8.5 Radiated spurious emissions

■ Test Requirements and limit, §15.247(d), §15.205, §15.209

In any 100 kHz bandwidth outside the operating frequency band, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 KHz bandwidth within the band. In case the emission fall within the restricted band specified on 15.205(a) and (b), then the 15.209(a) limit in the table below has to be followed.

Report No.: DRTFCC2007-0191

• FCC Part 15.209(a) and (b)

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
0.009 - 0.490	2400/F (kHz)	300
0.490 – 1.705	24000/F (kHz)	30
1.705 – 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~ 12.52025	149.9 ~ 150.05	1645.5 ~ 1646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.57675 ~ 12.57725	156.52475 ~	1660 ~ 1710	8.025 ~ 8.5	22.01 ~ 23.12
4.17725 ~ 4.17775	13.36 ~ 13.41	156.52525	1718.8 ~ 1722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.20725 ~ 4.20775	16.42 ~ 16.423	156.7 ~ 156.9	2200 ~ 2300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.69475 ~ 16.69525	162.0125 ~ 167.17	2310 ~ 2390	10.6 ~ 12.7	36.43 ~ 36.5
6.26775 ~ 6.26825	16.80425 ~ 16.80475	167.72 ~ 173.2	2483.5 ~ 2500	13.25 ~ 13.4	Above 38.6
6.31175 ~ 6.31225	25.5 ~ 25.67	240 ~ 285	2655 ~ 2900		
8.291 ~ 8.294	37.5 ~ 38.25	322 ~ 335.4	3260 ~ 3267		
8.362 ~ 8.366	73 ~ 74.6	399.90 ~ 410	3332 ~ 3339		
8.37625 ~ 8.38675	74.8 ~ 75.2	608 ~ 614	3345.8 ~ 3358		
		960 ~ 1240	3600 ~ 4400		

• FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

■ Test Configuration

Refer to the APPENDIX I.

■ Test Procedure

1. The EUT is placed on a non-conductive table, emission measurements at below 1 GHz, the table height is 80 cm and above 1 GHz, the table height is 1.5 m.

Report No.: DRTFCC2007-0191

- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 1 or 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- KDB558074 D01v05r02 Section 8.6
- ANSI C63.10-2013 Section 11.12

1. Frequency Range Below 1 GHz

RBW = As specified in below table, VBW ≥ 3 x RBW, Sweep = Auto, Detector = Peak, Trace mode = Max Hold until the trace stabilizes.

Frequency	RBW
9 kHz	200 - 300 Hz
0.15 - 30 MHz	9 -10 kHz
30 - 1000 MHz	100 - 120 kHz

2. Frequency Range > 1 GHz

Peak Measurement

RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Sweep time = Auto, Trace mode = Max Hold until the trace stabilizes Average Measurement

- 1. RBW = 1 MHz (unless otherwise specified).
- 2. VBW ≥ 1/T
- 3. Detector = Peak
- 4. Trace mode = max hold
- 5. Averaging type = voltage
- 6. Sweep time = auto.
- 7. Allow max hold to run for at least [50 x (1/D) traces.

Duty Cycle Correction factor

Test Mode	Date rate	T _{on} (ms)	T _{on+off} (ms)	$D = T_{on} / (T_{on+off})$	1/T (kHz)
TM 1	11 Mbps	0.947	2.176	0.4352	1.06
TM 2	54 Mbps	0.175	1.760	0.0994	5.71
TM 3	MCS 7	0.164	2.208	0.0743	6.10
TM 4	MCS 7	0.100	2.316	0.0432	10.00

Note1: Where, T= Transmission duration / D= Duty cycle

Note2: Please refer to the appendix II for duty cycle plots.

■ Test Results: Comply

- Tested Power Supply: 12 V

Radiated Spurious Emissions data(9 kHz ~ 1 GHz) : TM 1

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	62.98	V	X	PK	45.10	-9.80	N/A	N/A	35.30	40.00	4.70
	106.63	Н	Х	PK	50.60	-10.50	N/A	N/A	40.10	43.50	3.40
	201.69	Н	Х	QP	46.90	-10.00	N/A	N/A	36.90	43.50	6.60
Lowest	206.86	Н	Х	PK	48.10	-7.90	N/A	N/A	40.20	46.00	5.80
	320.03	Н	Х	PK	46.80	-6.20	N/A	N/A	40.60	46.00	5.40
	480.00	V	Х	QP	46.10	-1.80	N/A	N/A	44.30	46.00	1.70
	-	-	-	-	-	-	-	-	-	-	-

Report No.: DRTFCC2007-0191

Note.

- 1. No other unwanted emissions were found above listed frequencies.
- 2. Information of Distance Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

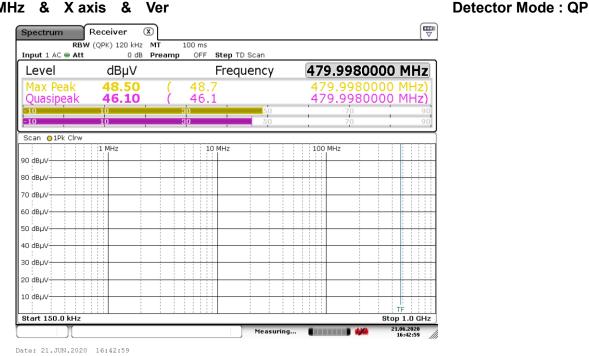
In this case, the distance factor is applied to the result.

- Calculation of distance factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.


3. Sample Calculation.

 $\label{eq:margin} \textit{Margin} = \textit{Limit} - \textit{Result} \quad / \quad \textit{Result} = \textit{Reading} + \textit{T.F+} \ \textit{DCCF} + \textit{DCF} \quad / \quad \textit{T.F} = \textit{AF} + \textit{CL} - \textit{AG}$

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain,

DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

802.11b & 2412MHz & Xaxis & Ver

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2 388.26	Н	Х	PK	51.30	4.79	N/A	N/A	56.09	74.00	17.91
Lowest	2 387.86	Н	Х	AV	41.15	4.79	N/A	N/A	45.94	54.00	8.06
Lowest	4 824.19	V	Х	PK	55.04	0.93	N/A	N/A	55.97	74.00	18.03
	4 824.02	V	Х	AV	49.51	0.93	N/A	N/A	50.44	54.00	3.56
Middle	4 873.80	V	Х	PK	54.38	1.17	N/A	N/A	55.55	74.00	18.45
ivildale	4 873.87	V	Х	AV	48.38	1.17	N/A	N/A	49.55	54.00	4.45
	2 483.85	Н	Х	PK	51.56	5.26	N/A	N/A	56.82	74.00	17.18
Highoot	2 484.53	Н	Х	AV	42.39	5.27	N/A	N/A	47.66	54.00	6.34
Highest	4 924.20	V	Х	PK	55.46	1.45	N/A	N/A	56.91	74.00	17.09
	4 924.01	V	Х	AV	48.70	1.45	N/A	N/A	50.15	54.00	3.85

Report No.: DRTFCC2007-0191

Note.

