

FCC TEST REPORT

REPORT NO.: RF150519C09B-5
 MODEL NO.: Lenovo A2010-I
 FCC ID: YCNA2010-L
 RECEIVED: May 29, 2015
 TESTED: Jun. 09, 2015 ~ Jun. 16, 2015
 ISSUED: Jun. 18, 2015

- APPLICANT: Lenovo Mobile Communication Technology Ltd.
 - ADDRESS: No.999, Qishan North 2nd Road, Information & Optoelectronics Park, Torch Hi-tech Industry Development Zone, Xiamen, P.R.China
- **ISSUED BY:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
- LAB ADDRESS: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan (R.O.C)

TEST LOCATION: No. 19, Hwa Ya 2nd Rd, Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 333, Taiwan, R.O.C.

This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

TABLE OF CONTENTS

		NTROL RECORD	
1. CEF	TIFICA	ΓΙΟΝ	5
		OF TEST RESULTS	
		JREMENT UNCERTAINTY	
		NFORMATION	
		RAL DESCRIPTION OF EUT	
3.2		RIPTION OF TEST MODES	
		TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	
3.3		RIPTION OF SUPPORT UNITS	
	3.3.1	CONFIGURATION OF SYSTEM UNDER TEST	12
		RAL DESCRIPTION OF APPLIED STANDARDS	
		S AND RESULTS (FOR BLUETOOTH EDR)	
4.1	RADIA	TED EMISSION AND BANDEDGE MEASUREMENT	
	4.1.1	LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT	
	4.1.2	TEST INSTRUMENTS	
	4.1.3	TEST PROCEDURES	15
	4.1.4	DEVIATION FROM TEST STANDARD	15
	4.1.5	TEST SETUP	
	4.1.6	EUT OPERATING CONDITIONS	
	4.1.7	TEST RESULTS	
4.2	COND	JCTED EMISSION MEASUREMENT	
	4.2.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	
	4.2.2	TEST INSTRUMENTS	
	4.2.3	TEST PROCEDURES	
	4.2.4	DEVIATION FROM TEST STANDARD	
	4.2.5	TEST SETUP	
	4.2.6	EUT OPERATING CONDITIONS	
	4.2.7	TEST RESULTS	
4.3	NUMB	ER OF HOPPING FREQUENCY USED	
	4.3.1	LIMIT OF HOPPING FREQUENCY USED	
	4.3.2	TEST SETUP	
	4.3.3	TEST INSTRUMENTS	
	4.3.4	TEST PROCEDURE	
	4.3.5	DEVIATION FROM TEST STANDARD	
	4.3.6	TEST RESULTS	
4.4	DWELL	_ TIME ON EACH CHANNEL	
	4.4.1	LIMITS OF DWELL TIME USED	30
	4.4.2	TEST SETUP	
	4.4.3	TEST INSTRUMENTS	30
	4.4.4	TEST PROCEDURES	30
	4.4.5	DEVIATION FROM TEST STANDARD	
	4.4.6	TEST RESULTS	
4.5	CHANN	NEL BANDWIDTH	
	4.5.1	LIMITS OF CHANNEL BANDWIDTH	
	4.5.2	TEST SETUP	
	4.5.3	TEST INSTRUMENTS	
	4.5.4	TEST PROCEDURE	-
	4.5.5	DEVIATION FROM TEST STANDARD	
	4.5.6	EUT OPERATING CONDITION	
	4.5.7	TEST RESULTS	
4.6		NG CHANNEL SEPARATION	
-	-		

		4.6.1	LIMITS OF HOPPING CHANNEL SEPARATION	36
		4.6.2	TEST SETUP	36
		4.6.3	TEST INSTRUMENTS	36
		4.6.4	TEST PROCEDURE	36
		4.6.5	DEVIATION FROM TEST STANDARD	36
		4.6.6	TEST RESULTS	37
	4.7	MAXIM	IUM OUTPUT POWER	38
		4.7.1	LIMITS OF MAXIMUM OUTPUT POWER MEASUREMENT	38
		4.7.2	TEST SETUP	
		4.7.3	TEST INSTRUMENTS	38
		4.7.4	TEST PROCEDURE	
		4.7.5	DEVIATION FROM TEST STANDARD	38
		4.7.6	EUT OPERATING CONDITION	
		4.7.7	TEST RESULTS	
	4.8	COND	JCTED OUT OF BAND EMISSION MEASUREMENT	40
		4.8.1	LIMITS OF CONDUCTED OUT OF BAND EMISSION MEASUREMENT	40
		4.8.2	TEST INSTRUMENTS	
		4.8.3	TEST PROCEDURE	
		4.8.4	DEVIATION FROM TEST STANDARD	-
		4.8.5	EUT OPERATING CONDITION	-
		4.8.6	TEST RESULTS	
-	-		APHS OF THE TEST CONFIGURATION	
			ON ON THE TESTING LABORATORIES	
7.			A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT	
	THE	LAB		46

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF150519C09B-5	Original release	Jun. 18, 2015

1. CERTIFICATION

 PRODUCT: Lenovo Mobile Phone
 MODEL NO.: Lenovo A2010-I
 BRAND: lenovo
 APPLICANT: Lenovo Mobile Communication Technology Ltd.
 TESTED: Jun. 09, 2015 ~ Jun. 16, 2015
 TEST SAMPLE: Production Unit
 STANDARDS: FCC Part 15, Subpart C (Section 15.247) ANSI C63.10-2013

The above equipment (model: Lenovo A2010-I) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch,** and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY

, **DATE :** Jun. 18, 2015

, DATE :

Ivonne Wu / Supervisor

APPROVED BY

Kaý Wu / Supervisor

Jun. 18, 2015

2. SUMMARY OF TEST RESULTS

	APPLIED STANDARD: FCC Part 15, Subpart C (Bluetooth EDR)					
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK			
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -9.35dB at 0.16181MHz.			
15.247(a)(1) (iii)	Number of Hopping Frequency Used	PASS	Meet the requirement of limit.			
15.247(a)(1) (iii)	Dwell Time on Each Channel	PASS	Meet the requirement of limit.			
15.247(a)(1)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	PASS	Meet the requirement of limit.			
15.247(b)	Maximum Peak Output Power	PASS	Meet the requirement of limit.			
15.247(d)	Transmitter Radiated Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -13.22dB at 31.62MHz.			
15.247(d)	Band Edge Measurement	PASS	Meet the requirement of limit.			
15.203	Antenna Requirement	PASS	No antenna connector is used.			

The EUT has been tested according to the following specifications:

NOTE: If The Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz~30MHz	2.44 dB
	30MHz ~ 200MHz	2.93 dB
Dedicted emissions	200MHz ~1000MHz	2.95 dB
Radiated emissions	1GHz ~ 18GHz	2.26 dB
	18GHz ~ 40GHz	1.94 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	Lenovo Mobile Phone			
MODEL NO.	Lenovo A2010-I	Lenovo A2010-I		
POWER SUPPLY	5.0Vdc (adapter or hos 3.8Vdc (Li-ion battery)			
MODULATION TYPE	Bluetooth EDR	GFSK, π /4-DQPSK, 8DPSK		
TRANSFER RATE	Bluetooth EDR 1/2/3Mbps			
OPERATING FREQUENCY	2402 ~ 2480MHz			
NUMBER OF CHANNEL	Bluetooth EDR 79			
CHANNEL SPACING	Bluetooth EDR 1MHz			
OUTPUT POWER	Bluetooth EDR 5.140mW			
ANTENNA TYPE	PIFA antenna with 4.2dBi gain			
ANTENNA CONNECTOR	NA			
DATA CABLE	Refer to Note as below			
I/O PORTS	Refer to user's manua	l		
ACCESSORY DEVICES	Refer to Note as below	V		

NOTE:

1. There're 2 configurations for the EUT listed as below.

Main sample (A): LCD Panel 1 + Front Camera 1 + Rear Camera 1 + eMMC 1

2nd sample (B): LCD Panel 2 + Front Camera 2 + Rear Camera 2 + eMMC 2

 \diamond Only the worst data was presented in the report.

