for FCC Part 15B and are more restrictive than the ICES-003 Issue 7 limits.

Date: 12/12/2022

6.7 Plots/Data: Radiated Emissions, 1GHz – 18GHz

Frequency (MHz)	MaxPeak (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2144.500000	42.22	73.979	31.76	1000.000	162.0	V	228.0	3.35
2459.500000	52.21	73.979	21.77	1000.000	320.0	Н	160.0	4.21
5789.000000	47.98	73.979	26.00	1000.000	410.0	V	98.0	10.43
13588.000000	59.07	73.979	14.91	1000.000	301.0	V	282.0	20.88

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2144.500000	23.24	53.979	30.74	1000.000	162.0	٧	228.0	3.35
2459.500000	25.75	53.979	28.23	1000.000	320.0	Н	160.0	4.21
5789.000000	31.05	53.979	22.93	1000.000	410.0	V	98.0	10.43
13588.000000	45.88	53.979	8.10	1000.000	301.0	V	282.0	20.88

Test Personnel:
Supervising/Reviewing Engineer:
(Where Applicable)
Product Standard:
Input Voltage:
Pretest Verification w / Ambient
Signals or BB Source:

Supervising/Reviewing Engineer:
Brian Lackey
FCC Part 15.109
ICES-003
120V/60Hz to AC/DC
adapater
Yes

Test Date: 10/19/2022

Limit Applied: Class B

Ambient Temperature: 18.2C

Relative Humidity: 31.6%

Atmospheric Pressure: 984.0mbar

Deviations, Additions, or Exclusions: None

Date: 12/12/2022

7 Conducted Emissions

7.1 Method

Tests are performed in accordance with ANSI C63.4: 2014

TEST SITE: Ground Plane

Site Designation: Ground Plane

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Power Line Conducted Emissions	150 kHz - 30 MHz	3.1dB	3.4dB

As shown in the table above our conducted emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required.

7.2 Sample Calculations

The following is how net line-conducted readings were determined:

NF = RF + LF + CF + AF

Where NF = Net Reading in $dB\mu V$

RF = Reading from receiver in $dB\mu V$

LF = LISN or ISN Correction Factor in dB

CF = Cable Correction Factor in dB

AF = Attenuator Loss Factor in dB

To convert from dB μ V to μ V or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μV
NF = Net Reading in $dB\mu V$

Example:

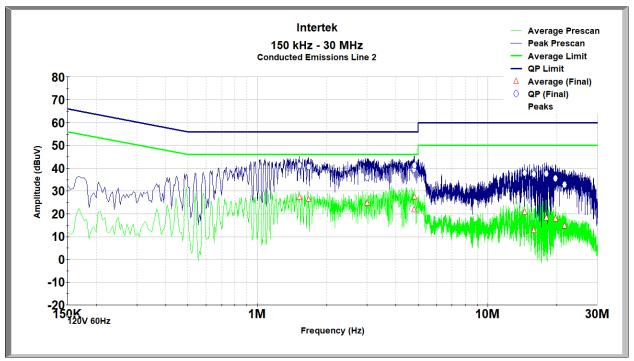
NF = RF + LF + CF + AF = 28.5 + 0.2 + 0.4 + 20.0 = 49.1 dB
$$\mu V$$
 UF = $10^{(49.1\,dB\mu V\,/\,20)}$ = 285.1 $\mu V/m$

Date: 12/12/2022

7.3 Test Equipment Used:

Description	Asset	Manufacturer	Model	Cal Date	Cal Due
LISN	2509	Fischer Custom	FCC-LISN-50-	8/1/2022	8/1/2023
		Communication	50-2M		
EMI Test Receiver	8181	Rohde & Schwarz	ESW44	11/16/2021	11/16/2022
Coaxial Cable	2593			1/13/2022	1/13/2023
Coaxial Cable	8185			1/13/2022	1/13/2023
Coaxial Cable	8188			1/13/2022	1/13/2023
Coaxial Cable	3339			1/13/2022	1/13/2023

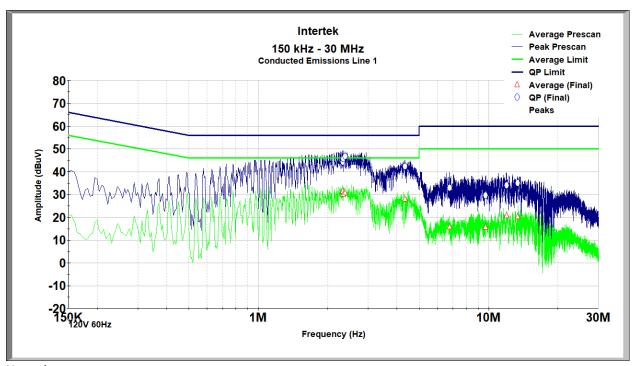
7.4 Software Utilized:


Name	Manufacturer	Version
TILE	ETS Lindgren	V7.0.6.545

7.5 Results:

The sample tested was found to Comply.

Date: 12/12/2022


7.6 Plots/Data: Conducted Emissions

Line

Frequency (MHz)	Quasi-Peak (dBuV)	Quasi-Peak Limit (dBuV)	Quasi-Peak Margin (dB)	Average (dBuV)	Average Limit (dBuV)	Average Margin (dB)
2.324	44.369	56.000	11.631	31.568	46.000	14.432
2.337	45.741	56.000	10.259	30.333	46.000	15.667
2.377	46.881	56.000	9.119	31.004	46.000	14.996
4.326	42.365	56.000	13.635	28.235	46.000	17.765
6.779	33.057	60.000	26.943	16.007	50.000	33.993
9.710	29.618	60.000	30.382	15.648	50.000	34.352
11.955	33.957	60.000	26.043	20.720	50.000	29.280
13.336	35.130	60.000	24.870	20.400	50.000	29.600

Date: 12/12/2022

Neutral

Frequency (MHz)	Quasi-Peak (dBuV)	Quasi-Peak Limit (dBuV)	Quasi-Peak Margin (dB)	Average (dBuV)	Average Limit (dBuV)	Average Margin (dB)
1.523	41.337	56.000	14.663	27.254	46.000	18.746
1.667	40.709	56.000	15.291	26.575	46.000	19.425
2.994	36.037	56.000	19.963	24.857	46.000	21.143
4.794	39.493	56.000	16.507	21.799	46.000	24.201
4.808	41.103	56.000	14.897	27.585	46.000	18.415
14.515	37.998	60.000	22.002	20.722	50.000	29.278
15.903	37.477	60.000	22.523	12.819	50.000	37.181
17.959	37.595	60.000	22.405	18.363	50.000	31.637
19.728	35.563	60.000	24.437	17.921	50.000	32.079
21.555	32,706	60.000	27.294	14.597	50,000	35,403

Test Personnel:	Seth Parker	Test Date:	10/11/2022
Supervising/Reviewing Engineer:			
(Where Applicable)	Brian Lackey	Limit Applied:	Class B
	FCC Part 15.107		
Product Standard:	ICES-003	Ambient Temperature:	23.1C
	120V/60Hz to AC/DC		
Input Voltage:	adapter	Relative Humidity:	63.9%
Pretest Verification w / Ambient			
Signals or BB Source:	Yes	Atmospheric Pressure:	983.3mbar

Deviations, Additions, or Exclusions: None

Date: 12/12/2022

8 Revision History

Revision Level	Date	Report Number	Prepared By	Reviewed By	Notes
0	12/12/2022	105207900LEX-001	JP	BL	Original Issue