In this case, the distance factor is applied to the result.

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

3. Sample Calculation.

 $\begin{aligned} &\text{Margin = Limit - Result} &\text{/} &\text{Result = Reading + T.F+ DCCF + DCF} &\text{/} &\text{T.F = AF + CL - AG} \\ &\text{Where, T.F = Total Factor,} &\text{AF = Antenna Factor,} &\text{CL = Cable Loss,} &\text{AG = Amplifier Gain,} \end{aligned}$

^{1.} The radiated emissions were investigated up to 25 GHz. And no other spurious and harmonic emissions were found above listed frequencies.

^{2.} Information of Distance Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

⁻ Calculation of distance factor

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2 389.72	Н	Z	PK	58.90	4.80	N/A	N/A	63.70	74.00	10.30
Lowest	2 389.76	Н	Z	AV	46.11	4.80	N/A	N/A	50.91	54.00	3.09
Lowest	4 823.86	V	Х	PK	52.11	0.93	N/A	N/A	53.04	74.00	20.96
	4 823.98	V	Х	AV	44.99	0.93	N/A	N/A	45.92	54.00	8.08
Middle	4 874.29	V	Х	PK	50.68	1.18	N/A	N/A	51.86	74.00	22.14
ivildale	4 873.92	V	Х	AV	42.35	1.17	N/A	N/A	43.52	54.00	10.48
	2 483.77	Н	Z	PK	56.84	5.25	N/A	N/A	62.09	74.00	11.91
Highoot	2 483.54	Н	Z	AV	45.91	5.25	N/A	N/A	51.16	54.00	2.84
Highest	4 923.87	V	Х	PK	53.36	1.45	N/A	N/A	54.81	74.00	19.19
	4 923.84	V	Х	AV	44.44	1.44	N/A	N/A	45.88	54.00	8.12

Report No.: DRTFCC2007-0191

Note.

 $\label{eq:margin} \textit{Margin} = \textit{Limit} - \textit{Result} \quad / \quad \textit{Result} = \textit{Reading} + \textit{T.F+} \ \textit{DCCF} + \textit{DCF} \quad / \quad \textit{T.F} = \textit{AF} + \textit{CL} - \textit{AG}$

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain,

^{1.} The radiated emissions were investigated up to 25 GHz. And no other spurious and harmonic emissions were found above listed frequencies.

^{2.} Information of Distance Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance factor is applied to the result.

⁻ Calculation of distance factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

^{3.} Sample Calculation.

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2 388.91	Н	Z	PK	59.41	4.80	N/A	N/A	64.21	74.00	9.79
Lowest	2 387.94	Н	Z	AV	45.75	4.79	N/A	N/A	50.54	54.00	3.46
Lowest	4 824.19	V	Х	PK	51.91	0.93	N/A	N/A	52.84	74.00	21.16
	4 824.04	V	Х	AV	44.95	0.93	N/A	N/A	45.88	54.00	8.12
Middle	4 874.10	V	Х	PK	50.70	1.18	N/A	N/A	51.88	74.00	22.12
ivildale	4 873.87	V	Х	AV	42.51	1.17	N/A	N/A	43.68	54.00	10.32
	2 484.44	Н	Z	PK	55.97	5.26	N/A	N/A	61.23	74.00	12.77
Highoot	2 484.73	Н	Z	AV	45.01	5.27	N/A	N/A	50.28	54.00	3.72
Highest	4 923.96	V	Х	PK	50.77	1.45	N/A	N/A	52.22	74.00	21.78
	4 924.23	V	Х	AV	41.88	1.45	N/A	N/A	43.33	54.00	10.67

Report No.: DRTFCC2007-0191

Note.

 $\label{eq:margin} \textit{Margin} = \textit{Limit} - \textit{Result} \quad / \quad \textit{Result} = \textit{Reading} + \textit{T.F+} \ \textit{DCCF} + \textit{DCF} \quad / \quad \textit{T.F} = \textit{AF} + \textit{CL} - \textit{AG}$

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain,

^{1.} The radiated emissions were investigated up to 25 GHz. And no other spurious and harmonic emissions were found above listed frequencies.

^{2.} Information of Distance Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance factor is applied to the result.

⁻ Calculation of distance factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

^{3.} Sample Calculation.

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2 388.30	Н	Z	PK	56.86	4.79	N/A	N/A	61.65	74.00	12.35
Lowest	2 387.16	Н	Z	AV	44.35	4.79	N/A	N/A	49.14	54.00	4.86
Lowest	4 843.50	V	Х	PK	50.82	1.08	N/A	N/A	51.90	74.00	22.10
	4 844.10	V	Х	AV	43.44	1.09	N/A	N/A	44.53	54.00	9.47
Middle	4 873.80	V	Х	PK	50.66	1.17	N/A	N/A	51.83	74.00	22.17
ivildale	4 873.88	V	X	AV	42.43	1.17	N/A	N/A	43.60	54.00	10.40
	2 485.86	Н	Z	PK	53.83	5.29	N/A	N/A	59.12	74.00	14.88
Highoot	2 484.26	Н	Z	AV	43.95	5.26	N/A	N/A	49.21	54.00	4.79
Highest	4 904.33	V	Х	PK	50.21	1.36	N/A	N/A	51.57	74.00	22.43
	4 903.84	V	Х	AV	40.85	1.35	N/A	N/A	42.20	54.00	11.80

Report No.: DRTFCC2007-0191

Note.

 $\label{eq:margin} \textit{Margin} = \textit{Limit} - \textit{Result} \quad / \quad \textit{Result} = \textit{Reading} + \textit{T.F+} \ \textit{DCCF} + \textit{DCF} \quad / \quad \textit{T.F} = \textit{AF} + \textit{CL} - \textit{AG}$

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain,

^{1.} The radiated emissions were investigated up to 25 GHz. And no other spurious and harmonic emissions were found above listed frequencies.