ITEM	BRAND	MODEL	SPECIFICATION
Adapter 1	lenovo	C-P56	I/P: 100-240Vac, 0.13A O/P: 5.0Vdc, 1.0A Manufacturer: chenyang
Adapter 2	lenovo	C-P56	I/P: 100-240Vac, 0.13A O/P: 5.0Vdc, 1.0A Manufacturer: Acbel
Battery	lenovo	BL253	3.8Vdc, 2000mAh Manufacturer: SUNWODA
Earphone 1	LIANYUN	TS990B-28AMS05-M TS990B-28AMS06-M	1.3m non-shielded cable w/o core
Earphone 2	TIANZHI	TJ101247A TJ-101406	1.3m non-shielded cable w/o core
USB Cable 1	LIQI	L16B-05100070L L16w-05100070L	0.7m shielded cable w/o core
USB Cable 2	FUKANGYUAN	F16B-05100070L F16w-05100070L	0.7m shielded cable w/o core
LCD Panel 1	TONGXINGDA	TXDT450SKP-73V6	
LCD Panel 2	Arising	ART45PI6031A-1	
Front Camera 1	HUAQUAN	G6P2-AL712HQ	
Front Camera 2	QUNHUI	GV5893A1D-0P0J0	
Rear Camera 1	HUAQUAN	H7B5-AL711BHQ	
Rear Camera 2	QUNHUI	OX5892B1S-0P0J0	
eMMC 1	Samsung	KMQ72000SM-B316	MCP_8GB-eMMC_8Gb-LPDDR3
eMMC 2	hynix	H9TQ64A8GTMCUR- KUM	MCP_8GB-eMMC_8Gb-LPDDR3
CPU	MediaTek	MT6735V/WM	641pin

2. The EUT contains following accessory devices.

3. The above EUT information is declared by the manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

Bluetooth EDR:

79 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

BLUETOOTH EDR

A B B Content of the second	√ √ G: Radiated Emiss Power Line Condu ed emission test, p sen for the final test ad been pre-tested SSION TEST (/ s been conduct ilable modulatio	ted Emission re-tested GF and present on the posit ABOVE 10 red to dete ons, data ra- vere) selec TEST	√ GHz Re by AF SK, π/4-DQPSK, ited in the test replication ioned of each 3 a CHz): rmine the wor ates and ante	PCM: Ant , 8DPSK port. axis. The rst-case enna po	DESCRI Main sample 2 nd sample adiated Emission below 1GI attenna Port Conducted Mease modulation type and found e worst case was found when e mode from all possib ports (if EUT with antennom as listed below. MODULATION TYPE	Hz surement GFSK was the worse n positioned on Z-plan le combinations
B /here RE≥1G PLC: P OTE: 1. For Radiated therefore chos 2. The EUT ha ADIATED EMIS Pre-Scan has between avail architecture). Following cha EUT CONFIGURE MODE A B	√ G: Radiated Emiss Power Line Condu ed emission test, p sen for the final test ad been pre-tested SSION TEST (A s been conduct ilable modulation annel(s) was (v AVAILABLE CHANNEL	vere) select	Hz RE h AF SK, π/4-DQPSK, ited in the test rep ioned of each 3 a GHz): rmine the wor ates and ante sted for the fin	E<1G: Ra PCM: Ant , 8DPSK port. axis. The rst-case enna po	2 nd sample adiated Emission below 1GI itenna Port Conducted Meas modulation type and found worst case was found when e mode from all possib orts (if EUT with antenn as listed below.	surement GFSK was the worse in positioned on Z-plan le combinations na diversity
 Where RE≥1G PLC: P OTE: 1. For Radiated therefore chos 2. The EUT hat ADIATED EMIS Pre-Scan has between avail architecture). Following cha EUT CONFIGURE MODE A B 	G: Radiated Emiss Power Line Condu ed emission test, p sen for the final test ad been pre-tested SSION TEST (s been conduct ilable modulation annel(s) was (v AVAILABLE CHANNEL	ion above 1G cted Emission re-tested GF and present on the posit ABOVE 1C ed to dete ons, data ra- vere) selec TEST	n AF SK, π/4-DQPSK, ited in the test rep ioned of each 3 a GHz): rmine the wor ates and ante	PCM: Ant , 8DPSK port. axis. The rst-case enna po	adiated Emission below 1GI atenna Port Conducted Meas modulation type and found worst case was found when e mode from all possib orts (if EUT with antenr as listed below.	surement GFSK was the worse in positioned on Z-plan le combinations na diversity
PLC: P OTE: 1. For Radiated therefore chos 2. The EUT ha ADIATED EMIS Pre-Scan has between avail architecture). Following cha EUT CONFIGURE MODE A B	Power Line Condu ed emission test, p sen for the final test ad been pre-tested SSION TEST (A s been conduct ilable modulation annel(s) was (v AVAILABLE CHANNEL	ted Emission re-tested GF and present on the posit ABOVE 10 red to dete ons, data ra- vere) selec TEST	n AF SK, π/4-DQPSK, ited in the test rep ioned of each 3 a GHz): rmine the wor ates and ante	PCM: Ant , 8DPSK port. axis. The rst-case enna po	tenna Port Conducted Meas modulation type and found worst case was found when e mode from all possib orts (if EUT with antenr as listed below.	surement GFSK was the worse in positioned on Z-plan le combinations na diversity
 OTE: 1. For Radiate therefore chos 2. The EUT has ADIATED EMIS Pre-Scan has between avail architecture). Following cha EUT CONFIGURE MODE A B 	ed emission test, p sen for the final test ad been pre-tested SSION TEST (2 s been conduct ilable modulation annel(s) was (v AVAILABLE CHANNEL	re-tested GF st and present d on the posit ABOVE 10 red to dete ons, data ra- vere) select TEST	SK, π/4-DQPSK, ited in the test rep ioned of each 3 a <u>GHz):</u> rmine the wor ates and ante	rst-case	modulation type and found worst case was found when e mode from all possib orts (if EUT with antenr as listed below.	GFSK was the worse a positioned on Z-plan le combinations ha diversity
therefore chos 2. The EUT ha ADIATED EMIS Pre-Scan has between avail architecture). Following cha EUT CONFIGURE MODE A B A B	sen for the final ter ad been pre-tested SSION TEST (s been conduct ilable modulation annel(s) was (v AVAILABLE CHANNEL	ABOVE 10 ed to dete ons, data r vere) selec	ited in the test replicated in the test replicated of each 3 a GHz): rmine the worrates and anterates anterates and anterates anterates and anterates and anterates and anterates and anterates and anterates anterates and anterates antera	port. axis. The rst-case enna po	e mode from all possib orts (if EUT with antenr as listed below.	n positioned on Z-plan le combinations na diversity
2. The EUT has ADIATED EMIS Pre-Scan has between avail architecture). Following cha EUT CONFIGURE MODE A B A B	ad been pre-tested SSION TEST (s been conduct ilable modulation annel(s) was (v AVAILABLE CHANNEL	ABOVE 10 ed to dete ons, data r vere) selec TEST	ioned of each 3 a GHz): rmine the wor ates and ante	axis. The rst-case	e mode from all possib orts (if EUT with antenr as listed below.	le combinations na diversity
ADIATED EMIS Pre-Scan has between avail architecture). Following cha EUT CONFIGURE MODE A B ADIATED EMIS	SSION TEST (A s been conduct ilable modulation annel(s) was (v AVAILABLE CHANNEL	ABOVE 10 red to dete ons, data r vere) selec TEST	<u>GHz):</u> rmine the wor ates and ante ated for the fin	rst-case enna po	e mode from all possib orts (if EUT with antenr as listed below.	le combinations na diversity
 Pre-Scan has between avail architecture). Following cha Following cha EUT CONFIGURE MODE A B 	s been conduct ilable modulatio annel(s) was (v AVAILABLE CHANNEL	ed to dete ons, data r vere) selec TEST	rmine the wor ates and ante sted for the fin	enna po	orts (if EUT with antenr as listed below.	na diversity
 Pre-Scan has between avail architecture). Following cha Following cha EUT CONFIGURE MODE A B 	s been conduct ilable modulatio annel(s) was (v AVAILABLE CHANNEL	ed to dete ons, data r vere) selec TEST	rmine the wor ates and ante sted for the fin	enna po	orts (if EUT with antenr as listed below.	na diversity
between avail architecture). Following cha EUT CONFIGURE MODE A B B	ilable modulatio annel(s) was (v AVAILABLE CHANNEL	ons, data r vere) selec TEST	ates and ante	enna po	orts (if EUT with antenr as listed below.	na diversity
ACHIATED EMIS	annel(s) was (v AVAILABLE CHANNEL	vere) selec TEST	ted for the fin		as listed below.	-
Following cha EUT CONFIGURE MODE A B B ADIATED EMIS	annel(s) was (v AVAILABLE CHANNEL	TEST		al test		PACKET TYPE
EUT CONFIGURE MODE A B ADIATED EMIS	AVAILABLE CHANNEL	TEST				PACKET TYPE
A B A A B A A A A A A A A A A A A A A B A A A B A A B A A B A A B A A A B A A A A B A A A A A B A A A A A B A	CHANNEL		ED CHANNEL		MODULATION TYPE	PACKET TYPE
A B RADIATED EMIS	0 to 78					
B RADIATED EMIS	0 to 78		0 00 70		050%	DH5
RADIATED EMIS			0, 39, 78		GFSK	
	B 0 to 78 78				GFSK	DH5
	-					
					e mode from all possib	
		ons, data r	ates and ante	enna po	orts (if EUT with antenr	na diversity
architecture).						
	annel(s) was (v	vere) selec	ted for the fin	al test	as listed below.	
EUT	AVAILABLE	теет	ED CHANNEL		MODULATION TYPE	PACKET TYPE
MODE	CHANNEL		ED GHANNEL		MODULATION TIPE	FACKETTIFE
A, B						
R	A, B 0 to 78 78 GFSK DH5					

