FCC and ISED Test Report

Inmarsat Solutions B.V. IsatPhone, Model: IsatPhone 2 (Model 2.1)

In accordance with FCC 47 CFR Part 15B and ICES-003

Prepared for: Inmarsat Global Ltd 99 City Road London EC1Y 1AX UNITED KINGDOM SUD

Add value. Inspire trust.

FCC ID: YCT-ISATPHONE2W IC: 8944A-ISATPHONE2W

COMMERCIAL-IN-CONFIDENCE

Document 75948707-02 Issue 01

SIGNATURE			
AZ lausan.			
NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
Andy Lawson	Senior Engineer	Authorised Signatory	9 September 2020

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15B and ICES-003. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Testing	Graeme Lawler		Gellewlar.
Testing	Colin McKean		Cym
FCC Accreditation		ISED Accreditation	

90987 Octagon House, Fareham Test Laboratory 12669A Octagon House, Fareham Test Laboratory

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15B: 2019 and ICES-003: 2016 for the tests detailed in section 1.3.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2020 TÜV SÜD. This report relates only to the actual item/items tested.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD

is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164 TUV SUD Ltd is a TÜV SÜD Group Company Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 www.tuv-sud.co.uk TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

Contents

1	Report Summary	2
1.1	Report Modification Record	2
1.2	Introduction	2
1.3	Brief Summary of Results	3
1.4	Customer Supplied Form	4
1.5	Product Information	
1.6	Deviations from the Standard	
1.7	EUT Modification Record	
1.8	Test Location	7
2	Test Details	8
2.1	Conducted Disturbance at Mains Terminals	8
2.2	Radiated Disturbance	13
3	Test Equipment Information	40
3 3.1	Test Equipment Information General Test Equipment Used	
-		40

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	9 September 2020

Table 1

1.2 Introduction

Applicant	Inmarsat Global Ltd
Manufacturer	Inmarsat Solutions B.V.
Model Number(s)	IsatPhone 2 (Model 2.1)
Serial Number(s)	IMEI: 3540061100000259
Hardware Version(s)	HW 2800
Software Version(s)	Isat2.1-V01.00.11
Number of Samples Tested	1
Test Specification/Issue/Date	FCC 47 CFR Part 15B: 2019 ICES-003: 2016
Order Number Date	146810 30-March-2020
Date of Receipt of EUT	05-June-2020
Start of Test	08-July-2020
Finish of Test	10-July-2020
Name of Engineer(s)	Graeme Lawler and Colin McKean
Related Document(s)	ANSI C63.4: 2014

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15B and ICES-003 is shown below.

Section	Specification Clause		Test Description	Result	Comments/Base Standard
Configuration and Mode: AC charger connected - Idle					
2.1	15.107	6.1	Conducted Disturbance at Mains Terminals	Pass	ANSI C63.4: 2014
2.2	15.109	6.2	Radiated Disturbance	Pass	ANSI C63.4: 2014

Table 2

1.4 Customer Supplied Form

Equipment Description

Technical Description: (Please provide a brief description of the intended use of the equipment including the technologies the product supports)	Handheld Satellite phone for Inmarsat GMR2+ satellite network system		
Manufacturer:	Inmarsat Solut	ions B.V.	
Model:	IsatPhone 2 (Model 2.1)		
Part Number:	10207791		
Hardware Version: HW 2800			
Software Version: Isat2.1-V01.00		.11	
FCC ID of the product under test – see guidance here		YCT-ISATPHONE2W	
IC ID of the product under test – see guidance here		8944A-ISATPHONE2W	

Intentional Radiators

Technology	GMR2+
Frequency Range (MHz to MHz)	Tx: GMR2+ 1626.5 – 1660.5 MHz, 1668 – 1675 MHz (ext band) Rx:GMR2+ 1525 – 1559 MHz, 1518 – 1525 MHz (ext band)
Conducted Declared Output Power (dBm)	+33.5 dBm (+31.0 dBm ext band)
Antenna Gain (dBi)	2.8
Supported Bandwidth(s) (MHz) (e.g 1 MHz, 20 MHz, 40 MHz)	200 kHz
Modulation Scheme(s) (e.g GFSK, QPSK etc)	Tx: GMSK Rx: OQPSK
ITU Emission Designator (<u>see guidance here)</u>	50K0G7W
Bottom Frequency (MHz)	1626.675 (CH 0)
Middle Frequency (MHz)	1643.675 (CH 85)
Top Frequency (MHz)	1674.825 (CH 204)