^{2.} Information of Distance Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance factor is applied to the result.

⁻ Calculation of distance factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

^{3.} Sample Calculation.

- Tested Power Supply: 24 V

Radiated Spurious Emissions data(9 kHz ~ 1 GHz) : <u>TM 1</u>

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	109.54	Н	Х	PK	48.50	-10.10	N/A	N/A	38.40	43.50	5.10
	132.82	Н	Х	PK	46.00	-8.00	N/A	N/A	38.00	43.50	5.50
	200.04	Н	Х	QP	46.90	-9.90	N/A	N/A	37.00	43.50	6.50
Lowest	241.61	Н	Х	QP	46.40	-8.30	N/A	N/A	38.10	46.00	7.90
	479.99	Н	Х	QP	44.30	-1.80	N/A	N/A	42.50	46.00	3.50
	480.00	V	Х	QP	46.70	-1.80	N/A	N/A	44.90	46.00	1.10
	-	-	-	-	-	-	-	-	-	-	-

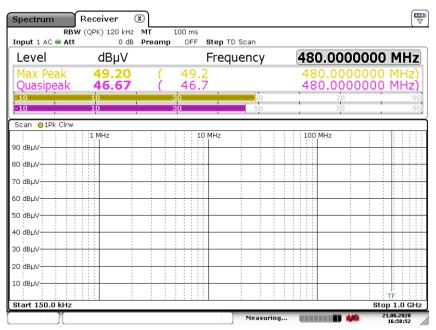
Report No.: DRTFCC2007-0191

Note.

- 1. No other unwanted emissions were found above listed frequencies.
- 2. Information of Distance Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance factor is applied to the result.


- Calculation of distance factor
- At frequencies below 30 MHz = 40 log(tested distance / specified distance)
- At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)
- When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.
- 3. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F+ DCCF + DCF / T.F = AF + CL - AG

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain,

DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

802.11b & 2412MHz & Xaxis & Ver

Date: 21.JUN.2020 16:58:52

Detector Mode: QP

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2 389.56	Н	Х	PK	51.09	4.80	N/A	N/A	55.89	74.00	18.11
Lowest	2 389.63	Н	Х	AV	41.65	4.80	N/A	N/A	46.45	54.00	7.55
Lowest	4 824.28	V	Х	PK	53.73	0.93	N/A	N/A	54.66	74.00	19.34
	4 823.94	V	Х	AV	47.78	0.93	N/A	N/A	48.71	54.00	5.29
Middle	4 874.40	V	Х	PK	53.17	1.18	N/A	N/A	54.35	74.00	19.65
ivildale	4 873.97	V	Х	AV	46.72	1.17	N/A	N/A	47.89	54.00	6.11
	2 483.55	Н	Х	PK	52.55	5.25	N/A	N/A	57.80	74.00	16.20
Llimboot	2 483.92	Н	Х	AV	42.10	5.26	N/A	N/A	47.36	54.00	6.64
Highest .	4 923.75	V	Х	PK	55.33	1.44	N/A	N/A	56.77	74.00	17.23
	4 923.89	V	Х	AV	47.64	1.45	N/A	N/A	49.09	54.00	4.91

Report No.: DRTFCC2007-0191

Note.

In this case, the distance factor is applied to the result.

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

3. Sample Calculation.

 $\begin{aligned} &\text{Margin = Limit - Result} &\text{/} &\text{Result = Reading + T.F+ DCCF + DCF} &\text{/} &\text{T.F = AF + CL - AG} \\ &\text{Where, T.F = Total Factor,} &\text{AF = Antenna Factor,} &\text{CL = Cable Loss,} &\text{AG = Amplifier Gain,} \end{aligned}$

^{1.} The radiated emissions were investigated up to 25 GHz. And no other spurious and harmonic emissions were found above listed frequencies.

^{2.} Information of Distance Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

⁻ Calculation of distance factor

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2 389.72	Н	Z	PK	56.34	4.80	N/A	N/A	61.14	74.00	12.86
Lowest	2 389.46	Н	Z	AV	44.99	4.80	N/A	N/A	49.79	54.00	4.21
Lowest	4 824.07	V	Х	PK	52.06	0.93	N/A	N/A	52.99	74.00	21.01
	4 823.97	V	X	AV	44.93	0.93	N/A	N/A	45.86	54.00	8.14
Middle	4 874.17	V	Х	PK	50.63	1.18	N/A	N/A	51.81	74.00	22.19
ivildale	4 873.88	V	X	AV	42.59	1.17	N/A	N/A	43.76	54.00	10.24
	2 484.34	Н	Z	PK	57.19	5.26	N/A	N/A	62.45	74.00	11.55
Highoot	2 483.73	Н	Z	AV	45.77	5.25	N/A	N/A	51.02	54.00	2.98
Highest	4 924.16	V	Х	PK	51.88	1.45	N/A	N/A	53.33	74.00	20.67
	4 924.00	V	X	AV	44.48	1.45	N/A	N/A	45.93	54.00	8.07

Report No.: DRTFCC2007-0191

Note.

 $\label{eq:margin} \textit{Margin} = \textit{Limit} - \textit{Result} \quad / \quad \textit{Result} = \textit{Reading} + \textit{T.F+} \ \textit{DCCF} + \textit{DCF} \quad / \quad \textit{T.F} = \textit{AF} + \textit{CL} - \textit{AG}$

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain,

^{1.} The radiated emissions were investigated up to 25 GHz. And no other spurious and harmonic emissions were found above listed frequencies.

^{2.} Information of Distance Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance factor is applied to the result.

⁻ Calculation of distance factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

^{3.} Sample Calculation.

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
Lowest	2 388.85	Н	Z	PK	57.80	4.80	N/A	N/A	62.60	74.00	11.40
	2 389.46	Н	Z	AV	45.52	4.80	N/A	N/A	50.32	54.00	3.68
	4 823.86	V	Х	PK	51.56	0.93	N/A	N/A	52.49	74.00	21.51
	4 823.97	V	Х	AV	45.16	0.93	N/A	N/A	46.09	54.00	7.91
Middle	4 874.27	V	Х	PK	51.01	1.18	N/A	N/A	52.19	74.00	21.81
	4 874.18	V	Х	AV	42.70	1.18	N/A	N/A	43.88	54.00	10.12
Highest	2 484.15	Н	Z	PK	58.87	5.26	N/A	N/A	64.13	74.00	9.87
	2 483.57	Н	Z	AV	45.16	5.25	N/A	N/A	50.41	54.00	3.59
	4 923.72	V	Х	PK	51.60	1.44	N/A	N/A	53.04	74.00	20.96
	4 923.81	V	Х	AV	41.93	1.44	N/A	N/A	43.37	54.00	10.63

Report No.: DRTFCC2007-0191

Note.