between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

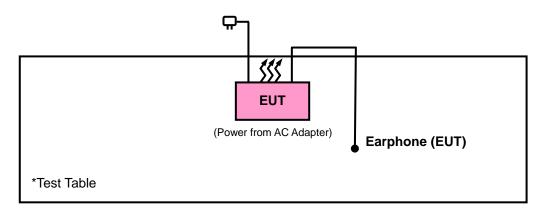
EUT CONFIGUR MODE	E AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	PACKET TYPE
А, В	0 to 78	78	GFSK	DH5

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	PACKET TYPE
	0 to 78	0, 39, 78	GFSK	DH5
А	0 to 78	0, 39, 78	π /4-DQPSK	DH5
	0 to 78	0, 39, 78	8DPSK	DH5

TEST CONDITION:


APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE≥1G	25deg. C, 65%RH	120Vac, 60Hz	Charles Hsiao
RE<1G	25deg. C, 65%RH	120Vac, 60Hz	Charles Hsiao
PLC	25deg. C, 65%RH	120Vac, 60Hz	Toby Tian
APCM	25deg. C, 65%RH	3.8Vdc	Howard Kao

3.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units.

3.3.1 CONFIGURATION OF SYSTEM UNDER TEST

3.4 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) ANSI C63.10-2013 FCC Public Notice DA 00-705

All test items have been performed and recorded as per the above standards.

NOTE: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

4. TEST TYPES AND RESULTS (FOR BLUETOOTH EDR)

4.1 RADIATED EMISSION AND BANDEDGE MEASUREMENT

4.1.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver Agilent	N9038A	MY51210203	Jan. 21, 2015	Jan. 21, 2016
Spectrum Analyzer Agilent	N9010A	MY52220314	Sep. 03, 2014	Sep. 02, 2015
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Dec. 10, 2014	Dec. 09, 2015
BILOG Antenna SCHWARZBECK	VULB9168	9168-472	Feb. 04, 2015	Feb. 04, 2016
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-969	Feb. 09, 2015	Feb. 09, 2016
HORN Antenna SCHWARZBECK	BBHA 9170	9170-480	Feb. 04, 2015	Feb. 04, 2016
Loop Antenna	EM-6879	269	Aug. 13, 2014	Aug. 12, 2015
Preamplifier EMCI	EMC 012645	980115	Dec. 12, 2014	Dec. 11, 2015
Preamplifier EMCI	EMC 184045	980116	Jan. 09, 2015	Jan. 08, 2016
Preamplifier EMCI	EMC 330H	980112	Dec. 27, 2014	Dec. 26, 2015
Power Meter Anritsu	ML2495A	1232002	Sep. 17, 2014	Sep. 16, 2015
Power Sensor Anritsu	MA2411B	1207325	Sep. 17, 2014	Sep. 16, 2015
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	309219/4 2950114	Oct. 18, 2014	Oct. 17, 2015
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	250130/4	Oct. 18, 2014	Oct. 17, 2015
RF Coaxial Cable Worken	8D-FB	Cable-Ch10-01	Nov. 07, 2014	Nov. 06, 2015
Software BV ADT	E3 6.120103	NA	NA	NA
Antenna Tower MF	MFA-440H	NA	NA	NA
Turn Table MF	MFT-201SS	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA
Bluetooth Tester R&S	CBT	100980	Apr. 27, 2015	Apr. 26, 2017

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

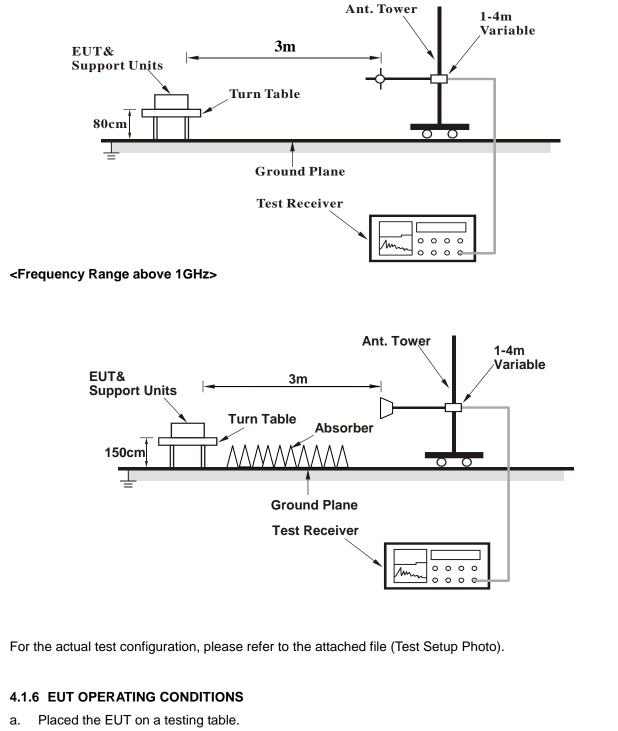
- 2. The test was performed in HwaYa Chamber 10.
- 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 690701.
- 5. The IC Site Registration No. is IC 7450F-10.

4.1.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz for Average detection (AV) at frequency above 1GHz.


4.1.4 DEVIATION FROM TEST STANDARD

No deviation.

4.1.5 TEST SETUP

<Frequency Range 30MHz ~ 1GHz>

b. Use the software to control the EUT under transmission condition continuously at specific channel frequency.

