### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | ACT System configuration, as its as not | given on page 1. | | |-----------------------------------------|---------------------------|-------------| | DASY Version | DASY5 | V5.2 | | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V4.9 | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.2 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.4 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature during test | (21.5 ± 0.2) °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.39 mW / g | | SAR normalized | normalized to 1W | 9.56 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 9.63 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 1.56 mW / g | | SAR normalized | normalized to 1W | 6.24 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 6.27 mW /g ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.6 ± 6 % | 0.98 mho/m ± 6 % | | Body TSL temperature during test | (22.0 ± 0.2) °C | | | ### SAR result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|----------------------------| | SAR measured | 250 mW input power | 2.49 mW / g | | SAR normalized | normalized to 1W | 10.0 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 9.86 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|----------------------------| | SAR measured | 250 mW input power | 1.63 mW / g | | SAR normalized | normalized to 1W | 6.52 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 6.47 mW / g ± 16.5 % (k=2) | Certificate No: D835V2-4d092\_Jan10 Page 4 of 9 Report No. RZA2010-1332SAR-R1 Page 113 of 151 ### **Appendix** ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.2 Ω - 2.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.3 dB | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.6 Ω - 4.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.6 dB | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.392 ns | |------------------------------------|-----------| | ( Electrical Delay (one direction) | 1.002 1.0 | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### Additional EUT Data | Manufactured by | SPEAG | |-----------------|--------------------| | Manufactured on | September 15, 2009 | ### **DASY5 Validation Report for Head TSL** Date/Time: 11.01.2010 12:00:00 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d092 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL900 Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 41.2$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### DASY5 Configuration: - Probe: ES3DV3 SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 26.06.2009 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 07.03.2009 - Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 - Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57 ### Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.5 V/m; Power Drift = -0.00176 dB Peak SAR (extrapolated) = 3.58 W/kg SAR(1 g) = 2.39 mW/g; SAR(10 g) = 1.56 mW/g Maximum value of SAR (measured) = 2.77 mW/g 0 dB = 2.77 mW/g ### Impedance Measurement Plot for Head TSL ### DASY5 Validation Report for Body Date/Time: 14.01.2010 15:40:17 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d092 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL900 Medium parameters used: f = 835 MHz; $\sigma = 0.98$ mho/m; $\epsilon_r = 54.6$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### DASY5 Configuration: - Probe: ES3DV3 SN3205; ConvF(5.97, 5.97, 5.97); Calibrated: 26.06.2009 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 07.03.2009 - Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 - Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57 ## Pin250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.9 V/m; Power Drift = 0.013 dB Peak SAR (extrapolated) = 3.67 W/kg SAR(1 g) = 2.49 mW/g; SAR(10 g) = 1.63 mW/g Maximum value of SAR (measured) = 2.89 mW/g 0 dB = 2.89 mW/g ### Impedance Measurement Plot for Body TSL ## **ANNEX F: D1900V2 Dipole Calibration Certificate** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 Client Certificate No: D1900V2-5d018\_Jun10 | | | The 12 the second of secon | The state of s | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 45 H 4418 LBA 43.6 | ERTIFICATE | | | | Object | D1900V2 - SN: 5 | d018 | | | Calibration procedure(s) | QA CAL-05.v7<br>Calibration proce | dure for dipole validation kits | | | Calibration date: | June 15, 2010 | | | | The measurements and the unce | ertainties with confidence p | ional standards, which realize the physical un<br>robability are given on the following pages ar<br>ry facility: environment temperature (22 ± 3)°( | nd are part of the certificate. | | | | | | | | N | | | | Calibration Equipment used (M& | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Primary Standards Power meter EPM-442A | ID #<br>GB37480704 | 06-Oct-09 (No. 217-01086) | Oct-10 | | Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A | ID #<br>GB37480704<br>US37292783 | 06-Oct-09 (No. 217-01086)<br>06-Oct-09 (No. 217-01086) | Oct-10<br>Oct-10 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator | ID #<br>GB37480704<br>US37292783<br>SN: 5086 (20g) | 06-Oct-09 (No. 217-01086)<br>06-Oct-09 (No. 217-01086)<br>30-Mar-10 (No. 217-01158) | Oct-10<br>Oct-10<br>Mar-11 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination | ID #<br>GB37480704<br>US37292783<br>SN: 5086 (20g)<br>SN: 5047.2 / 06327 | 06-Oct-09 (No. 217-01086)<br>06-Oct-09 (No. 217-01086)<br>30-Mar-10 (No. 217-01158)<br>30-Mar-10 (No. 217-01162) | Oct-10<br>Oct-10<br>Mar-11<br>Mar-11 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 | ID #<br>GB37480704<br>US37292783<br>SN: 5086 (20g) | 06-Oct-09 (No. 217-01086)<br>06-Oct-09 (No. 217-01086)<br>30-Mar-10 (No. 217-01158) | Oct-10<br>Oct-10<br>Mar-11 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 | 06-Oct-09 (No. 217-01086)<br>06-Oct-09 (No. 217-01086)<br>30-Mar-10 (No. 217-01158)<br>30-Mar-10 (No. 217-01162)<br>30-Apr-10 (No. ES3-3205_Apr10) | Oct-10<br>Oct-10<br>Mar-11<br>Mar-11<br>Apr-11 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 | 06-Oct-09 (No. 217-01086)<br>06-Oct-09 (No. 217-01086)<br>30-Mar-10 (No. 217-01158)<br>30-Mar-10 (No. 217-01162)<br>30-Apr-10 (No. ES3-3205_Apr10)<br>10-Jun-10 (No. DAE4-601_Jun10) | Oct-10<br>Oct-10<br>Mar-11<br>Mar-11<br>Apr-11<br>Jun-11 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 | 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) | Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 | 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) | Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 | 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) | Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 | | | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 | 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) | Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name | 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 10-Jun-10 (No. DAE4-601_Jun10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) | Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Jun-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10 | Certificate No: D1900V2-5d018\_Jun10 Report No. RZA2010-1332SAR-R1 Page 119 of 151 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service** Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 ### **Additional Documentation:** d) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.2 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | 201 | | Frequency | 1900 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.6 ± 6 % | 1.44 mho/m ± 6 % | | Head TSL temperature during test | (22.5 ± 0.2) °C | **** | | ### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |-------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 10.0 mW / g | | SAR normalized | normalized to 1W | 40.0 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 39.2 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | 340(1-9) | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 5.22 mW / g | | SAR normalized | normalized to 1W | 20.9 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 20.7 mW /g ± 16.5 % (k=2) | Page 121 of 151 ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.4 ± 6 % | 1.54 mho/m ± 6 % | | Body TSL temperature during test | (21.7 ± 0.2) °C | | | ### SAR result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | 2541A2777A3A3177A3A41 | |-------------------------------------------------------|--------------------|----------------------------| | SAR measured | 250 mW input power | 10.3 mW / g | | SAR normalized | normalized to 1W | 41.2 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 40.9 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.52 mW / g | | SAR normalized | normalized to 1W | 22.1 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 22.0 mW / g ± 16.5 % (k=2) | Certificate No: D1900V2-5d018\_Jun10 Report No. RZA2010-1332SAR-R1 Page 122 of 151 ### **Appendix** ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.1 $\Omega$ + 2.6 j $\Omega$ | | |--------------------------------------|--------------------------------|--| | Return Loss | - 29.7 dB | | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | $47.4~\Omega + 3.2~j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 27.6 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.194 ns | |----------------------------------|----------| | Licential Belay (one alleation) | 1.104110 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|---------------|--| | Manufactured on | June 04, 2002 | | ### **DASY5 Validation Report for Head TSL** Date/Time: 15.06.2010 10:40:45 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d018 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL U11 BB Medium parameters used: f = 1900 MHz; $\sigma = 1.44 \text{ mho/m}$ ; $\varepsilon_r = 39.5$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### DASY5 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 10.06.2010 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163) Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685) ### Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.7 V/m; Power Drift = 0.022 dB Peak SAR (extrapolated) = 18.4 W/kg SAR(1 g) = 10 mW/g; SAR(10 g) = 5.22 mW/gMaximum value of SAR (measured) = 12.6 mW/g 0 dB = 12.6 mW/g ### Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body** Date/Time: 15.06.2010 14:14:27 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d018 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL U11 BB Medium parameters used: f = 1900 MHz; $\sigma = 1.54 \text{ mho/m}$ ; $\varepsilon_r = 53.5$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### DASY5 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 30.04.2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 10.06.2010 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163) Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685) ### Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.1 V/m; Power Drift = 0.055 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.52 mW/g Maximum value of SAR (measured) = 12.8 mW/g 0 dB = 12.8 mW/g ### Impedance Measurement Plot for Body TSL ## **ANNEX G: D2450V2 Dipole Calibration Certificate** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ATI (Auden) Certificate No: D2450V2-712 Feb10 Accreditation No.: SCS 108 | Object | D2450V2 - SN: 7 | 12 | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------| | Calibration procedure(s) | QA CAL-05.v7<br>Calibration proce | dure for dipole validation kits | | | Calibration date: | February 19, 201 | 0 | | | This calibration certificate docum | nents the traceability to nat | ional standards, which realize the physical ur | . , | | | ertainties with confidence p | robability are given on the following pages ar | id are part of the certificate. | | The measurements and the unco | | robability are given on the following pages ar<br>ry facility: environment temperature $(22 \pm 3)^\circ$ | | | The measurements and the unco | cted in the closed laborato | | | | The measurements and the unco<br>All calibrations have been condu<br>Calibration Equipment used (M& | cted in the closed laborato | | | | The measurements and the unco<br>All calibrations have been condu<br>Calibration Equipment used (M&<br>Primary Standards | cted in the closed laborato | ry facility: environment temperature $(22 \pm 3)^{\circ}$ | C and humidity < 70%. | | The measurements and the unco<br>All calibrations have been condu<br>Calibration Equipment used (M&<br>Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A | Intercept in the closed laborators. TE critical for calibration) | ry facility: environment temperature $(22 \pm 3)^\circ$<br>Cal Date (Certificate No.) | C and humidity < 70%. Scheduled Calibration | | The measurements and the unco- All calibrations have been condu- Calibration Equipment used (M&- Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator | TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) | ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) | C and humidity < 70%. Scheduled Calibration Oct-10 | | The measurements and the unco- All calibrations have been condu- Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 | ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) | Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 | | The measurements and the unco- All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 | ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) | Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 | | The measurements and the unco- All calibrations have been condu- Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 | ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) | Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 | | The measurements and the unco- All calibrations have been condu- Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # | ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) | Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 | | The measurements and the unco- All calibrations have been condu- Calibration Equipment used (M& Primary Standards Power Meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 601 ID # MY41092317 | Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) | Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 | | The measurements and the unco- All calibrations have been condu- Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 | Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) | Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check | | The measurements and the unco- All calibrations have been condu- Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 601 ID # MY41092317 | Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) | Scheduled Calibration Oct-10 Oct-10 Mar-10 Jun-10 Mar-10 Jun-10 Scheduled Check In house check: Oct-11 | | The measurements and the unco | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 | Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) | Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11 | | The measurements and the unco- All calibrations have been condu- Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 | Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) | Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-11 In house check: Oct-11 | Certificate No: D2450V2-712\_Feb10 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 ### **Additional Documentation:** d) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D2450V2-712 Feb10 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V5.2 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V4.9 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.5 ± 6 % | 1.76 mho/m ± 6 % | | Head TSL temperature during test | (21.0 ± 0.2) °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.3 mW / g | | SAR normalized | normalized to 1W | 53.2 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 53.5 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 6.24 mW / g | | SAR normalized | normalized to 1W | 25.0 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 25.0 mW /g ± 16.5 % (k=2) | Report No. RZA2010-1332SAR-R1 Page 130 of 151 ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.7 ± 6 % | 2.00 mho/m ± 6 % | | Body TSL temperature during test | (21.2 ± 0.2) °C | | | ### SAR result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|----------------------------| | SAR measured | 250 mW input power | 13.0 mW / g | | SAR normalized | normalized to 1W | 52.0 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 51.1 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|----------------------------| | SAR measured | 250 mW input power | 5.97 mW / g | | SAR normalized | normalized to 1W | 23.9 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 23.7 mW / g ± 16.5 % (k=2) | Certificate No: D2450V2-712\_Feb10