

FCC TEST REPORT (PART 24)

REPORT NO.: RF131203C01-1

MODEL NO.: Lenovo A526
 FCC ID: YCNA526
 RECEIVED: Dec. 03, 2013
 TESTED: Dec. 06, 2013 ~ Dec. 11, 2013
 ISSUED: Dec. 23, 2013

- **APPLICANT:** Lenovo Mobile Communication Technology Ltd.
 - ADDRESS: No.999, Qishan North 2nd Road, Information & Optoelectronics Park, Torch Hi-tech Industry Development Zone, Xiamen, P.R.China
- **ISSUED BY:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
- LAB ADDRESS: No. 47, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan (R.O.C.)
- **TEST LOCATION:** No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification

TABLE OF CONTENTS

RE	ELEASE CONTROL RECORD	3
	CERTIFICATION	
2	SUMMARY OF TEST RESULTS	5
	2.1 MEASUREMENT UNCERTAINTY	5
	2.2 TEST SITE AND INSTRUMENTS	6
3	GENERAL INFORMATION	. 7
-	3.1 GENERAL DESCRIPTION OF EUT	7
	3.2 CONFIGURATION OF SYSTEM UNDER TEST.	9
	3.3 DESCRIPTION OF SUPPORT UNITS	o
	3.4 TEST ITEM AND TEST CONFIGURATION	
	3.5 EUT OPERATING CONDITIONS	
	3.6 GENERAL DESCRIPTION OF APPLIED STANDARDS	11
4	TEST TYPES AND RESULTS	10
4	4.1 OUTPUT POWER MEASUREMENT	12
	4.1 LIMITS OF OUTPUT POWER MEASUREMENT	12
	4.1.2 TEST PROCEDURES	
	4.1.3 TEST SETUP	
	4.1.4 TEST RESULTS	
	4.2 FREQUENCY STABILITY MEASUREMENT	
	4.2.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT	
	4.2.2 TEST PROCEDURE	
	4.2.3 TEST SETUP	
	4.2.4 TEST RESULTS	18
	4.3 OCCUPIED BANDWIDTH MEASUREMENT	19
	4.3.1 TEST PROCEDURES	19
	4.3.2 TEST SETUP	19
	4.3.3 TEST RESULTS	
	4.4 PEAK TO AVERAGE RATIO	
	4.4.1 LIMITS OF PEAK TO AVERAGE RATIO MEASUREMENT	
	4.4.2 TEST SETUP	
	4.4.3 TEST PROCEDURES	
	4.4.4 TEST RESULTS	
	4.5 BAND EDGE MEASUREMENT	
	4.5 BAND EDGE MEASUREMENT	20
	4.5.1 LIMITS OF BAND EDGE MEASOREMENT	23
	4.5.3 TEST PROCEDURES	
	4.5.4 TEST RESULTS	
	4.6 CONDUCTED SPURIOUS EMISSIONS	
	4.6.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT	
	4.6.2 TEST PROCEDURE	
	4.6.3 TEST SETUP	-
	4.6.4 TEST RESULTS	
	4.7 RADIATED EMISSION MEASUREMENT	
	4.7.1 LIMITS OF RADIATED EMISSION MEASUREMENT	
	4.7.2 TEST PROCEDURES	
	4.7.3 DEVIATION FROM TEST STANDARD	27
	4.7.4 TEST SETUP	28
	4.7.5 TEST RESULTS	29
5	PHOTOGRAPHS OF THE TEST CONFIGURATION	37
	INFORMATION ON THE TESTING LABORATORIES	
	APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT E	
	THE LAB	
		-

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF131203C01-1	Original release	Dec. 23, 2013

1 CERTIFICATION

PRODUCT: Lenovo Mobile Phone
MODEL: Lenovo A526
BRAND: lenovo
APPLICANT: Lenovo Mobile Communication Technology Ltd.
TESTED: Dec. 06, 2013 ~ Dec. 11, 2013
TEST SAMPLE: Identical Prototype
STANDARDS: FCC Part 24, Subpart E

The above equipment (model: Lenovo A526) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch,** and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY	Gina Lin	_ , DATE : _	Dec. 23, 2013
	Gina Liu / Specialist		Dec. 22, 2012
APPROVED BY	Sam Chen / Assistant Manager	_ , DATE : _	Dec. 23, 2013

2 SUMMARY OF TEST RESULTS

	APPLIED STANDARD: FCC Part 24 & Part 2				
STANDARD TEST TYPE		RESULT	REMARK		
2.1046 24.232	Equivalent isotropically radiated power	PASS	Meet the requirement of limit.		
2.1055 24.235	Frequency Stability	PASS	Meet the requirement of limit.		
2.1049 24.238(b)	Occupied Bandwidth	PASS	Meet the requirement of limit.		
24.232(d)	Peak to average ratio	PASS	Meet the requirement of limit.		
24.238(b)	Band Edge Measurements	PASS	Meet the requirement of limit.		
2.1051 24.238	Conducted Spurious Emissions PASS		Meet the requirement of limit.		
2.1053 24.238	Radiated Spurious Emissions		Meet the requirement of limit. Minimum passing margin is -18.49dB at 5640MHz.		

The EUT has been tested according to the following specifications:

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	150kHz~30MHz	2.44 dB
	30MHz ~ 200MHz	2.93 dB
Radiated emissions	200MHz ~1000MHz	2.95 dB
Raulaleu emissions	1GHz ~ 18GHz	2.26 dB
	18GHz ~ 40GHz	1.94 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.2 TEST SITE AND INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESCI	100744	Apr. 15, 2013	Apr. 14, 2014
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Dec. 17, 2012	Dec. 16, 2013
BILOG Antenna SCHWARZBECK	VULB9168	9168-472	Mar. 25, 2013	Mar. 24, 2014
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-969	Jan. 07, 2013	Jan. 06, 2014
HORN Antenna SCHWARZBECK	BBHA 9170	9170-480	Dec. 25, 2012	Dec. 24, 2013
Loop Antenna	HFH2-Z2	100070	Jan. 31, 2012	Jan. 30, 2014
Preamplifier EMCI	EMC 012645	980115	Dec. 28, 2012	Dec. 27, 2013
Preamplifier EMCI	EMC 184045	980116	Dec. 28, 2012	Dec. 27, 2013
Preamplifier EMCI	EMC 330H	980112	Dec. 28, 2012	Dec. 27, 2013
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	309219/4	Oct. 18, 2013	Oct. 17, 2014
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	250130/4	Oct. 18, 2013	Oct. 17, 2014
RF signal cable Worken	RG-213	NA	Dec. 29, 2012	Dec. 28, 2013
Software BV ADT	E3 6.120103	NA	NA	NA
Antenna Tower MF	MFA-440H	NA	NA	NA
Turn Table MF	MFT-201SS	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA
Mini-Circuits Power Splitter	ZN2PD-9G	NA	Jul. 18, 2013	Jul. 17, 2014
JFW 20dB attenuation	50HF-020-SMA	NA	NA	NA
Communications Tester-Wireless	E5515C	MY52102544	Sep. 05, 2012	Sep. 04, 2014
Radio Communication Analyzer	MT8820C	6201300640	Aug. 01, 2013	Jul. 31, 2014