4.1.7 TEST RESULTS

ABOVE 1GHz WORST-CASE DATA GFSK MODE A

EUT TEST CONDITION		MEASUREMENT DETAIL			
CHANNEL	Channel 0	FREQUENCY RANGE	1GHz ~ 25GHz		
INPUT POWER	PUT POWER 120Vac, 60 Hz		Peak (PK) Average (AV)		
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY	Charles Hsiao		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2318	39.13	37.62	54	-14.87	31.73	5.3	35.52	166	333	Average
2318	55.44	53.93	74	-18.56	31.73	5.3	35.52	166	333	Peak
2402	103.65	101.92			31.8	5.4	35.47	166	333	Average
2402	106.05	104.32			31.8	5.4	35.47	166	333	Peak
2490	39.73	37.72	54	-14.27	31.9	5.53	35.42	166	333	Average
2490	55.42	53.41	74	-18.58	31.9	5.53	35.42	166	333	Peak
		ANTEN		RITY & T	EST DIST/	ANCE: V	ERTICAL	AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2312	39.11	37.63	54	-14.89	31.71	5.3	35.53	100	332	Average
2312	55.79	54.31	74	-18.21	31.71	5.3	35.53	100	332	Peak
2402	98.64	96.91			31.8	5.4	35.47	100	332	Average
2402	101.16	99.43			31.8	5.4	35.47	100	332	Peak
2500	39.73	37.71	54	-14.27	31.9	5.53	35.41	100	332	Average
2500	55.2	53.18	74	-18.8	31.9	5.53	35.41	100	332	Peak

REMARKS:

 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

2. 2402MHz: Fundamental frequency.

EUT TEST CONDITION		MEASUREMENT DETAIL			
CHANNEL	Channel 39	FREQUENCY RANGE	1GHz ~ 25GHz		
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)		
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY	Charles Hsiao		

	Α	NTENN	A POLARI	TY & TE	ST DISTA	NCE: HC	RIZONT	AL AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2384	39.28	37.59	54	-14.72	31.78	5.4	35.49	130	333	Average
2384	55.61	53.92	74	-18.39	31.78	5.4	35.49	130	333	Peak
2441	104.31	102.44			31.85	5.46	35.44	130	333	Average
2441	106.91	105.04			31.85	5.46	35.44	130	333	Peak
2488	39.73	37.72	54	-14.27	31.9	5.53	35.42	130	333	Average
2488	56.68	54.67	74	-17.32	31.9	5.53	35.42	130	333	Peak
		ANTEN		RITY & T	EST DIST	ANCE: V	/ERTICAL	. AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2390	39.3	37.57	54	-14.7	31.8	5.4	35.47	111	340	Average
2390	54.77	53.04	74	-19.23	31.8	5.4	35.47	111	340	Peak
2441	99.01	97.14			31.85	5.46	35.44	111	340	Average
2441	101.55	99.68			31.85	5.46	35.44	111	340	Peak
2494	39.73	37.71	54	-14.27	31.9	5.53	35.41	111	340	Average
2494	55.13	53.11	74	-18.87	31.9	5.53	35.41	111	340	Peak

REMARKS:

 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

2. 2441MHz: Fundamental frequency.

EUT TEST CONDITION		MEASUREMENT DETAIL			
CHANNEL	Channel 78	FREQUENCY RANGE	1GHz ~ 25GHz		
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)		
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY	Charles Hsiao		

	Α	NTENN	A POLARI	TY & TE		NCE: HC		AL AT 3 M	l	
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2328	39.13	37.62	54	-14.87	31.73	5.3	35.52	128	333	Average
2328	55.02	53.51	74	-18.98	31.73	5.3	35.52	128	333	Peak
2480	102.68	100.72			31.88	5.5	35.42	128	333	Average
2480	105.3	103.34			31.88	5.5	35.42	128	333	Peak
2484	40.13	38.17	54	-13.87	31.88	5.5	35.42	128	333	Average
2484	56.16	54.2	74	-17.84	31.88	5.5	35.42	128	333	Peak
		ANTEN		RITY & T	EST DIST/	ANCE: V	/ERTICAL	. AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2372	39.25	37.59	54	-14.75	31.78	5.37	35.49	106	341	Average
2372	55.05	53.39	74	-18.95	31.78	5.37	35.49	106	341	Peak
2480	97.48	95.52			31.88	5.5	35.42	106	341	Average
2480	100	98.04			31.88	5.5	35.42	106	341	Peak
2484	39.93	37.97	54	-14.07	31.88	5.5	35.42	106	341	Average
2484	57.26	55.3	74	-16.74	31.88	5.5	35.42	106	341	Peak

REMARKS:

 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

2. 2480MHz: Fundamental frequency.

MODE B

EUT TEST CONDITION		MEASUREMENT DETAIL			
CHANNEL	Channel 78	FREQUENCY RANGE	1GHz ~ 25GHz		
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)		
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY	Charles Hsiao		

	Α	NTENN	POLARI	TY & TE		NCE: HC	RIZONT	AL AT 3 M	l	
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2354	39.2	37.61	54	-14.8	31.76	5.33	35.5	144	328	Average
2354	54.99	53.4	74	-19.01	31.76	5.33	35.5	144	328	Peak
2480	102.88	100.92			31.88	5.5	35.42	144	328	Average
2480	105.66	103.7			31.88	5.5	35.42	144	328	Peak
2484	39.91	37.95	54	-14.09	31.88	5.5	35.42	144	328	Average
2484	56.36	54.4	74	-17.64	31.88	5.5	35.42	144	328	Peak
		ANTEN		RITY & T	EST DIST	ANCE: V	ERTICAL	. AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2356	39.23	37.6	54	-14.77	31.76	5.37	35.5	118	121	Average
2356	55.62	53.99	74	-18.38	31.76	5.37	35.5	118	121	Peak
2480	97.98	96.02			31.88	5.5	35.42	118	121	Average
2480	100.71	98.75			31.88	5.5	35.42	118	121	Peak
2500	40.03	38.01	54	-13.97	31.9	5.53	35.41	118	121	Average
2500	56.87	54.85	74	-17.13	31.9	5.53	35.41	118	121	Peak

REMARKS:

 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

2. 2480MHz: Fundamental frequency.

BELOW 1GHz WORST-CASE DATA:

MODE A

EUT TEST CONDITION		MEASUREMENT DETAIL			
CHANNEL	Channel 78	FREQUENCY RANGE	30MHz ~ 1GHz		
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Quasi-peak (QP)		
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY	Charles Hsiao		

	Α	NTENN	A POLARI	TY & TE	ST DISTA	NCE: HC	RIZONT	AL AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
101.28	14.5	33.17	43.5	-29	12.31	1.28	32.26	123	308	Peak
142.05	15.64	38.13	43.5	-27.86	8.4	1.38	32.27	156	128	Peak
251.94	19.38	37.19	46	-26.62	12.35	1.94	32.1	137	18	Peak
535.9	17.56	30.2	46	-28.44	16.83	2.7	32.17	126	32	Peak
785.1	21.83	30.46	46	-24.17	20.18	3.27	32.08	177	62	Peak
990.9	24.3	28.87	54	-29.7	22.14	3.72	30.43	124	302	Peak
		ANTEN		RITY & T	EST DIST	ANCE: V	/ERTICAL	. AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
31.62	26.78	46.64	40	-13.22	11.66	0.74	32.26	131	262	Peak
103.44	13.91	32.5	43.5	-29.59	12.39	1.28	32.26	104	3	Peak
252.48	14.43	32.24	46	-31.57	12.35	1.94	32.1	155	194	Peak
613.6	19.21	30.45	46	-26.79	18.07	2.87	32.18	187	180	Peak
712.3	21.54	31.13	46	-24.46	19.4	3.11	32.1	133	311	Peak
997.2	24.25	28.65	54	-29.75	22.21	3.72	30.33	122	214	Peak