Un-intentional Radiators

Highest frequency generated or used in the device or on which the device operates or tunes	3350 MHz
Lowest frequency generated or used in the device or on which the device operates or tunes	NA
Class A Digital Device (Use in commercial, industrial or business environment) \Box	
Class B Digital Device (Use in residential environment only) $oxtimes$	

DC Power Source

Nominal voltage:	3.7	V
Extreme upper voltage:	4.2	V
Extreme lower voltage:	3.55	V
Max current:	4	А

Battery Power Source

Voltage:	3.7		V
End-point voltage:	3.2		V (Point at which the battery will terminate)
Alkaline 🗆 Leclanche 🛛 Lithium 🗆 Nicke	l Cadmium 🗆 Lead A	.cid* □ *(Vehicle reg	ulated)
Other	Please detail:		

Charging

Can the EUT transmit whilst being charged	Yes 🛛 No 🗆
---	------------

Temperature

Minimum temperature:	-20	°C
Maximum temperature:	+55	٦°

Antenna Characteristics

Antenna connector 🖂		State impedance	50	Ohm	
Temporary antenna connector 🗆		State impedance		Ohm	
Integral antenna 🖂 Type: Quadrifilar Helix		Gain	2.8	dBi	
External antenna 🗆	External antenna 🗆 Type:		Gain		dBi
For external antenna only: Standard Antenna Jack If yes, describe how user is prohibited from changing antenna (if not professional installed):					
Equipment is only ever professionally installed \Box					
Non-standard Antenna Jack 🗆					

Ancillaries (if applicable)

ANCILLARIES (if applicable)				
MANUFACTURING DESCRIPTION	External power supply			
MANUFACTURER	Shenzhen Honor Electronic Co Ltd			
TYPE	ADS-6AE-06-05060E			
PART NUMBER	-			
SERIAL NUMBER	-			
COUNTRY OF ORIGIN	China			

I hereby declare that the information supplied is correct and complete.

Name: Alison Horrocks Position held: Director Date: 03/09/2020

1.5 Product Information

1.5.1 Technical Description

The Equipment under test (EUT) was an Inmarsat, IsatPhone 2.1 Handset.

The primary function of the EUT is as a satellite communication device.

Additionally, the EUT has functionality to send E-mails and has SMS capabilities.

1.5.2 EUT Port/Cable Identification

Port	Max Cable Length specified	Usage	Туре	Screened
Configuration and Mode: AC	charger connected -	Idle		
Signal Port	1.15 m	Connection to Headphones	Audio Cable	No
AC Power Port Live Line	1 m	Power for charging the EUT	230 V AC/ DC Adaptor	No
AC Power Port Neutral Line	1 m	Power for charging the EUT	230 V AC/ DC Adaptor	No
AC Power Port	1 m	Power for charging the EUT	230 V AC/ DC Adaptor	No

Table 3

1.5.3 Test Configuration

Configuration	Description
AC charger connected	The EUT was fitted with a discharged battery and powered from 117 V 60 Hz AC power supply. An earphone was connected to the EUTs audio output port.

Table 4

1.5.4 Modes of Operation

Mode	Description
ldle	The EUT was configured to receive on 1538.5 MHz. All transmitters were idle.

Table 5

1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted		
Model: IsatPhone 2 (Model 2.1), Serial Number: IMEI: 3540061100000259					
0 As supplied by the customer Not Applicable Not A					

Table 6

1.8 Test Location

TÜV SÜD conducted the following tests at our Fareham Test Laboratory.

Test Name	Name of Engineer(s)	Accreditation		
Configuration and Mode: AC charger connected - Idle				
Radiated Disturbance	Graeme Lawler	UKAS		
Conducted Disturbance at Mains Terminals	Colin McKean	UKAS		

Table 7

Office Address:

Octagon House Concorde Way Segensworth North Fareham Hampshire PO15 5RL United Kingdom

2 Test Details

2.1 Conducted Disturbance at Mains Terminals

2.1.1 Specification Reference

FCC 47 CFR Part 15B, Clause 15.107 ICES-003, Clause 6.1

2.1.2 Equipment Under Test and Modification State

IsatPhone 2 (Model 2.1), S/N: IMEI: 3540061100000259 - Modification State 0

2.1.3 Date of Test

10-July-2020

2.1.4 Test Method

The EUT was setup according to ANSI C63.4, clause 5.2.