In this case, the distance factor is applied to the result.

 $\label{eq:margin} \textit{Margin} = \textit{Limit} - \textit{Result} \quad / \quad \textit{Result} = \textit{Reading} + \textit{T.F+} \ \textit{DCCF} + \textit{DCF} \quad / \quad \textit{T.F} = \textit{AF} + \textit{CL} - \textit{AG}$

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain,

^{1.} The radiated emissions were investigated up to 25 GHz. And no other spurious and harmonic emissions were found above listed frequencies.

^{2.} Information of Distance Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

⁻ Calculation of distance factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

^{3.} Sample Calculation.

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
Lowest	2 388.42	Н	Z	PK	58.35	4.80	N/A	N/A	63.15	74.00	10.85
	2 387.56	Н	Z	AV	44.47	4.79	N/A	N/A	49.26	54.00	4.74
	4 843.91	V	Х	PK	50.85	1.09	N/A	N/A	51.94	74.00	22.06
	4 843.94	V	Х	AV	43.18	1.09	N/A	N/A	44.27	54.00	9.73
Middle	4 873.69	V	Х	PK	50.67	1.17	N/A	N/A	51.84	74.00	22.16
	4 874.25	V	X	AV	42.93	1.18	N/A	N/A	44.11	54.00	9.89
Highest	2 485.60	Н	Z	PK	53.13	5.28	N/A	N/A	58.41	74.00	15.59
	2 484.36	Н	Z	AV	44.53	5.26	N/A	N/A	49.79	54.00	4.21
	4 904.06	V	Х	PK	50.10	1.35	N/A	N/A	51.45	74.00	22.55
	4 904.18	V	Х	AV	40.48	1.36	N/A	N/A	41.84	54.00	12.16

Report No.: DRTFCC2007-0191

Note.

In this case, the distance factor is applied to the result.

 $\label{eq:margin} \textit{Margin} = \textit{Limit} - \textit{Result} \quad / \quad \textit{Result} = \textit{Reading} + \textit{T.F+} \ \textit{DCCF} + \textit{DCF} \quad / \quad \textit{T.F} = \textit{AF} + \textit{CL} - \textit{AG}$

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain,

^{1.} The radiated emissions were investigated up to 25 GHz. And no other spurious and harmonic emissions were found above listed frequencies.

^{2.} Information of Distance Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

⁻ Calculation of distance factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

^{3.} Sample Calculation.

8.6 Power-line conducted emissions

■ Test Requirements and limit, §15.207

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network(LISN).

Report No.: DRTFCC2007-0191

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Frequency Range	Conducted Limit (dBuV)					
(MHz)	Quasi-Peak	Average				
0.15 ~ 0.5	66 to 56 *	56 to 46 *				
0.5 ~ 5	56	46				
5 ~ 30	60	50				

^{*} Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

■ Test Procedure

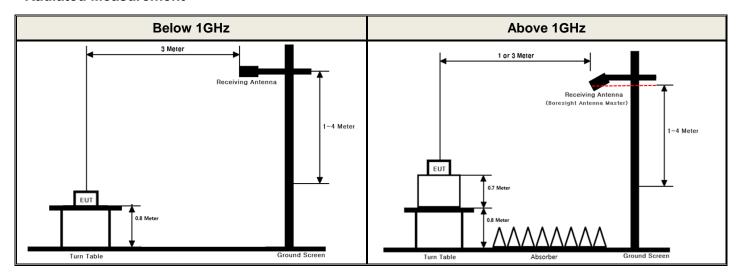
- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to the test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.

■ Test Results: NA

9. LIST OF TEST EQUIPMENT

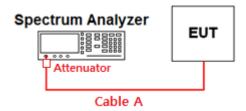
Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	20/02/26	21/02/26	MY46471251
Spectrum Analyzer	Agilent Technologies	N9020A	19/12/16	20/12/16	MY48011700
Spectrum Analyzer	Agilent Technologies	N9020A	19/06/26	20/06/26	US47360812
DC Power Supply	Agilent Technologies	66332A	19/06/25	20/06/25	US37473422
DC Power Supply	Agilent Technologies	6654A	19/06/27	20/06/27	MY40002935
DC Power Supply	SM techno	SDP30-5D	19/06/24	20/06/24	305DMG305
Multimeter	FLUKE	17B	19/12/16	20/12/16	26030065WS
Signal Generator	Rohde Schwarz	SMBV100A	19/12/16	20/12/16	255571
Signal Generator	ANRITSU	MG3695C	19/12/16	20/12/16	173501
Thermohygrometer	BODYCOM	BJ5478	19/12/18	20/12/18	120612-1
Thermohygrometer	BODYCOM	BJ5478	19/12/18	20/12/18	120612-2
Thermohygrometer	BODYCOM	BJ5478	19/06/25	20/06/25	N/A
Loop Antenna	Schwarzbeck	FMZB1513	20/02/19	22/02/19	1513-128
BILOG ANTENNA	Schwarzbeck	VULB 9160	19/04/23	21/04/23	9160-3362
Horn Antenna	ETS-Lindgren	3115	20/01/30	22/01/30	6419
Horn Antenna	A.H.Systems Inc.	SAS-574	19/07/03	21/07/03	155
PreAmplifier	tsj	MLA-0118-B01-40	19/12/16	20/12/16	1852267
PreAmplifier	tsj	MLA-1840-J02-45	19/06/27	20/06/27	16966-10728
PreAmplifier	H.P	8447D	19/12/16	20/12/16	2944A07774
High Pass Filter	Wainwright Instruments	WHKX12-935- 1000-15000-40SS	19/06/26	20/06/26	8
High Pass Filter	Wainwright Instruments	WHKX10-2838- 3300-18000-60SS	19/06/26	20/06/26	1
High Pass Filter	Wainwright Instruments	WHNX8.0/26.5-6SS	19/06/27	20/06/27	3
Attenuator	Hefei Shunze	SS5T2.92-10-40	19/06/27	20/06/27	16012202
Attenuator	SRTechnology	F01-B0606-01	19/06/27	20/06/27	13092403
Attenuator	Aeroflex/Weinschel	20515	19/06/27	20/06/27	Y2370
Attenuator	SMAJK	SMAJK-2-3	19/06/27	20/06/27	2
Attenuator	SMAJK	SMAJK-50-10	19/06/25	20/06/25	15081903
Power Meter & Wide Bandwidth Sensor	Anritsu	ML2495A MA2490A	19/06/24	20/06/24	1306007 1249001
EMI Receiver	ROHDE&SCHWARZ	ESW44	19/07/30	20/07/30	101645
Cable	Junkosha	MWX241	20/01/13	21/01/13	G-04
Cable	Junkosha	MWX241	20/01/13	21/01/13	G-07
Cable	DT&C	Cable	20/01/13	21/01/13	G-13
Cable	DT&C	Cable	20/01/13	21/01/13	G-14
Cable	HUBER+SUHNER	SUCOFLEX 104	20/01/13	21/01/13	G-15
Cable	Radiall	TESTPRO3	20/01/16	21/01/16	M-01
Cable	Junkosha	MWX315	20/01/16	21/01/16	M-05
Cable	Junkosha	MWX221	20/01/16	21/01/16	M-06
Cable	Radiall	TESTPRO3	20/01/16	21/01/16	RF-92

