TEST REPORT

	DT&C Co., Ltd.		
UDIAL	42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664		
1. Report No: DRTFCC2203-0058	3		
2. Customer			
• Name (FCC) : Pittasoft Co., Ltd. / Na	me (IC) : PITTASOFT CO., LTD.		
Address (FCC) : A 4th floor, ABN Tow South Korea 13488	ver, 331, Pangyo-ro, Bundang-gu Seongnam-si, Gyeonggi-do		
Address (IC) : A 4th floor, ABN Tow 08506 Korea (Repu	ver, 331, Pangyo-ro, Bundang-gu, Seongnam-si Gyeonggi-do blic Of)		
3. Use of Report : FCC & IC Certification	ation		
4. Product Name / Model Name : Ca FCC ID : YCK-BV7 IC : 23402-BV7	ar dashcam / BlackVue 7		
5. FCC Regulation(s): Part 15.247 IC Standard(s): RSS-247 Issue 2, Test Method used: KDB558074 D	RSS-Gen Issue 5 01v05r02, ANSI C63.10-2013		
6. Date of Test : 2021.11.09 ~ 2021.	.12.17		
7. Location of Test : 🛛 Permanent	Testing Lab 🔲 On Site Testing		
8. Testing Environment : See appen	ded test report.		
9. Test Result : Refer to the attached	d test result.		
The results shown in this test report refe This test report is not related to KOLAS	er only to the sample(s) tested unless otherwise stated. accreditation.		
Affirmation	Reviewed by		
Name : SeungMin Gil	(Signature) Name : JaeJin Lee (Signature)		
2022.03.16.			
DT&C Co., Ltd.			

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description	Revised by	Reviewed by
DRTFCC2203-0058	Mar, 16. 2022	Initial issue	SeungMin Gil	JaeJin Lee

Table of Contents

1. General Information	. 4
1.1. Description of EUT	4
1.2. Declaration by the applicant / manufacturer	4
1.3. Testing Laboratory	5
1.4. Testing Environment	5
1.5. Measurement Uncertainty	5
1.6. Test Equipment List	6
2. Test Methodology	. 7
2.1 FUT Configuration	7
2.2 FIIT Evercise	7
23 General Test Procedures	7
2.4 Instrument Calibration	7
2.5. Description of Test Modes	7
3. Antenna Requirements	. 8
4. Summary of Test Results	. 9
5 Toot Dooult	10
5. Test Result	10
5.1. Maximum Peak Conducted Output Power	10
5.1.1. Test Setup	10
5.1.2. Test Procedures	10
5.1.3. Test Results	10
5.2.6 dB Bandwidth	15
5.2.1. Test Setup	15
5.2.2. Test Procedures	15
5.2.3. Test Results	15
5.3. Power Spectral Density	20
5.3.1. Test Setup	20
5.3.2. Test Procedules	20
5.3.3. Test Results	20
5.4. Unwanted Emissions (Conducted)	25
5.4.1. Test Setup	25
5.4.2. Test Procedules	25
5.5. Unwanted Emissions (Radiated)	20 12
5.5.1 Tost Sofun	4Ζ ΔΔ
5.5.2 Test Procedures	44
5.5.3 Test Results	45
5.6 AC Power-I ine Conducted Emissions	40
5.6.1 Test Setup	47
5.6.2 Test Procedures	47
5.6.3 Test Results	47
5.7. Occupied Bandwidth	48
5.7.1. Test Setup	48
5.7.2. Test Procedures	48
5.7.3. Test Results	48
	53
	54
	55
	22

1. General Information

1.1. Description of EUT

Equipment Class	Digital Transmission System (DTS)	
Product Name	Car dashcam	
Model Name	BlackVue 7	
Add Model Name	BlackVue 7-2CH, BlackVue 7-1CH, BlackVue 7-2CH IR, BlackVue 7-2CH Truck, BlackVue 7-2CH DMS, BlackVue 7-2CH ELD, BlackVue 7-1CH ELD	
Firmware Version Identification Number	V1.000	
EUT Serial Number	Radiated: BK7NS3K9E00017, Conducted: BK7NS3K9E00051	
Power Supply	DC 12 V, DC 24 V	
Frequency Range	2 402 MHz ~ 2 480 MHz	
Max. RF Output Power	5.17 dBm (0.003 W)	
Modulation Technique (Data rate)	GFSK (1Mbps)	
Antenna Specification	Antenna Type: CHIP Antenna Gain: 2.44 dBi (PK)	

1.2. Declaration by the applicant / manufacturer

N/A

1.3. Testing Laboratory

DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042.