The EUT was placed on a non-conductive table 0.8 m above a reference ground plane. A vertical coupling plane was placed 0.4 m from the EUT boundary.

A Line Impedance Stabilisation Network (LISN) was directly bonded to the ground-plane. The EUT was located so that the distance between the boundary of the EUT and the closest surface of the LISN was 0.8 m.

Interconnecting cables that hanged closer than 0.4 m to the ground plane were folded back and forth in the centre forming a bundle 0.3 m to 0.4 m long.

Input and output cables were terminated with equipment or loads representative of real usage conditions.

The EUT was configured to give the highest level of emissions within reason of a typical installation as described by the manufacturer.

2.1.5 Example Calculation

Quasi-Peak level ($dB\mu V$) = Receiver level ($dB\mu V$) + Correction Factor (dB) Margin (dB) = Quasi-Peak level ($dB\mu V$) - Limit ($dB\mu V$)

CISPR Average level ($dB\mu V$) = Receiver level ($dB\mu V$) + Correction Factor (dB) Margin (dB) = CISPR Average level ($dB\mu V$) - Limit ($dB\mu V$)

2.1.6 Example Test Setup Diagram

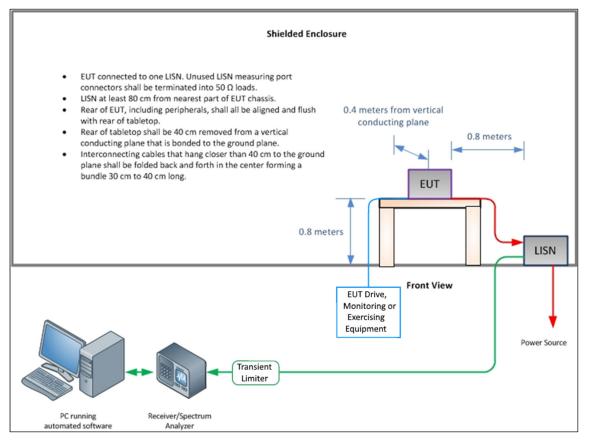


Figure 1 - Conducted Disturbance Example Test Setup

2.1.7 Environmental Conditions

Ambient Temperature	21.0 °C
Relative Humidity	55.0 %

2.1.8 Specification Limits

Required Specification Limits - Class B					
Line Under Test	CISPR Average Test Limit (dBµV)				
	0.15 to 0.5	66 to 56 ⁽¹⁾	56 to 46 ⁽¹⁾		
AC Power Port	0.5 to 5	56	46		
	5 to 30	60	50		
Supplementary information: Note 1. Decreases with the logarithm of the frequency.					

Table 8

2.1.9 Test Results

Results for Configuration and Mode: AC charger connected - Idle.

This test was performed to the requirements of the Class B limits.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

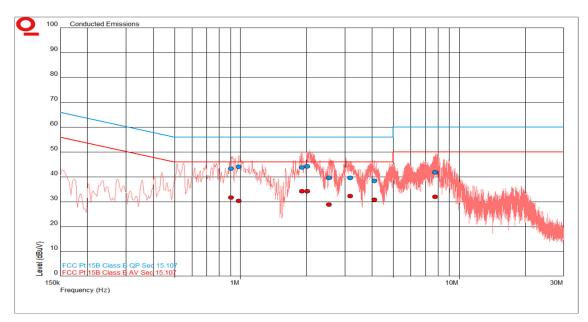


Figure 2 - Graphical Results - AC Power Port Live Line

Frequency (MHz)	QP Level (dBµV)	QP Limit (dBµV)	QP Margin (dB)	CISPR Average Level (dBµV)	CISPR Average Limit (dBµV)	CISPR Average Margin (dB)
0.908	43.4	56.0	-12.6	31.7	46.0	-14.3
0.982	44.1	56.0	-11.9	30.4	46.0	-15.6
1.908	43.8	56.0	-12.2	34.3	46.0	-11.7
2.021	44.3	56.0	-11.7	34.2	46.0	-11.8
2.541	39.6	56.0	-16.4	29.0	46.0	-17.0
3.170	39.6	56.0	-16.4	32.3	46.0	-13.7
4.098	38.4	56.0	-17.6	30.8	46.0	-15.2
7.747	41.9	60.0	-18.1	32.0	50.0	-18.0