REMARKS: Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

MODE B

EUT TEST CONDITION		MEASUREMENT DETAIL			
CHANNEL	Channel 78	FREQUENCY RANGE	30MHz ~ 1GHz		
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Quasi-peak (QP)		
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY	Charles Hsiao		

	Α	NTENN	A POLARI	TY & TE		NCE: HC	RIZONT	AL AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
85.08	15.35	37.01	40	-24.65	9.19	1.11	31.96	137	13	Peak
137.73	15.82	38.16	43.5	-27.68	8.54	1.38	32.26	126	261	Peak
247.62	18.57	36.58	46	-27.43	12.25	1.85	32.11	165	349	Peak
703.9	20.75	30.44	46	-25.25	19.29	3.11	32.09	192	294	Peak
810.3	22.17	30.37	46	-23.83	20.49	3.32	32.01	180	3	Peak
964.3	24.91	30.25	54	-29.09	21.86	3.67	30.87	130	246	Peak
		ANTEN		RITY & T	EST DIST/	ANCE: V	/ERTICAL	. AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
31.62	26.21	46.07	40	-13.79	11.66	0.74	32.26	116	226	Peak
102.63	13.76	32.38	43.5	-29.74	12.36	1.28	32.26	125	338	Peak
240.06	12.87	31.05	46	-33.13	12.1	1.85	32.13	132	48	Peak
739.6	21.91	31.17	46	-24.09	19.71	3.16	32.13	191	243	Peak
854.4	22.71	29.95	46	-23.29	21.08	3.44	31.76	186	210	Peak
925.1	24.13	30.3	46	-21.87	21.59	3.53	31.29	121	158	Peak

REMARKS: Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor

Margin value = Emission level - Limit value

4.2 CONDUCTED EMISSION MEASUREMENT

4.2.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED	LIMIT (dBµV)
	Quasi-peak	Average
0.15 ~ 0.5	66 to 56	56 to 46
0.5 ~ 5	56	46
5 ~ 30	60	50

NOTE: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

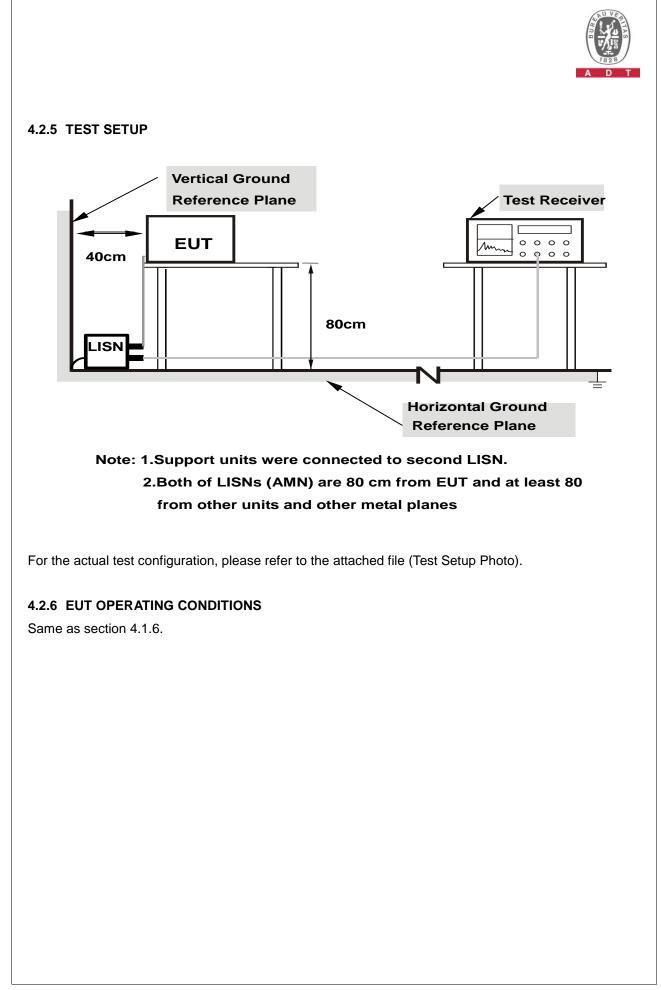
4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Nov. 11, 2014	Nov. 10, 2015
RF signal cable Woken	5D-FB	Cable-HYC01-01	Dec. 26, 2014	Dec. 25, 2015
LISN ROHDE & SCHWARZ (EUT)	ESH3-Z5	835239/001	Mar. 02, 2015	Mar. 01, 2016
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Jul. 21, 2014	Jul. 20, 2015
Software ADT	BV ADT_Cond_ V7.3.7.3	NA	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Shielded Room 1.

3. The VCCI Site Registration No. is C-2040.


4.2.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation.

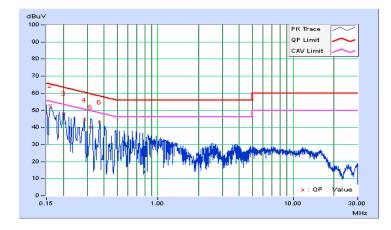
4.2.7 TEST RESULTS

CONDUCTED WORST-CASE DATA :

Frequency Range	150kHz ~ 30MHz	X RASOULTION	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Toby Tian	Test Date	2015/6/9

	Phase Of Power : Line (L)										
	Frequency Correction Reading Value		g Value	Emission Level L			Limit		Margin		
No		Factor	(dB	uV)	(dB	uV)	(dB	uV)	(d	B)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	0.05	47.93	28.50	47.98	28.55	66.00	56.00	-18.02	-27.45	
2	0.16012	0.05	52.74	41.45	52.79	41.50	65.46	55.46	-12.67	-13.96	
3	0.20084	0.06	48.03	36.35	48.09	36.41	63.58	53.58	-15.49	-17.17	
4	0.28685	0.06	44.49	32.54	44.55	32.60	60.62	50.62	-16.07	-18.02	
5	0.31849	0.06	39.85	26.04	39.91	26.10	59.75	49.75	-19.84	-23.65	
6	0.36913	0.06	43.20	29.10	43.26	29.16	58.52	48.52	-15.26	-19.36	

Remarks:

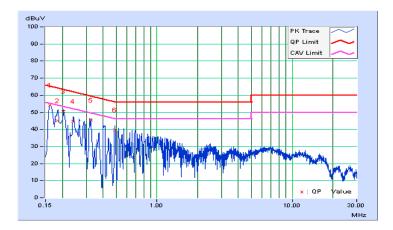

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

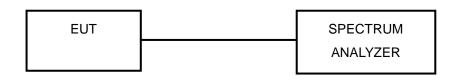


Frequency Range			Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25℃, 65%RH
Tested by	Toby Tian	Test Date	2015/6/9

	Phase Of Power : Neutral (N)										
	Frequency	Correction Reading Value		Emissic	on Level		nit	Margin			
No		Factor	(dB	uV)	(dB	uV)	(dB	uV)	(d	B)	
	(MHz) (dB)		Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.16181	0.05	54.15	43.06	54.20	43.11	65.37	55.37	-11.17	-12.26	
2	0.18411	0.05	44.93	21.75	44.98	21.80	64.30	54.30	-19.32	-32.50	
3	0.20474	0.05	50.37	37.85	50.42	37.90	63.42	53.42	-13.00	-15.52	
4	0.24025	0.05	44.74	30.23	44.79	30.28	62.09	52.09	-17.30	-21.81	
5	0.32595	0.06	45.34	31.94	45.40	32.00	59.55	49.55	-14.16	-17.56	
6	0.48678	0.06	39.54	24.62	39.60	24.68	56.22	46.22	-16.62	-21.54	

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 NUMBER OF HOPPING FREQUENCY USED

4.3.1 LIMIT OF HOPPING FREQUENCY USED

At least 15 channels frequencies, and should be equally spaced.

4.3.2 TEST SETUP

4.3.3 TEST INSTRUMENTS

Refer to section 4.1.2 to get information of above instrument.