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 10.
- 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 690701.
- 5. The IC Site Registration No. is IC 7450F-10.

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

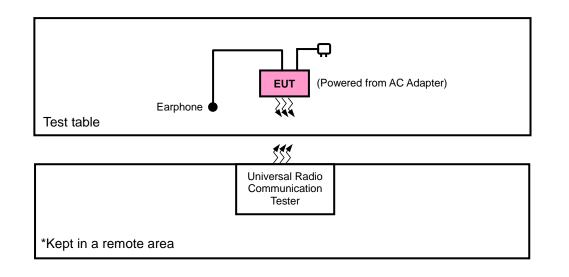
EUT	Lenovo Mobile Phone		
MODEL NO.	Lenovo A526		
MID	52600031		
POWER SUPPLY	5.0Vdc (adapter or host equipment) 4.2Vdc (battery)		
	GSM/GPRS	GMSK	
MODULATION TYPE	EDGE	GMSK, 8PSK	
	WCDMA	BPSK	
FREQUENCY RANGE	GSM/GPRS/EDGE	1850.2MHz ~ 1909.8MHz	
FREQUENCI RANGE	WCDMA	1852.4MHz ~ 1907.6MHz	
	GSM	817.15mW	
MAX. EIRP POWER	EDGE	335.89mW	
	WCDMA	214.88mW	
	GSM	248KGXW	
EMISSION DESIGNATOR	EDGE	246KG7W	
	WCDMA	4M17F9W	
ANTENNA TYPE	Fixed Internal Antenna		
I/O PORTS	Refer to users' manual		
DATA CABLE	Refer to NOTE as below		
ACCESSORY DEVICES	Refer to NOTE as below		

NOTE:

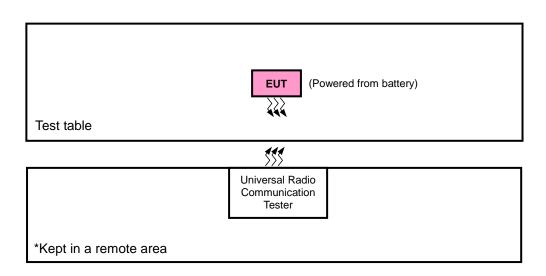
1. The EUT contains following accessory devices.

ITEM	BRAND	MODEL	SPECIFICATION
Adapter	lenovo	C-P56	I/P: 100-240Vac, 50/60Hz, 150mA O/P: 5.0Vdc, 1000mA
Battery	lenovo	BL192	4.2Vdc, 2000mAh
Earphone	lenovo	TS300-01MS21-8S	1.6m cable
USB Cable	lenovo	L4QU2005-CS-R	1m cable
LCD Module Main	Bitland	BT045TN01V.10	
LCD Module 2nd	DIJING	90-24525-4405A	
CAMERA Module Main	QTECH	F0543AS	
CAMERA Module 2nd	AVC	HAM-008902-L1A	
Touch Panel Main	LAIBA	CTPM-TPLT04572F	
Touch Panel 2nd	O-FILM	MCG-045-5351	
IC MCP Main	SAMSUNG	KMK5W000VM-B312	
IC MCP 2nd	HYNIX	H9TP32A8JDBCPR-KGM	
Adapter	lenovo	C-P56	I/P: 100-240Vac, 50/60Hz, 150mA O/P: 5.0Vdc, 1000mA

2. The detail information of model names is as below.


SAMPLE	DESCRIPTION	
А	LCD Module Main + CAMERA Module Main + Touch panel Main + IC MCP Main	
B LCD Module 2 nd + CAMERA Module 2 nd + Touch panel 2 nd + IC MCP 2 nd		

3. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.



3.2 CONFIGURATION OF SYSTEM UNDER TEST

FOR RADIATION EMISSION TEST

FOR E.I.R.P. TEST

3.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units.

3.4 TEST ITEM AND TEST CONFIGURATION

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports. The worst case was found when positioned on X-plane for EIRP and Z-axis for radiated emission. Following channel(s) was (were) selected for the final test as listed below:

EUT CONFIGURE MODE	TEST ITEM	AVAILABLE CHANNEL	TESTED CHANNEL	MODE
А, В	EIRP	512 to 810	512, 661, 810	GSM, EDGE
А	FREQUENCY STABILITY	512 to 810	661	GSM, EDGE
А	OCCUPIED BANDWIDTH	512 to 810	512, 661, 810	GSM, EDGE
А	PEAK TO AVERAGE RATIO	512 to 810	512, 661, 810	GSM, EDGE
А	BAND EDGE	512 to 810	512, 810	GSM, EDGE
А	CONDCUDETED EMISSION	512 to 810	661	GSM, EDGE
А, В	RADIATED EMISSION	512 to 810	661	GSM, EDGE

GSM MODE

WCDMA MODE

EUT CONFIGURE MODE	TEST ITEM	AVAILABLE CHANNEL	TESTED CHANNEL	MODE
А, В	EIRP	9262 to 9538	9262, 9400, 9538	WCDMA
А	FREQUENCY STABILITY	9262 to 9538	9400	WCDMA
А	OCCUPIED BANDWIDTH	9262 to 9538	9262, 9400, 9538	WCDMA
А	PEAK TO AVERAGE RATIO	9262 to 9538	9262, 9400, 9538	WCDMA
А	BAND EDGE	9262 to 9538	9262, 9538	WCDMA
А	CONDCUDETED EMISSION	9262 to 9538	9400	WCDMA
А, В	RADIATED EMISSION	9262 to 9538	9400	WCDMA