Table 9

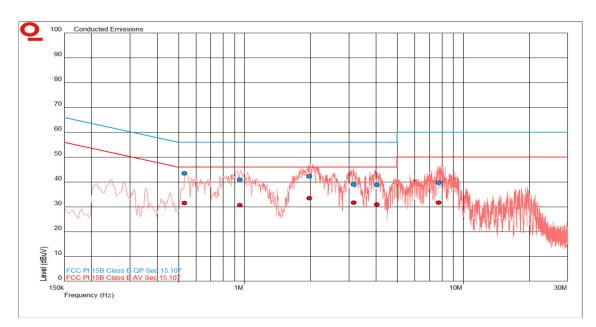


Figure 3 - Graphical Results - AC Power Port Neutral Line

Frequency (MHz)	QP Level (dBµV)	QP Limit (dBµV)	QP Margin (dB)	CISPR Average Level (dBµV)	CISPR Average Limit (dBµV)	CISPR Average Margin (dB)
0.532	43.5	56.0	-12.5	31.6	46.0	-14.4
0.956	41.0	56.0	-15.0	30.7	46.0	-15.3
1.984	42.3	56.0	-13.7	33.5	46.0	-12.5
3.154	39.0	56.0	-17.0	31.7	46.0	-14.3
4.023	38.9	56.0	-17.1	31.0	46.0	-15.0
7.719	39.8	60.0	-20.2	31.8	50.0	-18.2

Table 10

Figure 4 - Test Setup

2.1.10 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 5.

Instrument	Manufacturer	Туре No.	TE No.	Calibration Period (months)	Calibration Due
Screened Room (5)	Rainford	Rainford	1545	36	23-Jan-2021
Compliance 5 Emissions	Teseq	V5.26.51	3275	-	N/A - Software
EMI Test Receiver	Rohde & Schwarz	ESU40	3506	12	3-Jan-2021
Transient Limiter	Hewlett Packard	11947A	2378	12	4-Oct-2020
8m N Type Cable	Junkosha	MWX221- 08000NMSNMS/B	5519	12	24-Mar-2021
Cable (18 GHz)	Rosenberger	LU7-036-2000	5039	12	6-Oct-2020
LISN	Rohde & Schwarz	ESH3-Z5	1390	12	27-Jan-2021

Table 11

2.2 Radiated Disturbance

2.2.1 Specification Reference

FCC 47 CFR Part 15B, Clause 15.109 ICES-003, Clause 6.2

2.2.2 Equipment Under Test and Modification State

IsatPhone 2 (Model 2.1), S/N: IMEI: 3540061100000259 - Modification State 0

2.2.3 Date of Test

08-July-2020

2.2.4 Test Method

The EUT was set up on a non-conductive table 0.8 m above a reference ground plane within a semi-anechoic chamber on a remotely controlled turntable.

A pre-scan of the EUT emissions profile using a peak detector was made at a 3 m antenna distance whilst varying the antenna-to-EUT azimuth and polarisation.

For an EUT which could reasonable be used in multiple planes, pre-scans were performed with the EUT orientated in X, Y and Z planes with reference to the ground plane.

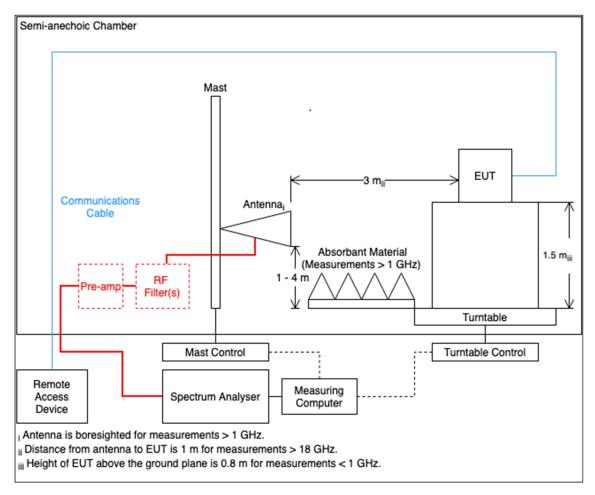
Using a list of the highest emissions detected during the pre-scan along with their bearing and associated antenna polarisation, the EUT was then formally measured using a Quasi-Peak, Peak or CISPR Average detector as appropriate.