The test site complies with the requirements of Part 2.948 according to ANSI C63.4-2014.

- FCC & IC MRA Designation No. : KR0034

- ISED#: 5740A

www.dtnc.net		
Telephone	:	+ 82-31-321-2664
FAX	:	+ 82-31-321-1664

1.4. Testing Environment

Ambient Condition		
 Temperature 	+22 °C ~ +26 °C	
 Relative Humidity 	+40 % ~ +46 %	

1.5. Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014 and ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Parameter	Measurement uncertainty
Antenna-port conducted emission	1.0 dB (The confidence level is about 95 %, $k = 2$)
Radiated emission (1 GHz Below)	4.9 dB (The confidence level is about 95 %, $k = 2$)
Radiated emission (1 GHz ~ 18 GHz)	5.0 dB (The confidence level is about 95 %, $k = 2$)
Radiated emission (18 GHz Above)	5.3 dB (The confidence level is about 95 %, $k = 2$)

1.6. Test Equipment List

Туре	Manufacturer	Model	Cal.Date (vy/mm/dd)	Next.Cal.Date (vy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	21/06/24	22/06/24	US47360812
Spectrum Analyzer	Agilent Technologies	N9020A	21/08/30	22/08/30	MY46471622
			20/12/16	21/12/16	
Spectrum Analyzer	Agilent Technologies	N9020A	21/12/16	22/12/16	MY48010133
			20/12/16	21/12/16	
DC Power Supply	SM techno	SDP30-5D	21/12/16	22/12/16	- 305DKA013
DC Power Supply	SM techno	SDP30-5D	21/06/24	22/06/24	305DMG305
Multimotor		170 .	20/12/16	21/12/16	26200704\\\\\$
Multimeter	FLUKE	1/0+	21/12/16	22/12/16	30390701003
Signal Concretor	Robdo Sobwarz	SMD\/1004	20/12/16	21/12/16	255571
Signal Generator	Ronue Schwarz	SIVIDV TOUA	21/12/16	22/12/16	200071
Signal Concreter		MC2605C	20/12/16	21/12/16	172501
Signal Generator	ANKIISU	MG3095C	21/12/16	22/12/16	173301
Thormobygromotor	PODVCOM	D 16/70	20/12/16	21/12/16	120612.2
mermonygrometer	BODICOM	DJ3470	21/12/16	22/12/16	120012-2
Thormobygromotor	VIACIMI		20/12/16	21/12/16	00090675
Thermonygrometer	XIAOIMI	MIHO-0201	21/12/16	22/12/16	00069675
Loop Antenna	ETS-Lindgren	6502	21/01/28	23/01/28	00226186
Hybrid Antenna	Schwarzbeck	VULB9163	21/06/24	23/06/24	9163-572
Llorn Antonno		0447	20/12/16	21/12/16	00140394
Hom Antenna	E I S-Lindgren	3117	21/12/16	22/12/16	
Horn Antenna	A.H.Systems Inc.	SAS-574	21/06/24	22/06/24	155
PreAmplifier	Agilent Technologies	8449B	21/06/24	22/06/24	3008A02108
PreAmplifier	tsj	MLA-1840-J02-45	21/06/24	22/06/24	16966-10728
DroAmplifier	ЦР	9447D	20/12/16	21/12/16	204407774
FleAmplinei	n.r	0447D	21/12/16	22/12/16	- 2944A07774
High Pass Filter	Wainwright Instruments	WHKX12-935-1000- 15000-40SS	21/06/24	22/06/24	7
High Pass Filter	Wainwright Instruments	WHKX10-2838-3300- 18000-60SS	21/06/24	22/06/24	2
High Pass Filter	Wainwright Instruments	WHKX6-6320-8000- 26500-40CC	21/06/24	22/06/24	2
Power Meter & Wide	Anritsu	ML2496A	20/12/16	21/12/16	1338004
Bandwidth Sensor		MA2490A	21/12/16	22/12/16	1249303
Cable	HUBER+SUHNER	SUCOFLEX100	21/01/08	22/01/08	M-01
Cable	HUBER+SUHNER	SUCOFLEX100	21/01/08	22/01/08	M-02
Cable	JUNFLON	MWX241/B	21/01/08	22/01/08	M-03
Cable	JUNFLON	MWX221	21/01/08	22/01/08	M-04
Cable	JUNFLON	MWX221	21/01/08	22/01/08	M-05
Cable	DTNC	Cable	21/01/08	22/01/08	M-06
Cable	JUNFLON	J12J101757-00	21/01/08	22/01/08	M-07
Cable	HUBER+SUHNER	SUCOFLEX104	21/01/08	22/01/08	M-08
Cable	HUBER+SUHNER	SUCOFLEX106	21/01/08	22/01/08	M-09
Cable	Junkosha	MWX241	21/01/08	22/01/08	mmW-1
Cable	Junkosha	MWX241	21/01/08	22/01/08	mmW-4
Test Software	tsj	Radiated Emission Measurement	NA	NA	Version 2.00.0177

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017.