Report No.: DRTFCC2007-0191


Note 1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017

Note 2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

APPENDIX I


Test set up diagrams

Radiated Measurement

Report No.: DRTFCC2007-0191

Conducted Measurement

Path loss information

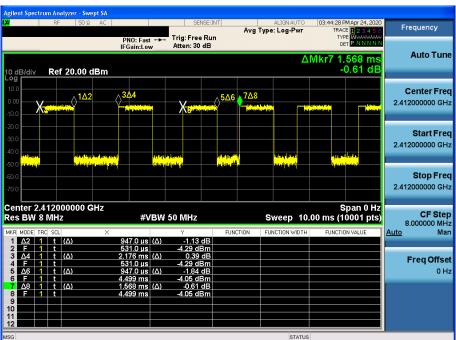
Frequency (GHz)	Path Loss (dB)	Frequency (GHz)	Path Loss (dB)
0.03	9.63	15	11.10
1	9.91	20	12.53
2 412 & 2 437 & 2 462	10.56	25	13.01
5	10.72	-	-
10	10.82	-	-

Note 1: The path loss from EUT to Spectrum analyzer was measured and used for test. Path loss (S/A's correction factor) = Cable A + Attenuator

APPENDIX II

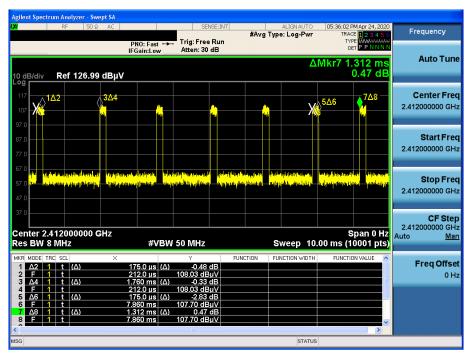
Duty cycle plots

Test Procedure

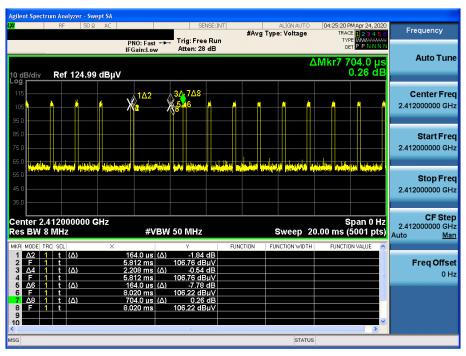

Duty Cycle was measured using section 6.0 b) of KDB558074 D01V05R02:

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW ≥ OBW if possible; otherwise, set RBW to the largest available value. Set VBW ≥ RBW. Set detector = peak or average.