4.3.4 TEST PROCEDURE

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

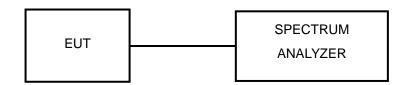
4.3.5 DEVIATION FROM TEST STANDARD

No deviation.

4.3.6 TEST RESULTS

There are 79 hopping frequencies in the hopping mode. Please refer to next page for the test result. On the plot, it shows that the hopping frequencies are equally spaced.

PSK 2-Ref 25.2 dBm Offset 15.2 dB	Att 20 dB	RBW 1 MHz VBW 1 MHz SWT 500 ms	[T1] MP MAXH [T2] MP VIEW	 25.2-	Ref 25.2 dBm Offset 15.2 dB	Att 20 dB	RBW 1 MHz VBW 1 MHz SWT 500 ms	[T1] MP MAXH [T2] MP VIEW	1
,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~	20- 10-		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	······	mm	
]-				-10- -20-					
				-30-					
)				-50 -					
3- I Start 2.4 GHz	I I I I 4.1 MHz/	1 1	Stop 2.441 GHz	-70 - -74.8 -		1 1 1	I I MHz/	1 I Stop 2.4835 GHz	A D T



4.4 DWELL TIME ON EACH CHANNEL

4.4.1 LIMITS OF DWELL TIME USED

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 TEST SETUP

4.4.3 TEST INSTRUMENTS

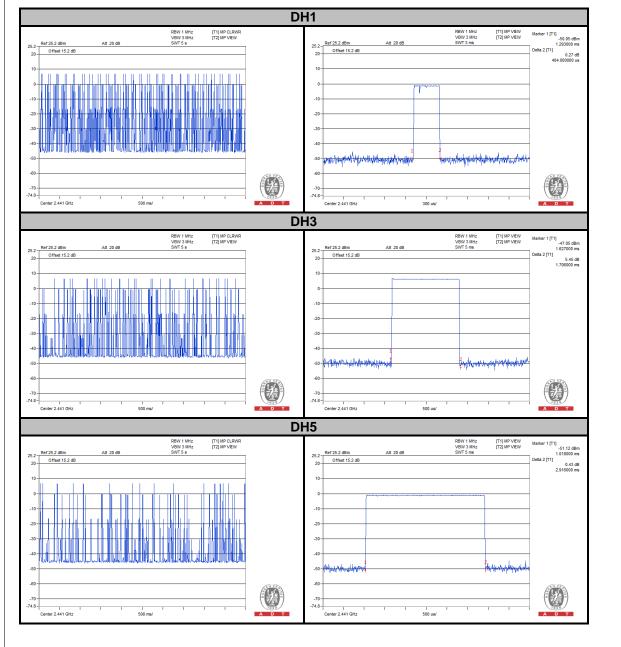
Refer to section 4.1.2 to get information of above instrument.

4.4.4 TEST PROCEDURES

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

4.4.5 DEVIATION FROM TEST STANDARD

No deviation.

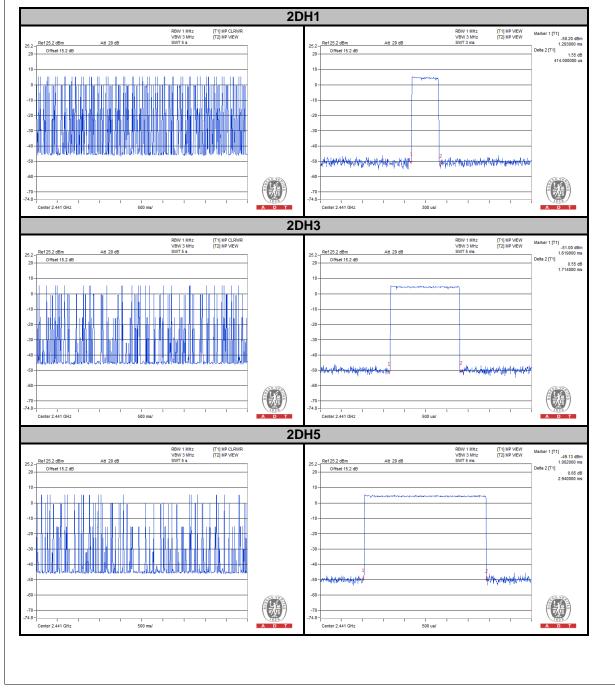

4.4.6 TEST RESULTS

GFSK

Mode	Average Hopping Channel	Package Transfer Time (usec)	Result (sec)	Limit (sec)
DH1	10.00	404.00	0.13	0.4
DH3	5.40	1706.00	0.29	0.4
DH5	3.20	2916.00	0.29	0.4

NOTE:

- 1. Dwell Time=79(channels) x 0.4(s) x average hopping channel x package transfer time
- 2. 79 channels come from the Hopping Channel number
- 3. Average Hopping Channel = hops/sweep time
- 4. t: Package Transfer Time(us)
- 5. Test plots of the transmitting time slot are shown as below.

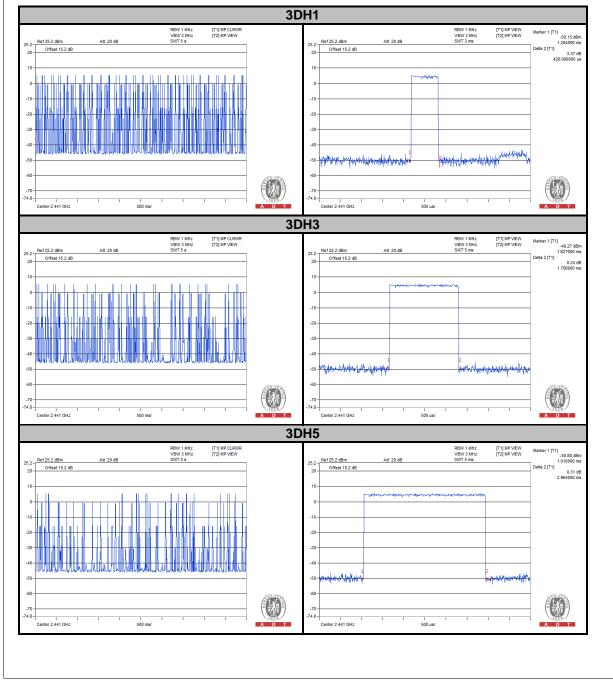

π/4-DQPSK

Average Hopping Channel	Package Transfer Time (usec)	Result (sec)	Limit (sec)
10.00	414.00	0.13	0.4
5.20	1714.00	0.28	0.4
3.60	2940.00	0.33	0.4
	Channel 10.00 5.20	Channel Transfer Time (usec) 10.00 414.00 5.20 1714.00	Channel Transfer Time (usec) (sec) 10.00 414.00 0.13 5.20 1714.00 0.28

NOTE:

- 1. Dwell Time=79(channels) x 0.4(s) x average hopping channel x package transfer time
- 2. 79 channels come from the Hopping Channel number
- 3. Average Hopping Channel = hops/sweep time
- 4. t: Package Transfer Time(us)

5. Test plots of the transmitting time slot are shown as below.

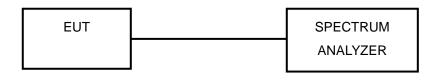

8DPSK

Mode	Average Hopping Channel	Package Transfer Time (usec)	Result (sec)	Limit (sec)
3DH1	10.00	428.00	0.14	0.4
3DH3	5.40	1706.00	0.29	0.4
3DH5	3.40	2964.00	0.32	0.4

NOTE:

Dwell Time=79(channels) x 0.4(s) x average hopping channel x package transfer time
 79 channels come from the Hopping Channel number
 Average Hopping Channel = hops/sweep time
 t: Package Transfer Time(us)