Note2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

2. Test Methodology

The measurement procedures described in the ANSI C63.10-2013 and the guidance provided in KDB558074 D01v05r02 were used in measurement of the EUT.

The EUT was tested per the guidance of KDB558074 D01v05r02. And ANSI C63.10-2013 was used to reference appropriate EUT setup and maximizing procedures of radiated spurious emission and AC line conducted emission testing.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the test mode to fix the TX frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

Conducted Emissions

The power-line conducted emission test procedure is not described on the KDB558074 D01v05r02.

So this test was fulfilled with the requirements in Section 6.2 of ANSI C63.10-2013.

The EUT is placed on the wooden table, which is 0.8 m above ground plane and the conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and Average detector.

Radiated Emissions

Basically the radiated tests were performed with KDB558074 D01v05r02. But some requirements and procedures like test site requirements, EUT setup and maximizing procedure were fulfilled with the requirements in Section 5 and 6 of the ANSI C63.10-2013 as stated on section 12.1 of the KDB558074 D01v05r02.

The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

2.4. Instrument Calibration

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.5. Description of Test Modes

The EUT has been tested with the operating condition for maximizing the emission characteristics. A test program is used to control the EUT for staying in continuous transmitting. The Bluetooth low energy mode with below low, middle and high channels were tested and reported.

		т	z)	
Test Mode	Description	Lowest Frequency	Middle Frequency	Highest Frequency
TM 1	BT LE(1 Mbps): DC 24 V	2 402	2 440	2 480
TM 2	BT LE(1 Mbps): DC 12 V	2 402	2 440	2 480

EUT Operation test setup

- Test Software: RTLBTAPP_07.01.2021

- Power setting: 31

3. Antenna Requirements

According to Part 15.203

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

The antenna is permanently attached on the device. Therefore this E.U.T complies with the requirement of Part 15.203

4. Summary of Test Results

FCC part section(s)	RSS section(s)	Test Description	Limit	Test Condition	Status Note 1
15.247(a)	RSS-247[5.2]	6 dB Bandwidth	> 500 kHz		С
15.247(b)	RSS-247[5.4]	Maximum Peak Output Power	< 1 Watt (conducted), FCC & IC < 4 Watt (e.i.r.p), IC		С
15.247(d)	RSS-247[5.5]	Unwanted Emissions(Conducted)	20 dBc in any 100 kHz BW	Conducted	С
15.247(e)	RSS-247[5.2]	Power Spectral Density	< 8 dBm / 3 kHz		С
-	RSS-Gen[6.7]	Occupied Bandwidth (99 %)	NA		С
15.247(d) 15.205 15.209	RSS-247[5.5] RSS-Gen[8.9] RSS-Gen[8.10]	Unwanted Emissions(Radiated)	Part 15.209 limits (Refer to section 5.5)	Radiated	C Note 3, 4
15.207	RSS-Gen [8.8]	AC Power-Line Conducted Emissions	Part 15.207 limits (Refer to section 5.6)	AC Line Conducted	NA Note 5
15.203	-	Antenna Requirements	Part 15.203 (Refer to section 3)	-	С

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

Note 2: For radiated emission tests below 30 MHz were performed on semi-anechoic chamber which is correlated with OATS.

Note 3: This test item was performed in three orthogonal EUT positions and the worst case data was reported.

Note 4: The Radiated test items were performed at DC 12V and DC 24V. And the worst case date are reported.

Note 5: This device is installed a car. Therefore the power source is a battery of car.

5. Test Result

5.1. Maximum Peak Conducted Output Power

Test Requirements and limit, Part 15.247(b) & RSS-247 [5.4]

A transmitter antenna terminal of EUT is connected to the input of a spectrum analyzer.

Measurement is made while the EUT is operating in transmission mode at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt.

The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e) of RSS-247.