Report No.: DRTFCC2007-0191

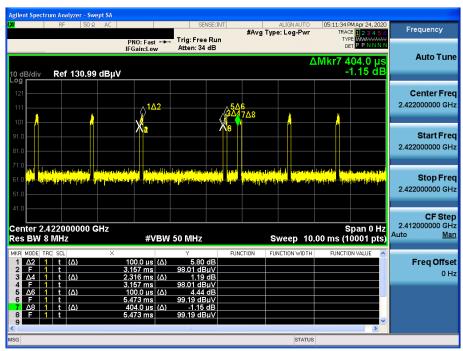

The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

Duty Cycle TM 1 & Lowest



Duty Cycle TM 2 & Lowest

Report No.: DRTFCC2007-0191

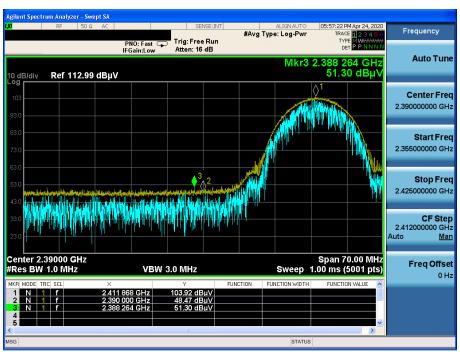


Duty Cycle TM 3 & Lowest

Duty Cycle TM 4 & Lowest

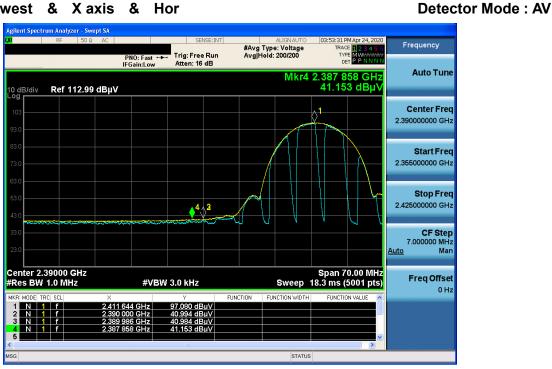
Report No.: DRTFCC2007-0191

Detector Mode: PK

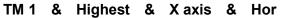


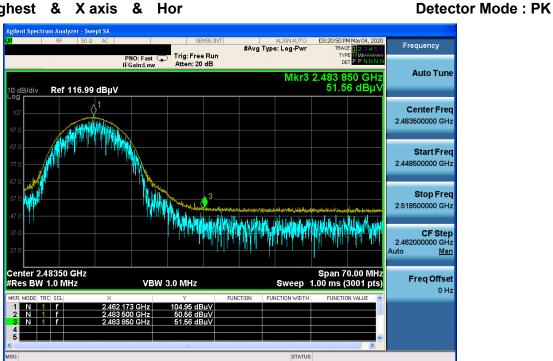
APPENDIX III

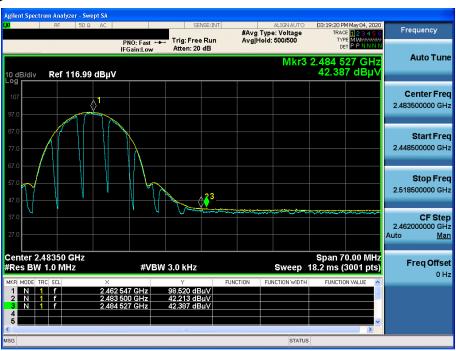
Unwanted Emissions (Radiated) Test Plot

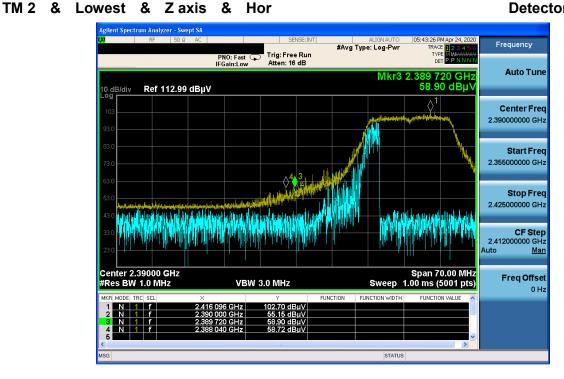

- Tested Power Supply: 12 V

TM 1 & Lowest & X axis & Hor

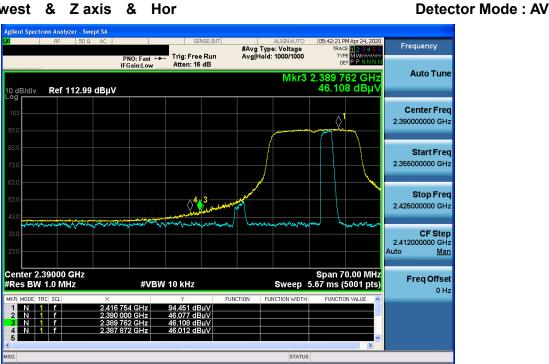

Report No.: DRTFCC2007-0191


TM 1 & Lowest & X axis & Hor

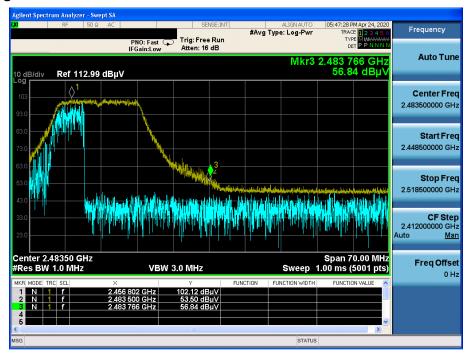

Detector Mode: AV



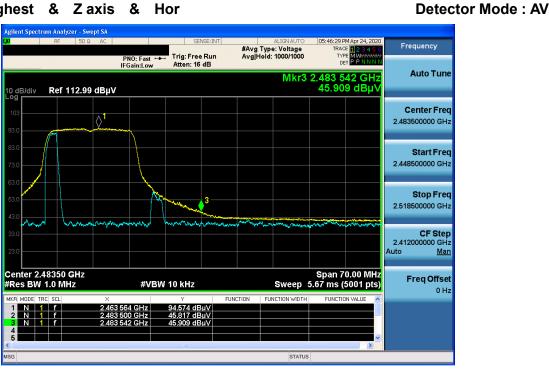
TM 1 & Highest & X axis & Hor



Detector Mode: PK

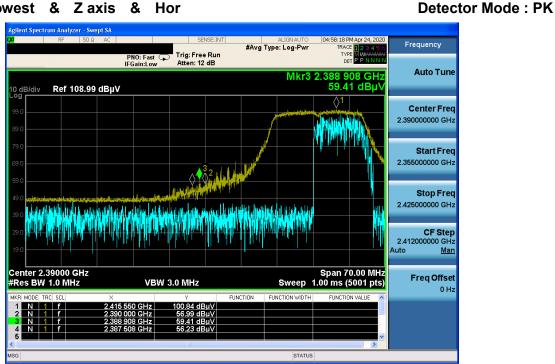

Report No.: DRTFCC2007-0191

TM 2 & Lowest & Zaxis & Hor


TM 2 & Highest & Zaxis & Hor