5. Test plots of the transmitting time slot are shown as below.



4.5 CHANNEL BANDWIDTH

4.5.1 LIMITS OF CHANNEL BANDWIDTH

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

4.5.2 TEST SETUP

4.5.3 TEST INSTRUMENTS

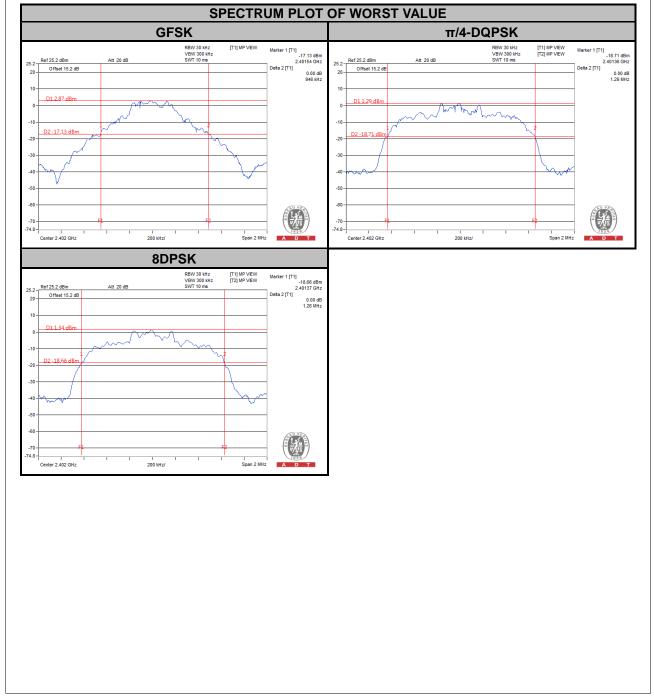
Refer to section 4.1.2 to get information of above instrument.

4.5.4 TEST PROCEDURE

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.5.5 DEVIATION FROM TEST STANDARD

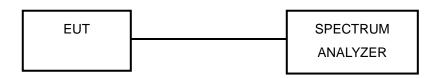
No deviation.


4.5.6 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.5.7 TEST RESULTS

CHANNEL	FREQUENCY (MHz)	20dB BANDWIDTH (MHz)					
		GFSK	π/4-DQPSK	8DPSK			
0	2402	0.946	1.29	1.26			
39	2441	0.946	1.29	1.26			
78	2480	0.942	1.29	1.26			



4.6 HOPPING CHANNEL SEPARATION

4.6.1 LIMITS OF HOPPING CHANNEL SEPARATION

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

4.6.2 TEST SETUP

4.6.3 TEST INSTRUMENTS

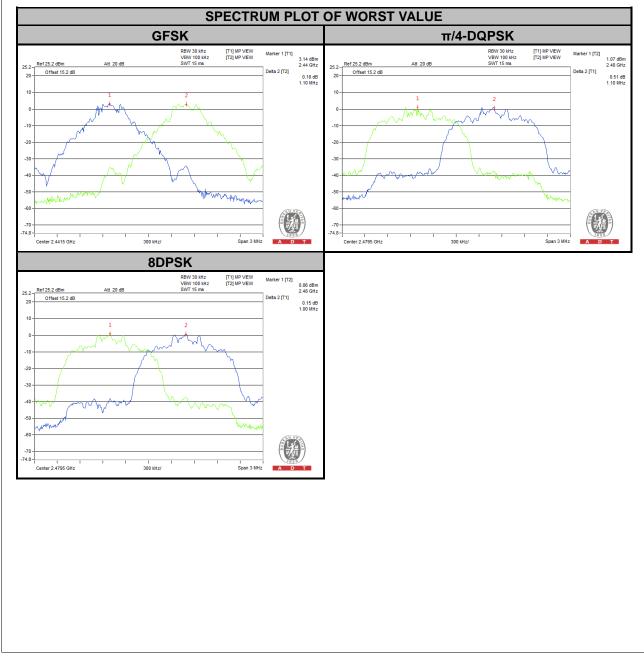
Refer to section 4.1.2 to get information of above instrument.

4.6.4 TEST PROCEDURE

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.6.5 DEVIATION FROM TEST STANDARD

No deviation.



4.6.6 TEST RESULTS

CHAN. FREQ. (MHz)		ADJACENT CHANNEL SEPARATION (MHz)			20dB BANDWIDTH (MHz)			MINIMUM LIMIT (MHz)			PASS / FAIL
		GFSK	π/4-DQPSK	8DPSK	GFSK	π/4-DQPSK	8DPSK	GFSK	π/4-DQPSK	8DPSK	
0	2402	1.00	1.00	1.00	0.946	1.29	1.26	0.631	0.860	0.840	PASS
39	2441	1.10	1.00	1.00	0.946	1.29	1.26	0.631	0.860	0.840	PASS
78	2480	1.10	1.10	1.00	0.942	1.29	1.26	0.628	0.860	0.840	PASS

NOTE:

1. The minimum limit is two-third 20dB bandwidth.

4.7 MAXIMUM OUTPUT POWER

4.7.1 LIMITS OF MAXIMUM OUTPUT POWER MEASUREMENT

The Maximum Output Power Measurement is 125mW.

4.7.2 TEST SETUP

4.7.3 TEST INSTRUMENTS

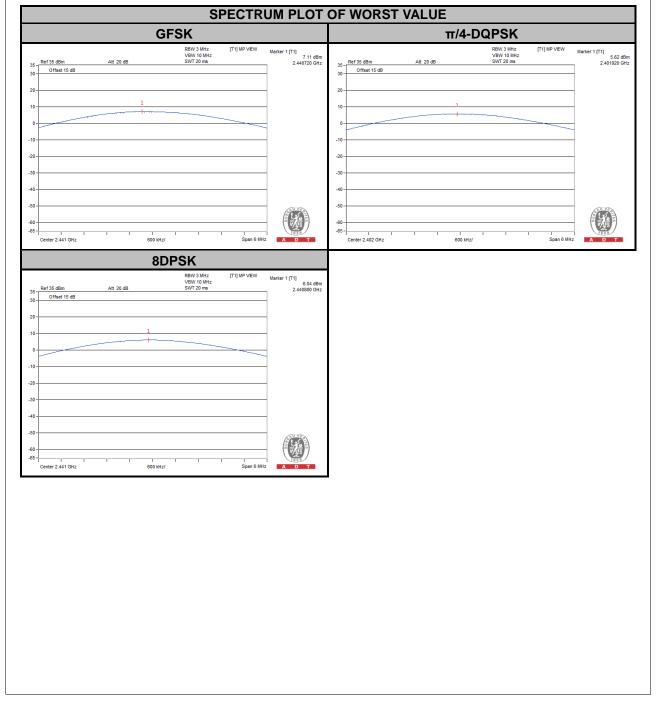
Refer to section 4.1.2 to get information of above instrument.

4.7.4 TEST PROCEDURE

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 3MHz RBW and 10 MHz VBW.
- d. Measure the captured power within the band and recording the plot.
- e. Repeat above procedures until all frequencies required were complete.

4.7.5 DEVIATION FROM TEST STANDARD

No deviation.


4.7.6 EUT OPERATING CONDITION

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.7.7 TEST RESULTS

CHANNEL	FREQUENCY (MHz)	OUTPUT POWER (mW)			OUTPUT POWER (dBm)			POWER LIMIT	PASS / FAIL
		GFSK	π/4-DQPSK	8DPSK	GFSK	π/4-DQPSK	8DPSK	(mW)	
0	2402	4.797	3.648	3.819	6.81	5.62	5.82	125	PASS
39	2441	5.140	3.589	4.018	7.11	5.55	6.04	125	PASS
78	2480	4.083	2.877	3.236	6.11	4.59	5.10	125	PASS

4.8 CONDUCTED OUT OF BAND EMISSION MEASUREMENT

4.8.1 LIMITS OF CONDUCTED OUT OF BAND EMISSION MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100KHz RBW).

4.8.2 TEST INSTRUMENTS

Refer to section 4.1.2 to get information of above instrument.