5.1.1. Test Setup

Refer to the APPENDIX I.

5.1.2. Test Procedures

- KDB558074 D01v05r02 Section 8.3.1.1
- ANSI C63.10-2013 Section 11.9.1.1

RBW ≥ DTS bandwidth

- 1. Set the RBW ≥ DTS bandwidth. Actual RBW = 2 MHz
- 2. Set $VBW \ge 3 \times RBW$. Actual VBW = 6 MHz
- 3. Set span ≥ 3 x RBW.
- 4. Sweep time = **auto couple**
- 5. Detector = **peak**
- 6. Trace mode = max hold
- 7. Allow trace to fully stabilize
- 8. Use peak marker function to determine the peak amplitude level.

5.1.3. Test Results

Test Mode	Tostod Channel	Burst Average Output Power	Peak Output Power	Antenna Gain	e.i.r.p ^{Note3}
	Tested Channel	dBm	dBm	dBi	dBm
	Lowest	4.35	4.77	2.44	7.21
TM 1	Middle	4.44	4.72	2.44	7.16
	Highest	4.31	5.17	2.44	7.61
	Lowest	4.32	4.73	2.44	7.17
TM 2	Middle	4.42	4.66	2.44	7.10
	Highest	4.30	4.99	2.44	7.43

Note 1: The average output power was tested using an average power meter for reference only.

Note 2: See next pages for actual measured spectrum plots.

Note 3: e.i.r.p = $P_{cond} + G_{EUT}$

 P_{cond} = measured power at feedpoint of the EUT antenna, in dBm (Peak Conducted Output Power)

 G_{EUT} = gain of the EUT radiating element (antenna), in dBi

Dt&C

Peak Output Power

TM 1 Test Channel : Lowest

Peak Output Power

TM 1 Test Channel : Middle

Peak Output Power

TM 1 Test Channel : Highest

Dt&C

Peak Output Power

TM 2 Test Channel : Lowest

Peak Output Power

TM 2 Test Channel : Middle

Peak Output Power

TM 2 Test Channel : Highest

5.2. 6 dB Bandwidth

Test Requirements and limit, Part 15.247(a) & RSS-247 [5.2]

The bandwidth at 6 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the EUT's antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

The minimum permissible 6 dB bandwidth is 500 kHz.

5.2.1. Test Setup

Refer to the APPENDIX I.

5.2.2. Test Procedures

- KDB558074 D01v05r02 Section 8.2
- ANSI C63.10-2013 Section 11.8.2
- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = **Peak**.
- 4. Trace mode = **max hold**.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Option 1 Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Option 2 - The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \ge 3 × RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \ge 6 dB.

5.2.3. Test Results

Test Mode	Tested Channel	Test Results (MHz)
	Lowest	0.723
TM 1	Middle	0.721
	Highest	0.723
	Lowest	0.723
TM 2	Middle	0.725
	Highest	0.729

TM 1 Test Channel : Lowest

6 dB Bandwidth

TM 1 Test Channel : Middle

TM 1 Test Channel : Highest

🛈 Dt&C

TM 2 Test Channel : Lowest

6 dB Bandwidth

TM 2 Test Channel : Middle

TM 2 Test Channel : Highest

5.3. Power Spectral Density

Test requirements and limit, Part 15.247(e) & RSS-247 [5.2]

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

Minimum Standard

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

5.3.1. Test Setup

Refer to the APPENDIX I.

5.3.2. Test Procedures

- KDB558074 D01v05r02 Section 8.4
- ANSI C63.10-2013 Section 11.10.2

Method PKPSD (peak PSD)

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to **1.5 times** the DTS bandwidth.
- 3. Set the RBW : 3 kHz \leq RBW \leq 100 kHz.
- 4. Set the VBW \ge 3 x RBW.
- 5. Detector = **peak.**
- 6. Sweep time = **auto couple.**
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the **peak marker function** to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.3.3. Test Results

Test Mode	Tested Channel	RBW	PKPSD (dBm)	Limit (dBm / 3 kHz)	
	Lowest	3 kHz	-10.19	8.00	
TM 1	Middle	3 kHz	-10.47	8.00	
	Highest	3 kHz	-10.87	8.00	
	Lowest	3 kHz	-10.28	8.00	
TM 2	Middle	3 kHz	-11.21	8.00	
	Highest	3 kHz	-11.52	8.00	

TM 1 Test Channel : Lowest

Maximum PKPSD

TM 1 Test Channel : Middle

TM 1 Test Channel : Highest

TM 2 Test Channel : Lowest

Maximum PKPSD

TM 2 Test Channel : Middle

TM 2 Test Channel : Highest

5.4. Unwanted Emissions (Conducted)

Test requirements and limit, Part 15.247(d) & RSS-247 [5.5]

In any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions :

If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b)(3) requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level. If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b)(3) requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured inband average PSD level. In either case, attenuation to levels below the general emission limits specified in §15.209(a) is not required.