TEST CONDITION:

TEST ITEM	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
EIRP	26deg. C, 58%RH	3.8Vdc	Howard Kao
FREQUENCY STABILITY	26deg. C, 58%RH	3.8Vdc	Howard Kao
OCCUPIED BANDWIDTH	26deg. C, 58%RH	3.8Vdc	Howard Kao
BAND EDGE	26deg. C, 58%RH	3.8Vdc	Howard Kao
CONDCUDETED EMISSION	26deg. C, 58%RH	3.8Vdc	Howard Kao
RADIATED EMISSION	25deg. C, 65%RH	120Vac, 60Hz	Kay Wu

3.5 EUT OPERATING CONDITIONS

The EUT makes a call to the communication simulator. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency

3.6 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2 FCC 47 CFR Part 24 ANSI/TIA/EIA-603-C 2004

NOTE: All test items have been performed and recorded as per the above standards.

4 TEST TYPES AND RESULTS

4.1 OUTPUT POWER MEASUREMENT

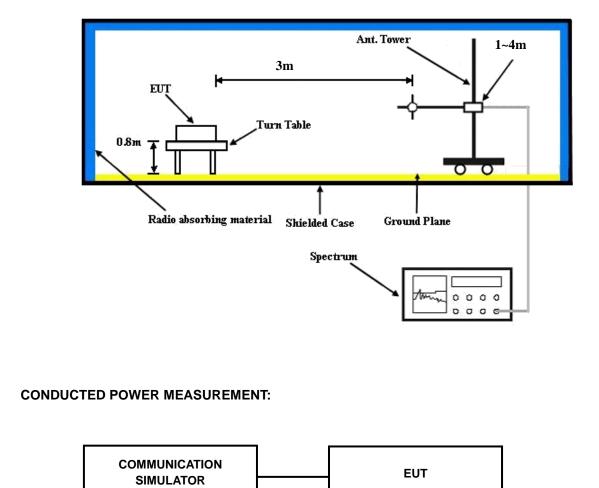
4.1.1 LIMITS OF OUTPUT POWER MEASUREMENT

Mobile and portable stations are limited to 2 watts EIRP

4.1.2 TEST PROCEDURES

EIRP MEASUREMENT:

- a. All measurements were done at low, middle and high operational frequency range. RBW and VBW is 1MHz for GSM, GPRS & EDGE, 5MHz for CDMA & WCDMA, and 10MHz for LTE mode.
- b. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- c. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step b. Record the power level of S.G
- d. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.


CONDUCTED POWER MEASUREMENT:

The EUT was set up for the maximum power with GSM, GPRS, EDGE & WCDMA link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

4.1.3 TEST SETUP

EIRP / ERP MEASUREMENT:

4.1.4 TEST RESULTS

CONDUCTED OUTPUT POWER (dBm)

Band	GSM1900					
Channel	512	661	810			
Frequency (MHz)	1850.2	1880.0	1909.8			
GSM (1 Uplink)	29.61	29.56	29.80			
GPRS 8 (GMSK, 1 slot)	29.57	29.52	29.76			
GPRS 10 (GMSK, 2 slot)	28.79	28.74	28.98			
GPRS 11 (GMSK, 3 slot)	26.82	26.77	27.01			
GPRS 12 (GMSK, 4 slot)	25.69	25.64	25.88			
EDGE 8 (8PSK, 1 Uplink)	25.58	25.53	25.77			
EDGE 10 (8PSK, 2 Uplink)	24.55	24.50	24.74			
EDGE 11 (8PSK, 3 Uplink)	22.53	22.48	22.72			
EDGE 12 (8PSK, 4 Uplink)	21.42	21.37	21.61			

Band		WCDMA II	
Channel	9262	9400	9538
Frequency (MHz)	1852.4	1880.0	1907.6
RMC 12.2K	23.20	22.40	22.32
HSDPA Subtest-1	21.36	20.56	20.48
HSDPA Subtest-2	21.35	20.55	20.47
HSDPA Subtest-3	21.34	20.54	20.46
HSDPA Subtest-4	21.33	20.53	20.45
HSUPA Subtest-1	21.43	20.63	20.55
HSUPA Subtest-2	19.66	18.86	18.78
HSUPA Subtest-3	20.11	19.31	19.23
HSUPA Subtest-4	19.65	18.85	18.77
HSUPA Subtest-5	21.46	20.66	20.58

EIRP POWER (dBm)

SAMPLE A

GSM

Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor(dB)	EIRP(dBm)	EIRP(mW)	Polarization (H/V)
	512	1850.2	-16.84	44.70	27.86	610.94	Н
	661	1880.0	-16.56	44.70	28.14	651.63	Н
V	810	1909.8	-16.38	44.57	28.19	659.63	Н
Х	512	1850.2	-19.95	44.27	24.32	270.40	V
	661	1880.0	-19.24	44.87	25.63	365.59	V
	810	1909.8	-19.02	44.61	25.59	362.49	V

EDGE

Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor(dB)	EIRP(dBm)	EIRP(mW)	Polarization (H/V)
	512	1850.2	-20.92	44.70	23.78	238.78	Н
	661	1880.0	-20.16	44.70	24.54	284.45	Н
v	810	1909.8	-20.23	44.57	24.34	271.83	Н
Х	512	1850.2	-22.36	44.27	21.91	155.24	V
	661	1880.0	-22.74	44.87	22.13	163.31	V
	810	1909.8	-22.56	44.61	22.05	160.44	V

WCDMA

Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor(dB)	EIRP(dBm)	EIRP(mW)	Polarization (H/V)
	9262	1852.4	-22.58	44.70	22.12	162.93	Н
	9400	1880.0	-22.86	44.70	21.84	152.76	Н
x	9538	1907.6	-22.76	44.57	21.81	151.81	Н
	9262	1852.4	-26.44	44.27	17.83	60.67	V
	9400	1880.0	-26.46	44.87	18.41	69.34	V
	9538	1907.6	-26.04	44.61	18.57	71.99	V