The readings were maximised by adjusting the antenna height, polarisation and turntable azimuth, in accordance with the specification.

2.2.5 Example Calculation

Below 1 GHz:

Quasi-Peak level (dB μ V/m) = Receiver level (dB μ V) + Correction Factor (dB/m) Margin (dB) = Quasi-Peak level (dB μ V/m) - Limit (dB μ V/m)


Above 1 GHz:

CISPR Average level ($dB\mu V/m$) = Receiver level ($dB\mu V$) + Correction Factor (dB/m) Margin (dB) = CISPR Average level ($dB\mu V/m$) - Limit ($dB\mu V/m$)

Peak level (dB μ V/m) = Receiver level (dB μ V) + Correction Factor (dB/m) Margin (dB) = Peak level (dB μ V/m) - Limit (dB μ V/m)

2.2.6 Example Test Setup Diagram

2.2.7 Environmental Conditions

Ambient Temperature20.1 °CRelative Humidity75.9 %

2.2.8 Specification Limits

Frequency Range (MHz)	Test Limit (µV/m)	Test Limit (dBµV/m)
30 to 88	100	40.0
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

Note 3. The Peak test limit above 1 GHz is 20 dB higher than the CISPR Average test limit.

2.2.9 Test Results

Results for Configuration and Mode: AC charger connected - Idle.

This test was performed to the requirements of the Class B limits.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

Highest frequency generated or used within the EUT:3350 MHzWhich necessitates an upper frequency test limit of:18 GHz

The EUT is handheld, body-worn, or ceiling-mounted equipment and has therefore been tested in three different orientations in accordance with ANSI C63.4, Clause 6.3.2.1.

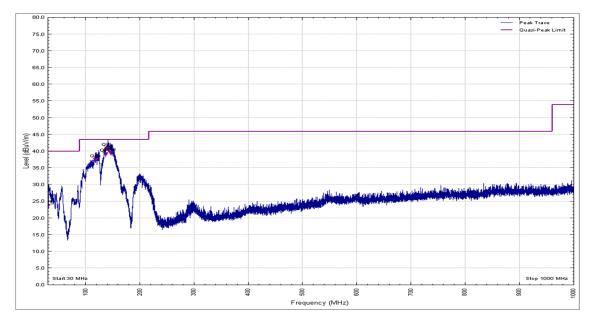


Figure 6 - 30 MHz to 1 GHz, Quasi-Peak, Vertical - X Orientation

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
31.063	22.7	40.0	-17.3	Q-Peak	267	399	Vertical	Х
118.819	36.5	43.5	-7.0	Q-Peak	326	100	Vertical	х
137.598	38.2	43.5	-5.3	Q-Peak	196	100	Vertical	Х
140.583	39.9	43.5	-3.6	Q-Peak	218	102	Vertical	х
146.886	38.6	43.5	-5.0	Q-Peak	227	101	Vertical	Х

Table 13

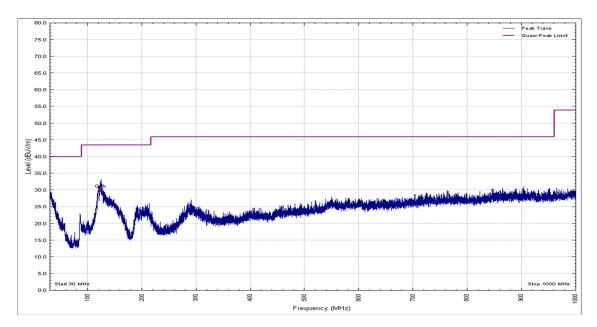


Figure 7 - 30 MHz to 1 GHz, Quasi-Peak, Horizontal - X Orientation

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
124.653	29.1	43.5	-14.4	Q-Peak	293	250	Horizontal	Х