Detector Mode: PK

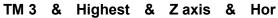
Report No.: DRTFCC2007-0191

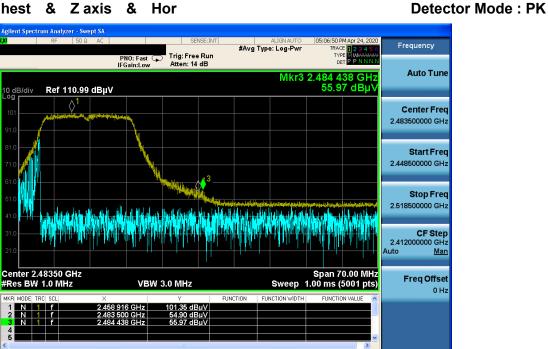

TM 2 & Highest & Zaxis & Hor

Detector Mode: AV

Report No.: DRTFCC2007-0191

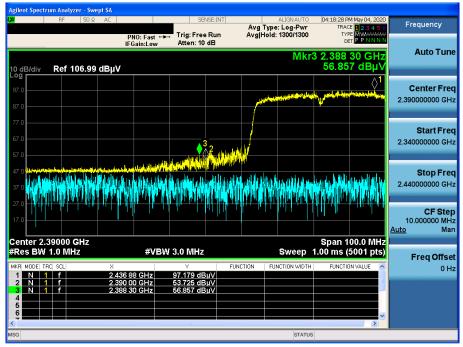
TM 3 & Lowest & Zaxis & Hor




TM 3 & Lowest & Zaxis & Hor

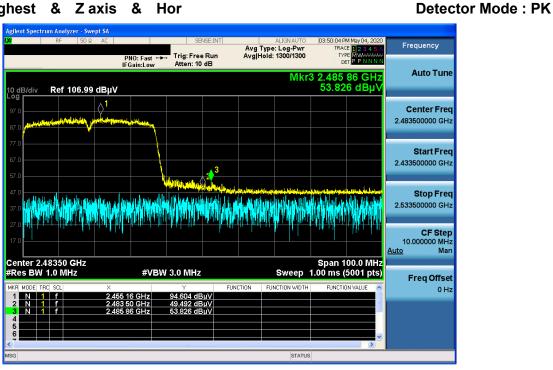
Detector Mode: AV

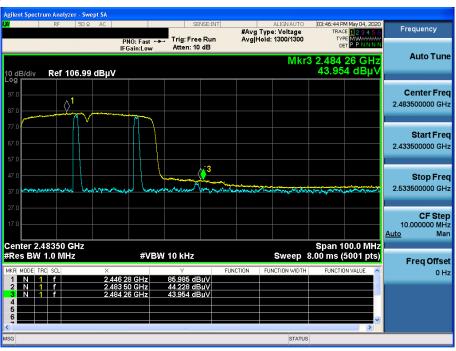
STATUS


TM 3 & Highest & Zaxis & Hor

TM 4 & Lowest & Zaxis & Hor

TM 4 & Lowest & Zaxis & Hor


Detector Mode: AV


Detector Mode: AV

TM 4 & Highest & Zaxis & Hor

TM 4 & Highest & Zaxis & Hor

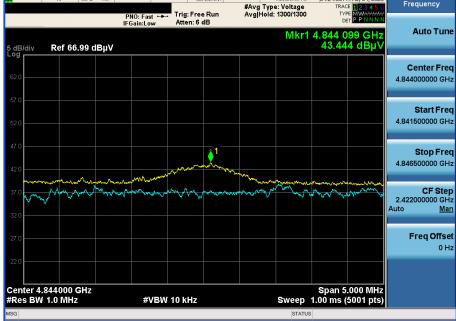
& Lowest & Xaxis & Ver TM 1

Report No.: DRTFCC2007-0191

TM 2 & Lowest & X axis & Ver

TM 3 & Lowest & X axis & Ver

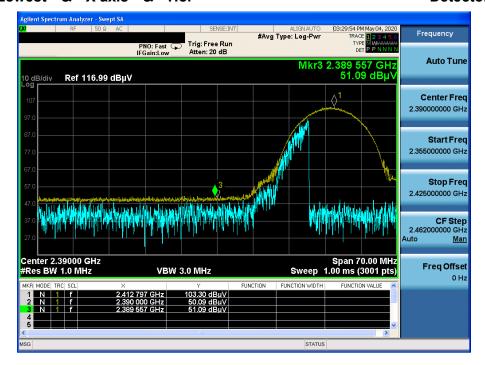
Detector Mode: AV



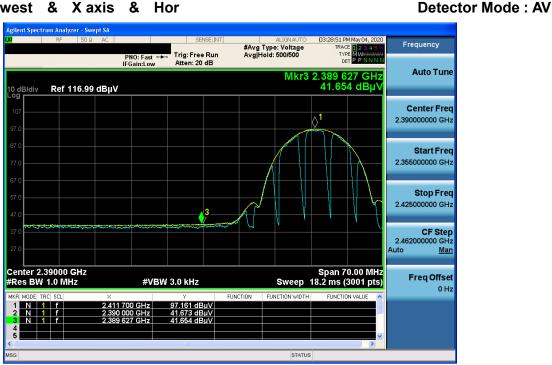
Report No.: DRTFCC2007-0191

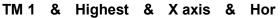
TM 4 & Lowest & X axis & Ver

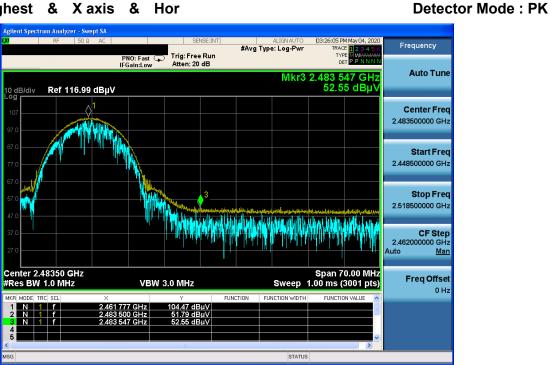
Frequency Auto Tune Center Freq 4.844000000 GHz