SAMPLE B

GSM

Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor(dB)	EIRP(dBm)	EIRP(mW)	Polarization (H/V)
	512	1850.2	-15.59	44.70	29.11	814.70	Н
	661	1880.0	-15.70	44.70	29.00	794.33	Н
x	810	1909.8	-15.45	44.57	29.12	817.15	Н
^	512	1850.2	-19.52	44.27	24.75	298.54	V
	661	1880.0	-20.33	44.87	24.54	284.45	V
	810	1909.8	-19.83	44.61	24.78	300.82	V

EDGE

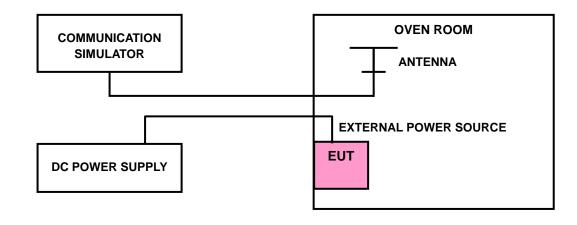
Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor(dB)	EIRP(dBm)	EIRP(mW)	Polarization (H/V)
	512	1850.2	-11.31	36.57	25.26	335.89	Н
	661	1880.0	-12.19	37.22	25.03	318.71	Н
x	810	1909.8	-12.08	37.18	25.10	323.74	Н
^	512	1850.2	-18.23	37.65	19.42	87.52	V
	661	1880.0	-17.00	37.58	20.58	114.37	V
	810	1909.8	-17.55	37.48	19.93	98.40	V

WCDMA

Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor(dB)	EIRP(dBm)	EIRP(mW)	Polarization (H/V)
	9262	1852.4	-13.25	36.57	23.32	214.88	Н
	9400	1880.0	-13.99	37.22	23.23	210.57	Н
V	9538	1907.6	-13.99	37.18	23.19	208.55	Н
Х	9262	1852.4	-19.22	37.65	18.43	69.68	V
	9400	1880.0	-18.99	37.58	18.59	72.33	V
	9538	1907.6	-19.03	37.48	18.45	69.98	V

4.2 FREQUENCY STABILITY MEASUREMENT

4.2.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT


The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

4.2.2 TEST PROCEDURE

- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the $\pm 0.5^{\circ}$ C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

NOTE: The frequency error was recorded frequency error from the communication simulator.

4.2.3 TEST SETUP

4.2.4 TEST RESULTS

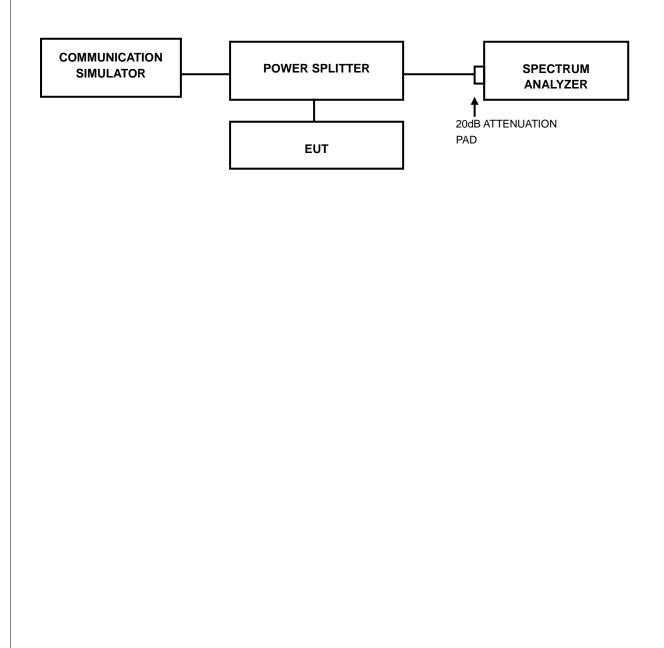
FREQUENCY ERROR vs. VOLTAGE

	FRE			
VOLTAGE (Volts)	GSM	EDGE	WCDMA	LIMIT (ppm)
3.8	0.02	0.02	0.004	2.5
3.6	0.02	0.02	0.004	2.5
4.2	0.02	0.03	0.003	2.5

NOTE: The applicant defined the normal working voltage of the battery is from 3.6Vdc to 4.2Vdc.

	FRE	pm)		
ТЕМР. (℃)	GSM	EDGE	WCDMA	LIMIT (ppm)
-30	0.025	0.026	0.004	2.5
-20	0.026	0.026	0.005	2.5
-10	0.025	0.026	0.004	2.5
0	0.020	0.026	0.004	2.5
10	0.024	0.020	0.004	2.5
20	0.027	0.020	0.004	2.5
30	0.022	0.027	0.003	2.5
40	0.024	0.021	0.004	2.5
50	0.023	0.021	0.005	2.5

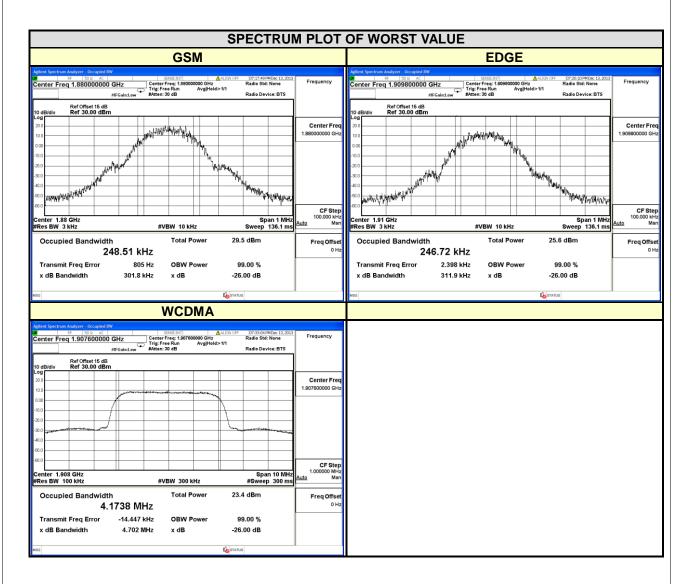
FREQUENCY ERROR vs. TEMPERATURE



4.3 OCCUPIED BANDWIDTH MEASUREMENT

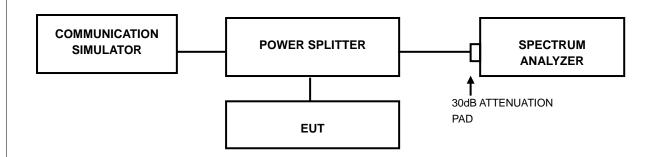
4.3.1 TEST PROCEDURES

The EUT makes a call to the communication simulator. All measurements were done at low, middle and high operational frequency range. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.