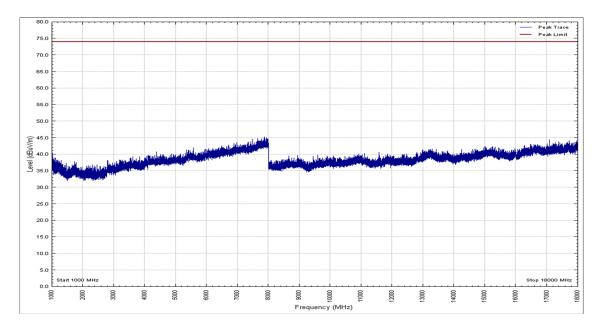


Figure 8 - 1 GHz to 18 GHz, Peak, Vertical - X Orientation

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

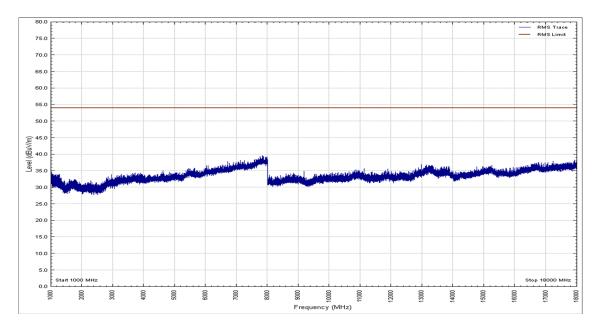


Figure 9 - 1 GHz to 18 GHz, CISPR Average, Vertical - X Orientation

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

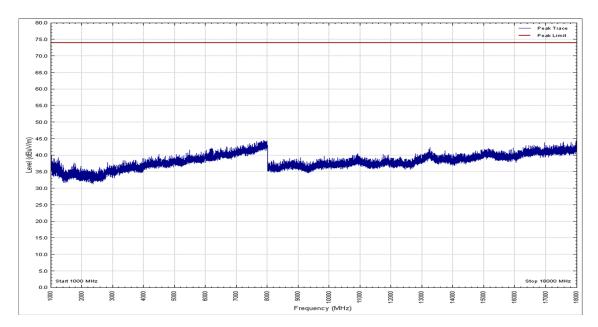


Figure 10 - 1 GHz to 18 GHz, Peak, Horizontal - X Orientation

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

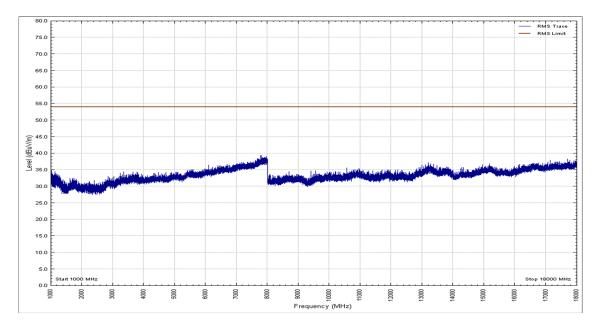


Figure 11 - 1 GHz to 18 GHz, CISPR Average, Horizontal - X Orientation

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

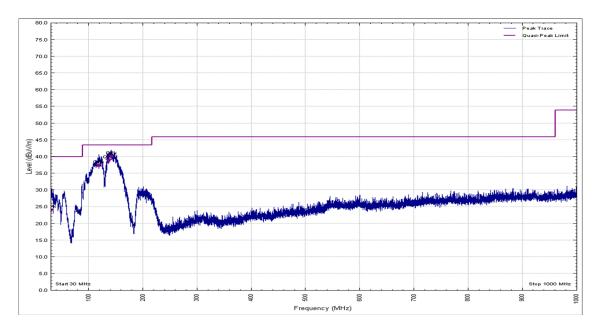


Figure 12 - 30 MHz to 1 GHz, Quasi-Peak, Vertical - Y Orientation

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
30.184	23.0	40.0	-17.0	Q-Peak	284	192	Vertical	Y
118.745	36.4	43.5	-7.1	Q-Peak	360	100	Vertical	Υ
136.719	37.9	43.5	-5.6	Q-Peak	185	100	Vertical	Y
142.317	39.1	43.5	-4.4	Q-Peak	229	101	Vertical	Y

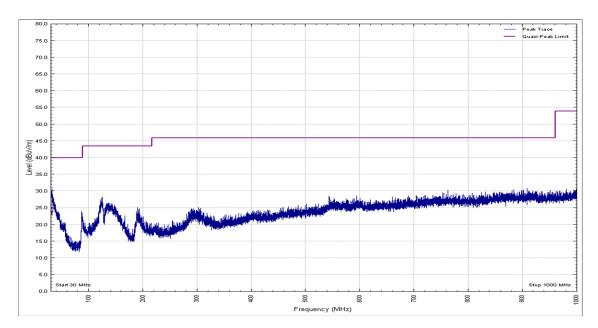


Figure 13 - 30 MHz to 1 GHz, Quasi-Peak, Horizontal - Y Orientation

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
30.634	22.7	40.0	-17.3	Q-Peak	324	162	Horizontal	Y