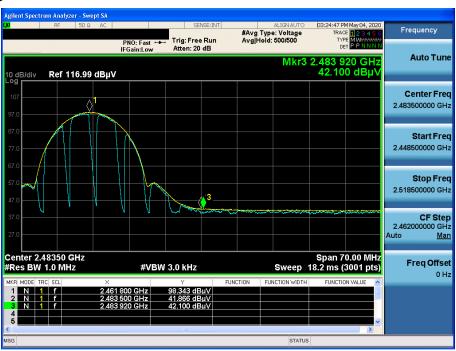

Detector Mode: AV

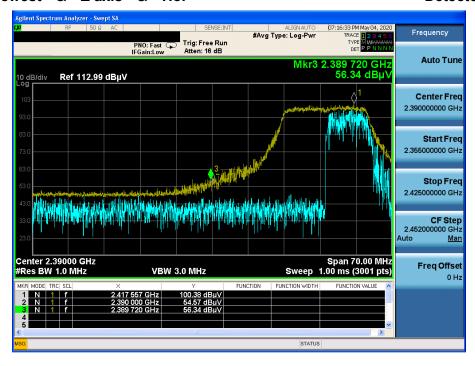
TM 1 & Lowest & X axis & Hor


- Tested Power Supply: 24 V

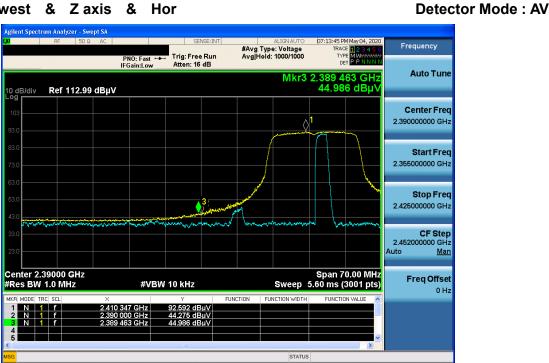

Report No.: DRTFCC2007-0191


TM 1 & Lowest & X axis & Hor


Detector Mode: AV

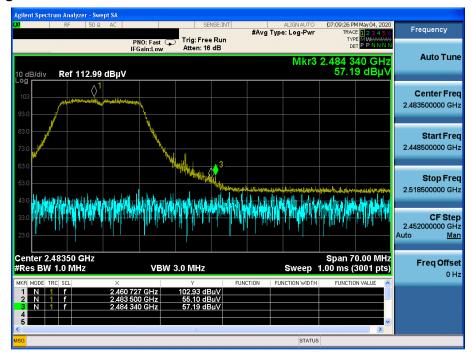


TM 1 & Highest & X axis & Hor


TM 2 & Lowest & Zaxis & Hor

Detector Mode: PK

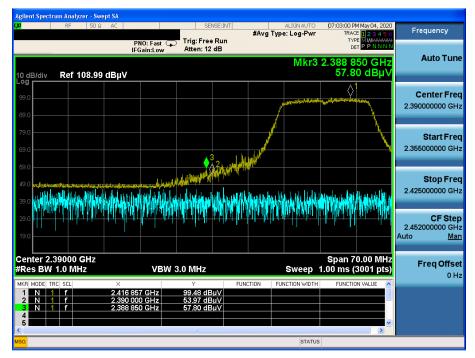
Report No.: DRTFCC2007-0191


TM 2 & Lowest & Zaxis & Hor

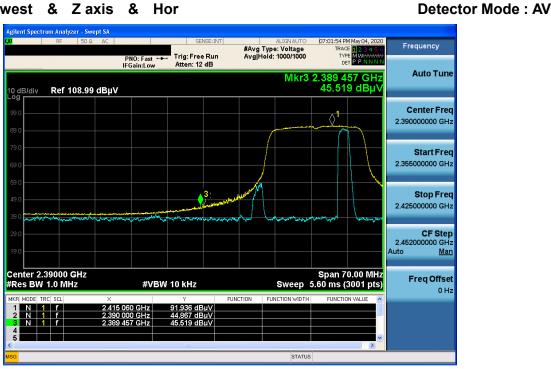
TM 2 & Highest & Zaxis & Hor


Detector Mode: PK

Detector Mode: AV

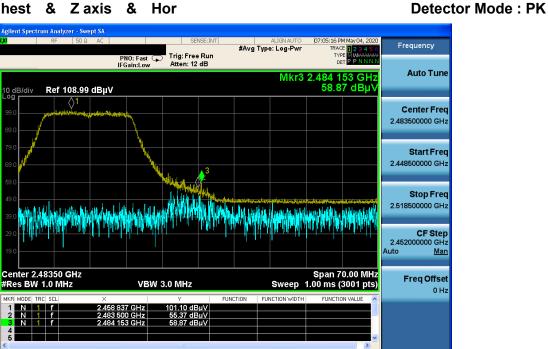

Report No.: DRTFCC2007-0191

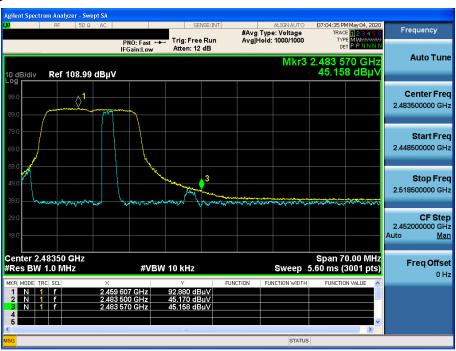
TM 2 & Highest & Zaxis & Hor


TM 3 & Lowest & Zaxis & Hor

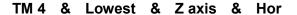
Detector Mode: PK

Report No.: DRTFCC2007-0191

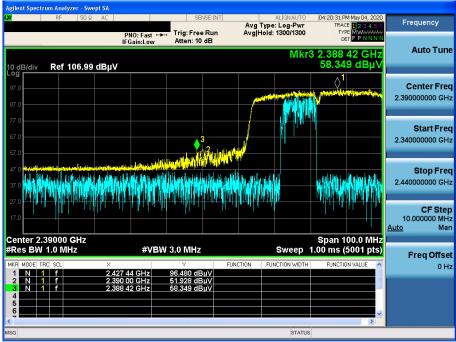

TM 3 & Lowest & Zaxis & Hor


STATUS

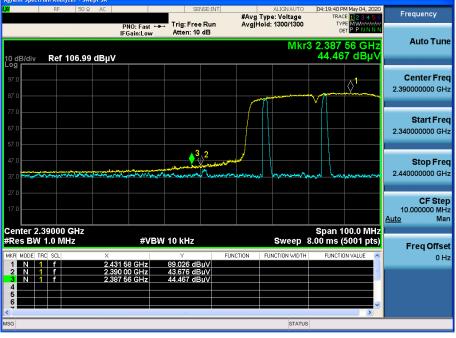
TM 3 & Highest & Zaxis & Hor

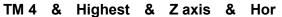


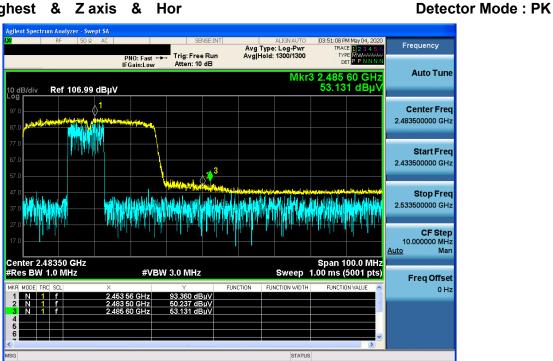
TM 3 & Highest & Zaxis & Hor

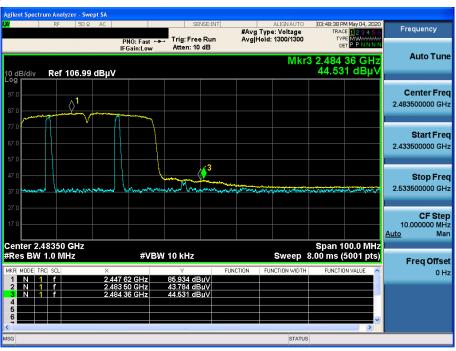


Detector Mode: AV




TM 4 & Lowest & Zaxis & Hor




Detector Mode: AV

TM 4 & Highest & Zaxis & Hor

Report No.: DRTFCC2007-0191

TM 1 & Highest & X axis & Ver

TM 2 & Highest & X axis & Ver

TM 3 & Lowest & X axis & Ver

Detector Mode: AV

Report No.: DRTFCC2007-0191

TM 4 & Lowest & X axis & Ver