4.3.2 TEST SETUP

4.3.3 TEST RESULTS

CHANNEL	FREQUENCY	99% OCCUPIED BANDWIDTH (kHz)		CHANNEL	FREQUENCY	99% OCCUPIED BANDWIDTH (MHz)
		GSM	EDGE			WCDMA
512	1850.2	245.35	246.01	9262	1852.4	4.1702
661	1880.0	248.51	245.90	9400	1880.0	4.1679
810	1909.8	244.30	246.72	9538	1907.6	4.1738

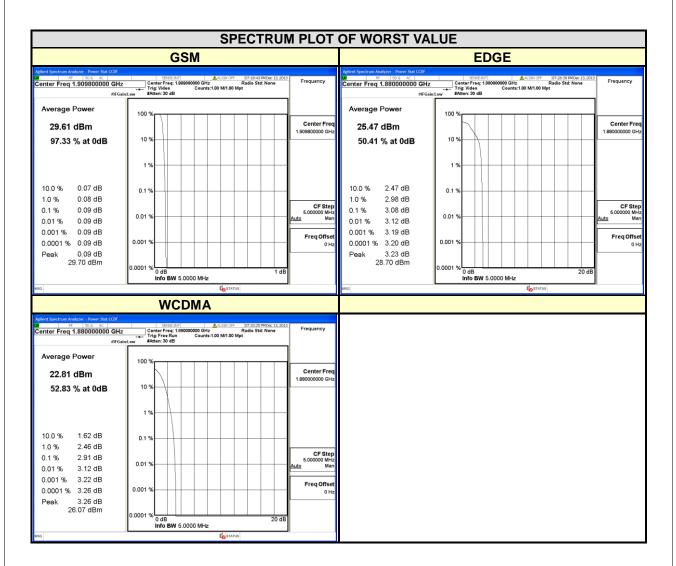


4.4 PEAK TO AVERAGE RATIO

4.4.1 LIMITS OF PEAK TO AVERAGE RATIO MEASUREMENT

In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB

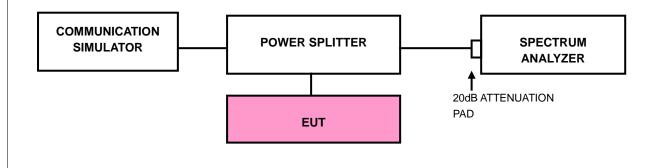
4.4.2 TEST SETUP


4.4.3 TEST PROCEDURES

- 1. Set resolution/measurement bandwidth \geq signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Record the maximum PAPR level associated with a probability of 0.1%.

4.4.4 TEST RESULTS

CHANNEL	FREQUENCY	PEAK TO RATIO	AVERAGE D (dB)	CHANNEL	FREQUENCY	PEAK TO AVERAGE RATIO (dB)
	(MHz)	GSM	EDGE		(MHz)	WCDMA
512	1850.2	0.08	3.06	9262	1852.4	2.83
661	1880.0	0.08	3.08	9400	1880.0	2.91
810	1909.8	0.09	3.05	9538	1907.6	2.81

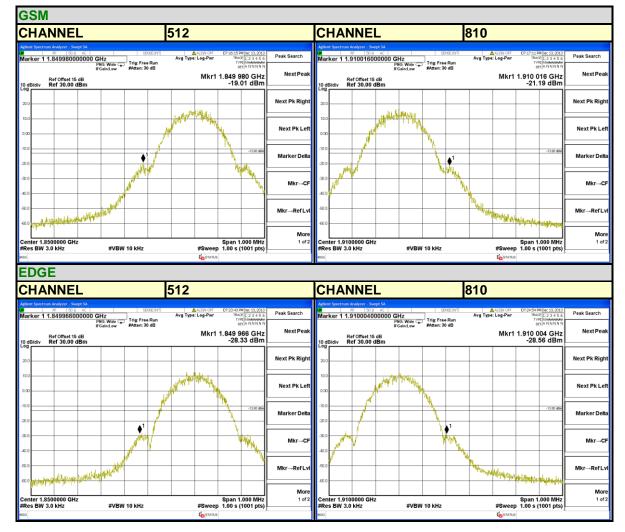


4.5 BAND EDGE MEASUREMENT

4.5.1 LIMITS OF BAND EDGE MEASUREMENT

Power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

4.5.2 TEST SETUP



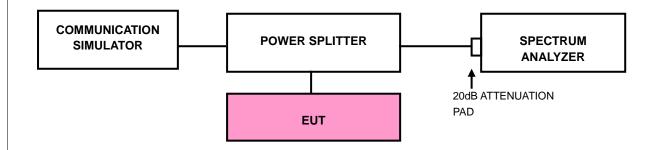
4.5.3 TEST PROCEDURES

- a. All measurements were done at low and high operational frequency range.
- b. The center frequency of spectrum is the band edge frequency and span is 1 MHz. RB of the spectrum is 3kHz and VB of the spectrum is 10kHz (GSM/GPRS/EDGE).
- c. The center frequency of spectrum is the band edge frequency and span is 5MHz. RB of the spectrum is 100kHz and VB of the spectrum is 300kHz (WCDMA/LTE).
- d. Record the max trace plot into the test report.