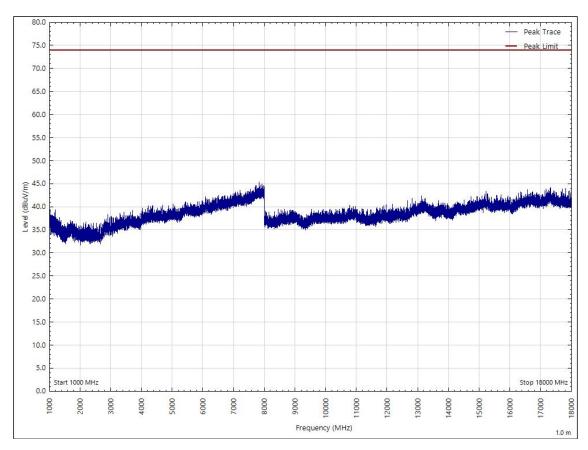


Figure 14 - 1 GHz to 18 GHz, Peak, Vertical - Y Orientation

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

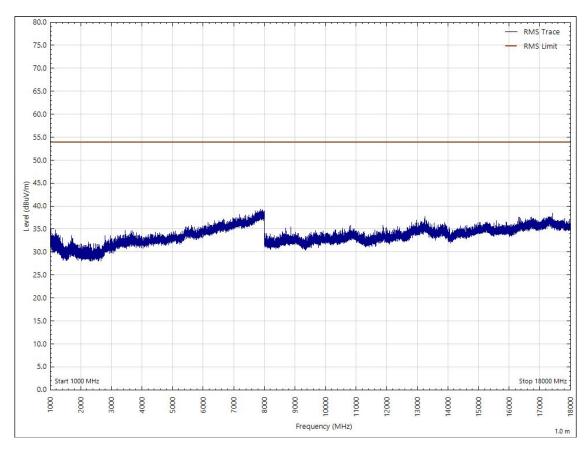


Figure 15 - 1 GHz to 18 GHz, CISPR Average, Vertical - Y Orientation

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

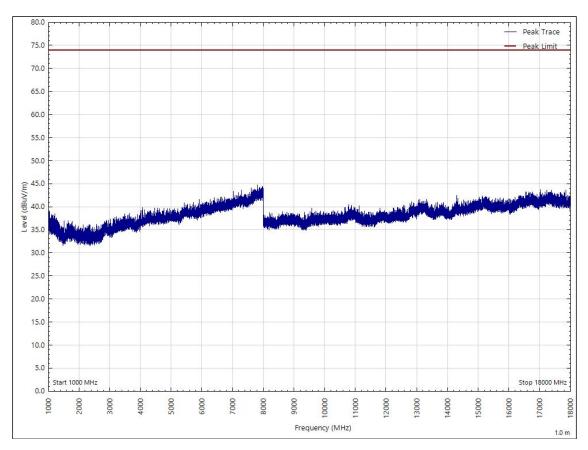


Figure 16 - 1 GHz to 18 GHz, Peak, Horizontal - Y Orientation

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

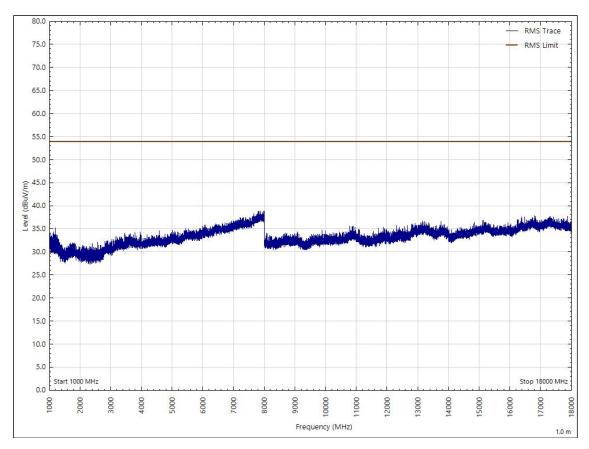


Figure 17 - 1 GHz to 18 GHz, CISPR Average, Horizontal - Y Orientation

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

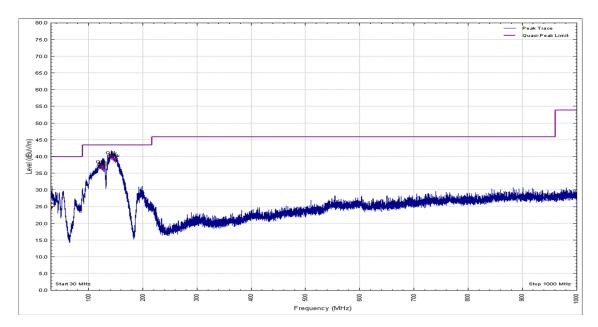


Figure 18 - 30 MHz to 1 GHz, Quasi-Peak, Vertical - Z Orientation

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
30.350	23.7	40.0	-16.3	Q-Peak	275	227	Vertical	Z
124.851	36.3	43.5	-7.2	Q-Peak	259	101	Vertical	Z