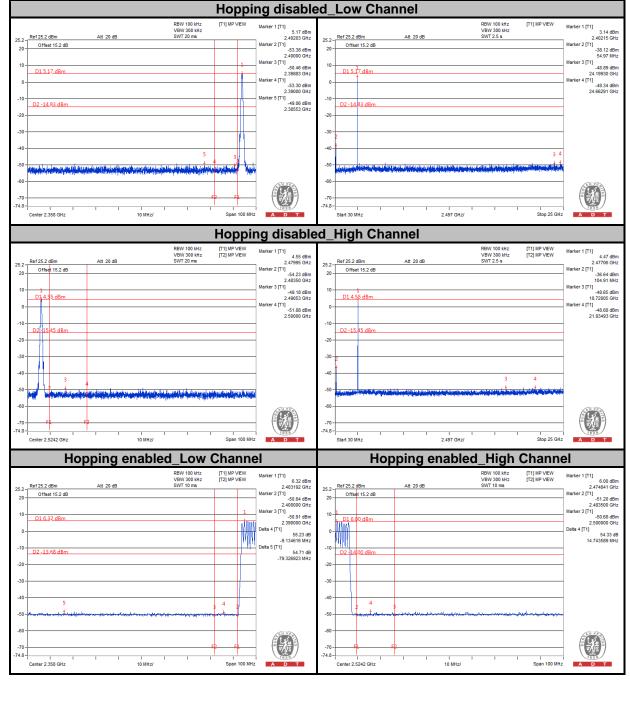
4.8.3 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set VBW = 300 kHz.
- 3. Set span to encompass the spectrum to be examined.
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.

4.8.4 DEVIATION FROM TEST STANDARD

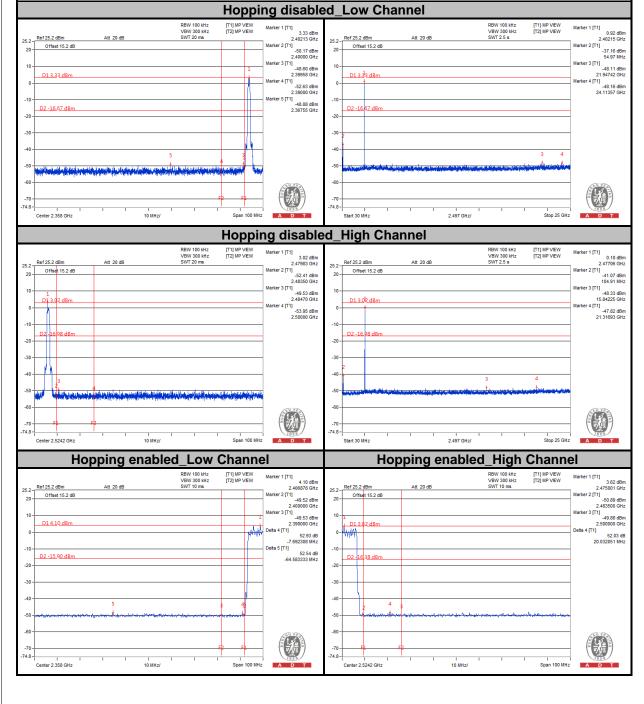
No deviation.

4.8.5 EUT OPERATING CONDITION


The software provided by client enabled the EUT to transmit continuously.

4.8.6 TEST RESULTS

The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.



π/4-DQPSK

8DPSK Hopping disabled_Low Channel RBW 100 kHz VBW 300 kHz SWT 20 ms RBW 100 kHz VBW 300 kHz SWT 2.5 s [T1] MP VIEW [T2] MP VIEW [T1] MP VIEW [T2] MP VIEW Marker 1 [T1] Marker 1 [T1] rker 1 [T1] 3.66 dBm 2.40185 GHz rker 2 [T1] -54.13 dBm 2.40000 GHz rker 3 [T1] 49.34 dBm Marker 1 [T1] 1.61 dBm 2.40215 GHz Marker 2 [T1] -36.39 dBm 54.97 MHz Marker 3 [T1] -48.25 dBm 6.54093 GHz Marker 4 [T1] -48.34 dBm Att 20 dB 25.2-Ref 25.2 dBm Att 20 dB 25.2 - Ref 25.2 dBm Offset 15.2 dB Offset 15.2 dB 20 20 10 10 D1 3.66 dBm D1 3 66 dBm 4 [T1] -54.90 dBm 2.39000 GHz 5 [T1] -49.35 dBm 2.37700 GHz [T1] -48.34 dBm 23.11477 GHz -10 -10 D2 -16.34 dBm D2 -16 34 dBm -20 -20 -30 -30 -40 -40 -50 -50 -60 -60 -70 --74.8 -74.8-I Stop 25 GHz 10 MHz/ 1 2.497 GHz/ Center 2.358 GHz Span 100 MHz Start 30 MHz Hopping disabled_High Channel RBW 100 kHz VBW 300 kHz SWT 20 ms RBW 100 kHz VBW 300 kHz SWT 2.5 s [T1] MP VIEW [T2] MP VIEW [T1] MP VIEW [T2] MP VIEW Marker 1 [T1] Marker 1 [T1] 2.43 dBm 2.47706 GHz Marker 2 [T1] -48.73 dBm 22.95870 GHz Marker 3 [T1] -49.32 dBm 23.08355 GHz Marker 4 [T1] -49.12 dBm 24.66291 GHz rker 1 [T1] 2.48015 GHz .48015 GHz .54.46 dBm 2.48350 GHz rker 3 [T1] .50.23 dBm 2.49405 GHz rker 4 [T1] .52.46 dBm Marker 1 [T1] Ref 25.2 dBn Ref 25.2 dBm Att 20 dB Att 20 dB 25.2 20 25.2 Offset 15.2 dB Offset 15.2 dB 20 10 10 1 D1 2.70 dBm dBm -52.46 dBm 2.50000 GHz n -10 -10 D2 -17 D2 -17.30 dBm 0 dBm -20 -20 -30 -31 -40 -40 -50 -51 ų. -60 -60 -70 -74.8-74.8-1 10 MHz/ I Span 100 MHz I Stop 25 GHz 2 497 GHz/ Start 30 MHz Center 2 5242 GHz А n A Hopping enabled_High Channel Hopping enabled_Low Channel Marker 1 [71] 4.47 dBm 2.403994 GHz Marker 2 [71] 50.77 dBm 2.40000 GHz Marker 1 [71] 2.39000 GHz Deta 4 [71] S3.18.46 RBW 100 kHz VBW 300 kHz SWT 10 ms RBW 100 kHz VBW 300 kHz SWT 10 ms Aarker 1 [T1] 4.45 dBm 2.475803 GHz Aarker 2 [T1] -50.92 dBm 2.483500 GHz Aarker 3 [T1] -49.96 dBm 2.500000 GHz belta 4 [T1] [T1] MP VIEW [T2] MP VIEW [T1] MP VIEW [T2] MP VIEW Marker 1 [T1] 25.2 - Ref 25.2 dBm Att 20 dB Att 20 dB 25.2 Ref 25.2 dBm Offset 15.2 dB Offset 15.2 dB 20 20 10 10 0-114.45 dBm D1 4.47 dBm Delta 4 IT11 1] 53.26 dB 8.493590 MHz -10 -10 52.85 dB -32.051282 MHz D2 -15.53 dBm D2 - 15 55 dBm -20 -21 -30 -30 -40 -4 -50 -50 -60 -60 -70 --74.8 --70 ---74.8 --10 MHz/ Span 100 MHz Center 2.358 GHz Span 100 MHz Center 2.5242 GHz 10 MHz/ A D A

5. PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180

Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Lab: Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

7. APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END---