4.5.4 TEST RESULTS

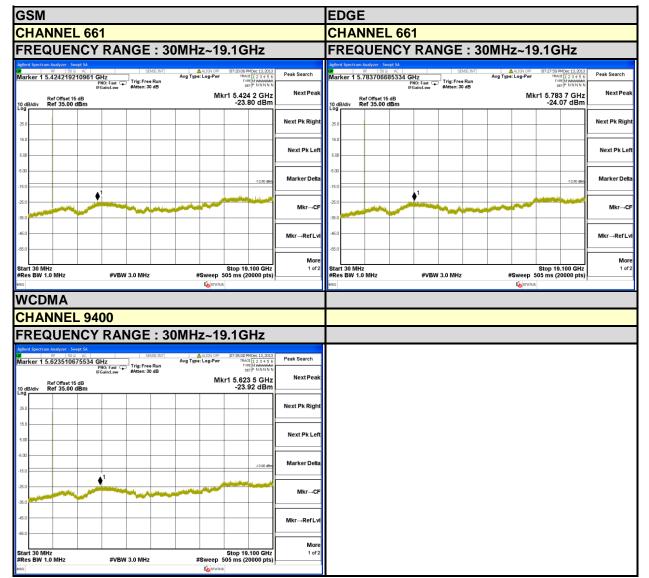
Ref Offset 15 dB INCL 1.690 000 CPI2 Ref Offset 15 dB INCL 1.910 000 CPI2 20 -21.64 dBm -21.64 dBm -22.03 dBm -22.03 dBm 20 -21.64 dBm -21.64 dBm -22.03 dBm -22.03 dBm 20 -21.64 dBm -21.64 dBm -22.03 dBm -22.03 dBm 20 -21.64 dBm -21.64 dBm -22.03 dBm -22.03 dBm 00 -21.64 dBm -21.64 dBm -22.03 dBm Next Pk Rg 00 -21.64 dBm -21.64 dBm -22.03 dBm Next Pk Rg 00 -21.64 dBm -21.64 dBm -22.03 dBm Next Pk Rg 00 -21.64 dBm -21.64 dBm -21.64 dBm -22.03 dBm 00 -21.64 dBm -21.64 dBm -21.64 dBm -22.03 dBm 00 -21.64 dBm -21.64 dBm -21.64 dBm -22.03 dBm 00 -21.64 dBm -21.64 dBm -21.64 dBm -21.64 dBm 00 -21.64 dBm -21.64 dBm -21.64 dBm -21.64 dBm 00 -21.64 dBm -2	WCDMA				
Image: 11.8500000000000000000000000000000000000	CHANNEL	9262	CHANNEL 9538		
Ref Offset 15 dB Mkr1 1.950 000 GHz Next Peak Mcf offset 15 dB Mkr1 1.910 000 GHz Next Peak 20	D RF 50 Q AC SENSE:INT	▲ALIGN CFF 07:32:09 PMDec 13, 2013 Avg Type: Log-Pwr 178-02 [1 2 3 4 5 6 Tref [Mwwwww	Ker 50 Ω AC SEP (2017) Arg Type: Log-Pwr TRACE[12 3 4 5 6 Trace Bun TraceBun Trace Bun TraceBun TraceBun	Peak Search	
200	Ref Offset 15 dB 10 dB/div Ref 30.00 dBm	Mkr1 1.850 000 GHz Next Peak	Ref Offiset 15.dB Mkr1 1.910 000 GHz 10 dB/div Ref 30.00 dBm -22.03 dBm	Next Peak	
100 100 <td></td> <td>Next Pk Right</td> <td></td> <td>Next Pk Right</td>		Next Pk Right		Next Pk Right	
300 1 31000000000000000000000000000000000000			and a second sec	Next Pk Left	
400 Mkr-dF 400		.12.00 dtm Marker Delta		Marker Delta	
400 Mkr-nerfvi 400 Mkr	and the second s	MkrCF		Mkr→CF	
		Mkr→RefLvl	40.0	Mkr→RefLvl	
	Center 1.850000 GHz	Span 5.000 MHz 1 of 2 #Sweep 1.00 s (1001 pts)	Center 1.910000 GHz Span 5.000 MHz #VBW 300 kHz #Sweep 1.00 s (1001 pts)	More 1 of 2	

4.6 CONDUCTED SPURIOUS EMISSIONS


4.6.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$. The emission limit equal to -13dBm.

4.6.2 TEST PROCEDURE


- a. The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range.
- Measuring frequency range is from 30 MHz to 19.1GHz. 10dB attenuation pad is connected with spectrum. RBW=1MHz and VBW=3MHz is used for conducted emission measurement.

4.6.3 TEST SETUP

4.6.4 TEST RESULTS

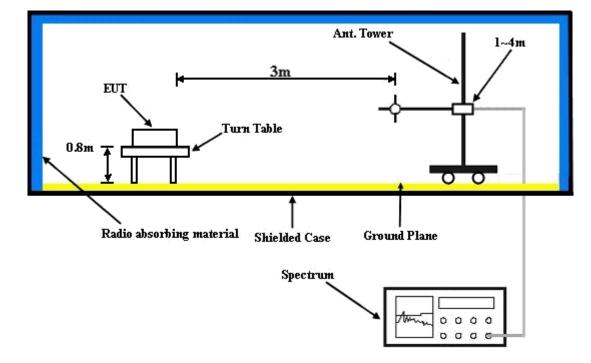
4.7 RADIATED EMISSION MEASUREMENT

4.7.1 LIMITS OF RADIATED EMISSION MEASUREMENT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$. The emission limit equal to -13dBm.

4.7.2 TEST PROCEDURES

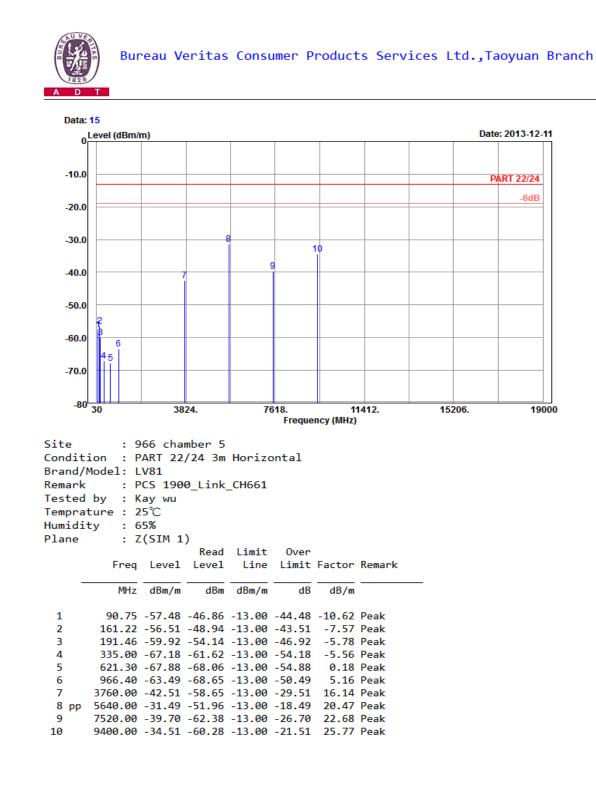
- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.R.P power - 2.15dBi.