126.981	35.5	43.5	-8.0	Q-Peak	252	100	Vertical	Z
142.143	39.0	43.5	-4.5	Q-Peak	216	100	Vertical	Z
147.262	38.1	43.5	-5.4	Q-Peak	224	100	Vertical	Z

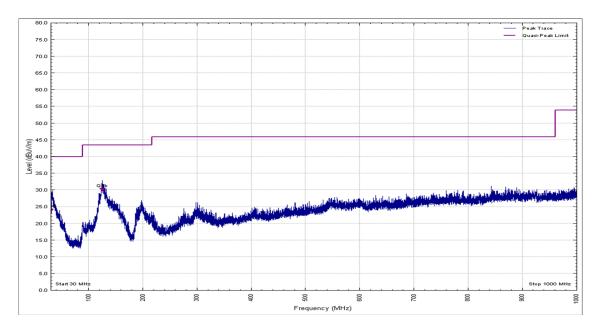


Figure 19 - 30 MHz to 1 GHz, Quasi-Peak, Horizontal - Z Orientation

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
30.084	23.1	40.0	-16.9	Q-Peak	236	357	Horizontal	Z

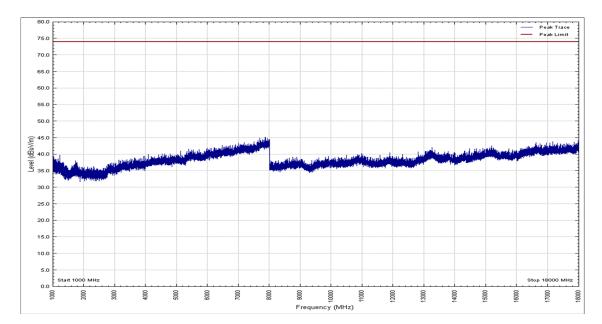


Figure 20 - 1 GHz to 18 GHz, Peak, Vertical - Z Orientation

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

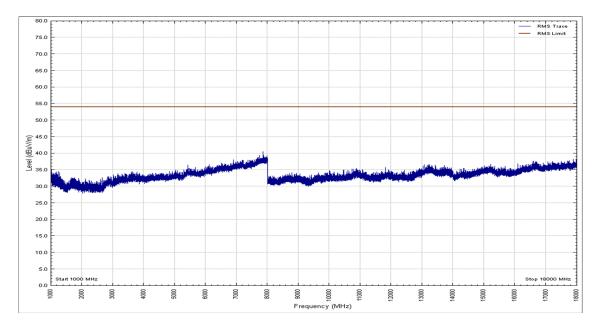


Figure 21 - 1 GHz to 18 GHz, CISPR Average, Vertical - Z Orientation

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								

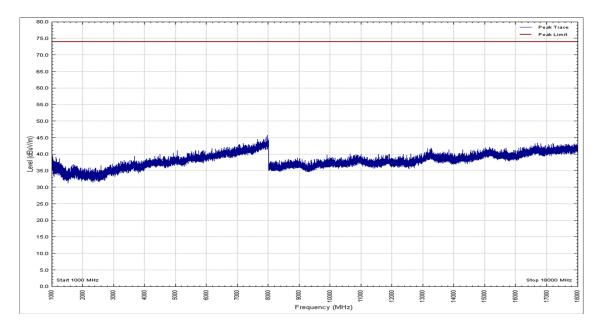


Figure 22 - 1 GHz to 18 GHz, Peak, Horizontal - Z Orientation

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation	Orientation
*								