NOTE: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

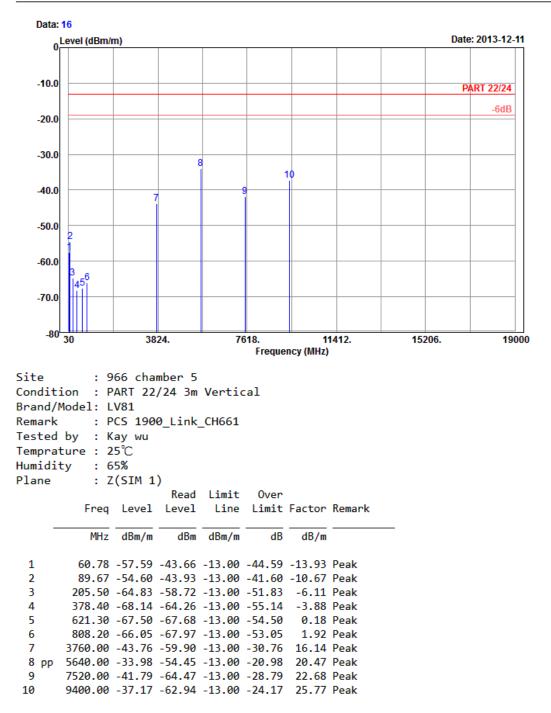
4.7.3 DEVIATION FROM TEST STANDARD

No deviation

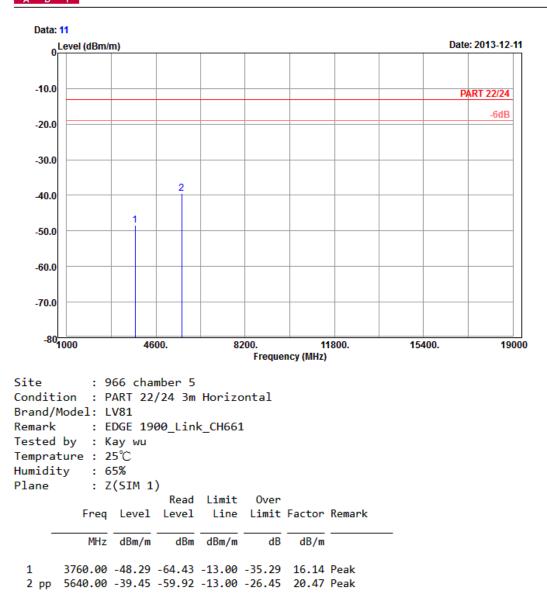
4.7.4 TEST SETUP

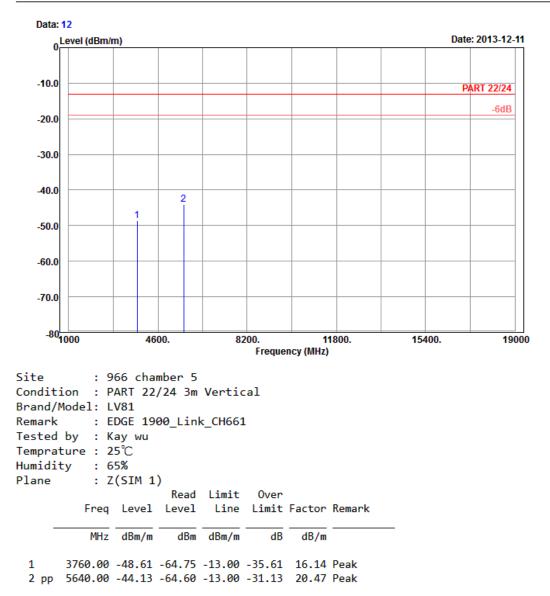

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.7.5 TEST RESULTS

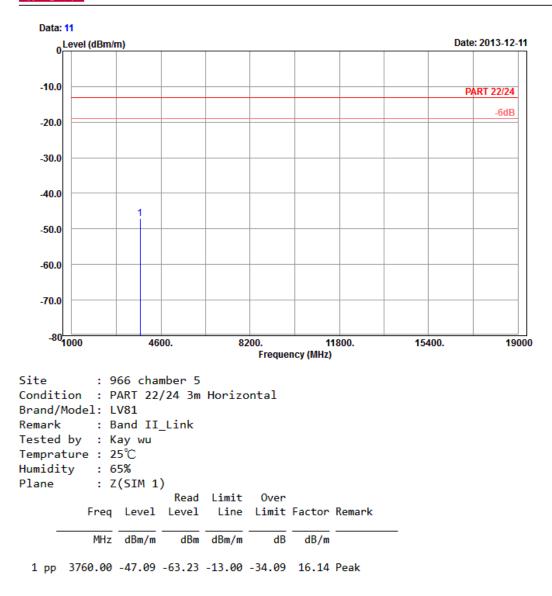

SAMPLE A

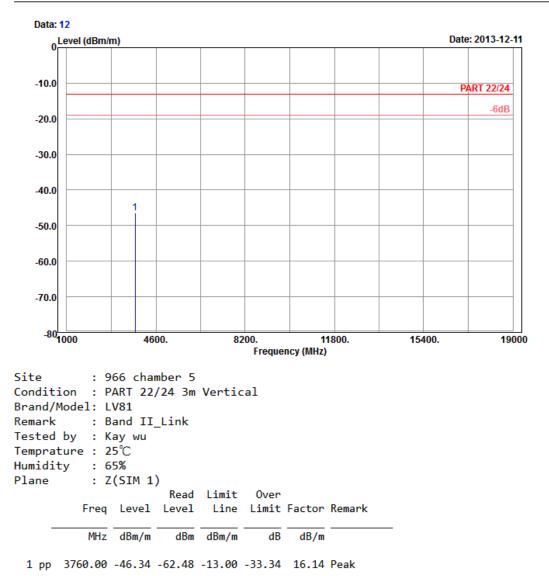
GSM:



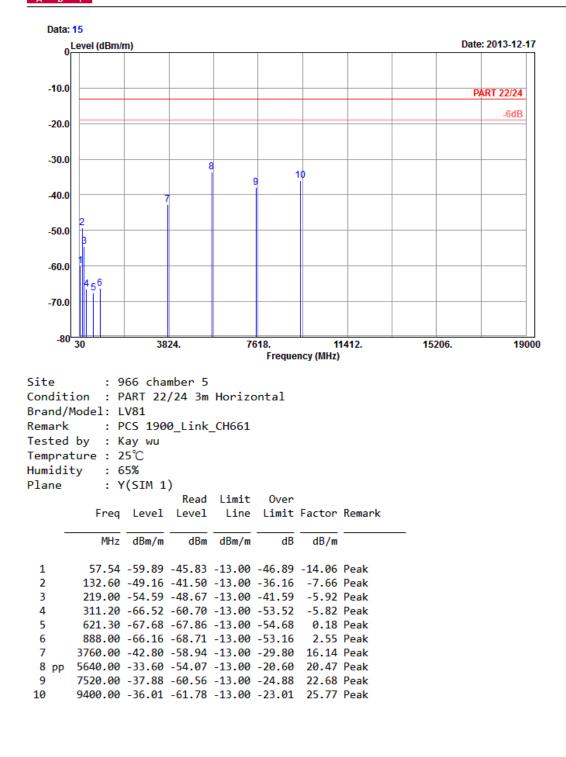


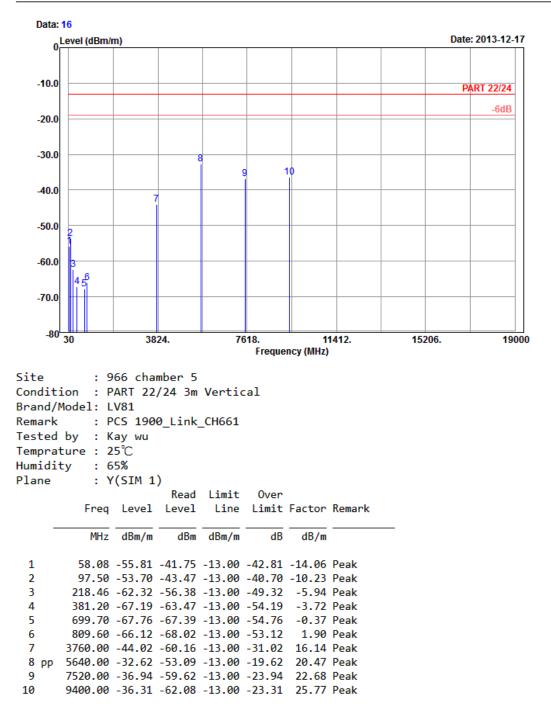
EDGE:



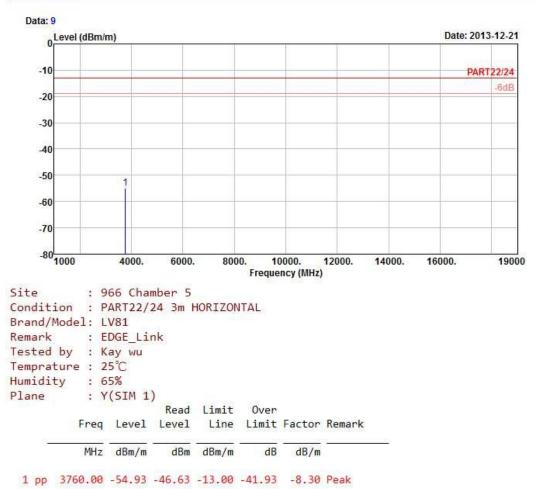


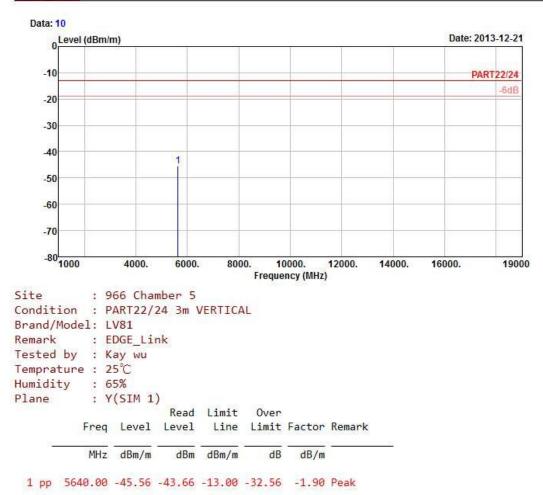
WCDMA:

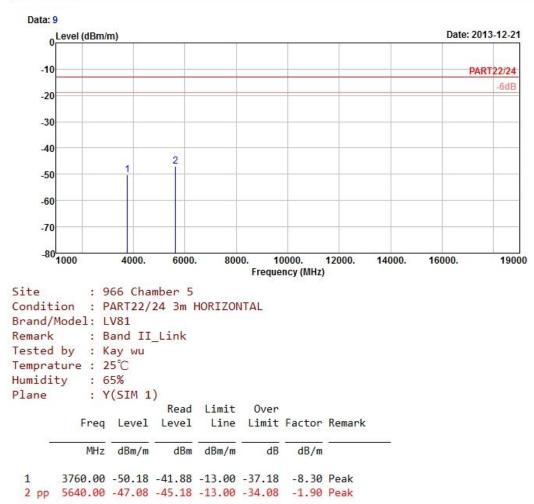


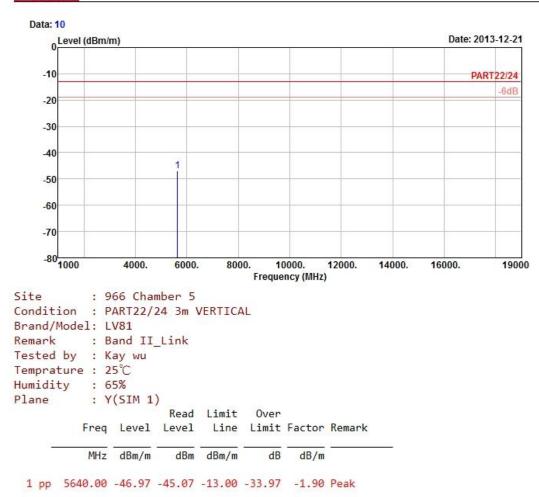


SAMPLE B GSM




EDGE:




WCDMA:

5 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6 INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

7 APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications were made to the EUT by the lab during the test.

---END----