5.4.1. Test Setup

Refer to the APPENDIX I including path loss

5.4.2. Test Procedures

- KDB558074 D01v05r02 Section 8.5
- ANSI C63.10-2013 Section 11.11

Reference level measurement

- 1. Set instrument center frequency to DTS channel center frequency.
- 2. Set the span to \geq 1.5 times the DTS bandwidth.
- 3. Set the RBW = 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum PSD level LIMIT LINE = 20 dB below of the reference level.

Emission level measurement

- 1. Set the center frequency and span to encompass frequency range to be measured.
- 2. Set the RBW = 100 kHz.(Actual 1 MHz , See below note)
- 3. Set the VBW ≥ 3 x RBW.(Actual 3 MHz, See below note)
- 4. Detector = **peak**.
- 5. Ensure that the number of measurement points \geq span / RBW
- 6. Sweep time = **auto couple.**
- 7. Trace mode = **max hold**.
- 8. Allow the trace to stabilize (this may take some time, depending on the extent of the span).
- 9. Use the peak marker function to determine the maximum amplitude level.

Note: The conducted spurious emission was tested with below settings.

Frequency range	RBW	VBW	Detector	Trace	Sweep Point
9 kHz ~ 30 MHz	100 kHz	300 kHz			
30 MHz ~ 10 GHz	1 MHz	3 MHz	Peak	Max Hold	40 001
10 GHz ~ 25 GHz	1 MHz	3 MHz			

If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2 001 to get accurate emission level within 100 kHz BW.

5.4.3. Test Results

TM 1 Reference (Test Channel : Lowest)

TM 1 Low Band-edge (Test Channel : Lowest)

TM 1 Conducted Spurious Emissions 1 (Test Channel : Lowest)

TM 1 Conducted Spurious Emissions 2 (Test Channel : Lowest)

Agilent S	pectrur	n Ana	ılyzer - Sw	rept SA											
Cente	r Fre	RF q1	50 s 7.500	AC 000000	CORREC GHZ PNO: East		SE Trig: Fre	SE:INT	Avg	Type:	Log-Pwr	04:46:49 P TRA TY	MNov 09, 20 CE 1234 PE MWWW	21 5 6	Frequency
					IFGain:Lo	w T	Atten: 30	dB			Mkr3 2	4.253 0	et P P P P 00 GH	e p Z	Auto Tune
10 dB/c Log	vik	Ref	20.00	dBm								-34.	иб аві	Щ	
10.0 0.00															Center Freq 17.50000000 GHz
-10.0													-16.14 d	Bm	
-30.0											م بر ا	Ś	2 3	ð	Start Freq 10.00000000 GHz
-40.0	المر مسال	L.	والمتحدث والمراجع	and the second second	and a strength			and a second second	روی استوجاع (1916) مربع فالمحال (1916)			and an a state of the	و منظن و معتبر	- 41U-	
-50.0	e jateli kund		And in case of the local division of the loc			1									Stop Freq
-60.0															25.000000000 GHz
	10.00	<u> </u>	LI									Oton 25			
#Res	BW 1	.0 N	nz /IHz		#	VBW	3.0 MHz			Sv	veep 40	510p 25 .00 ms (4	0000 GF	s)	CF Step 1.50000000 GHz
MKR MOI	DE TRC	SCL		Х			Y	_	FUNCTION	FUNG	TION WIDTH	FUNCTI	ON VALUE	^	<u>Auto</u> Man
1 N 2 N	1	f		24.851	125 GHz 000 GHz	:	-33.72 dl -33.96 dl	3m 3m							
3 N 4	1	f		24.253	000 GHz		-34.06 di	3m							Freq Offset 0 Hz
6														=	
8															
10															
<							111						>	×	
MSG											STATUS				

TM 1 Conducted Spurious Emissions 3 (Test Channel : Lowest)

TM 1 Reference (Test Channel : Middle)

TM 1 Conducted Spurious Emissions 1 (Test Channel : Middle)

TM 1 Conducted Spurious Emissions 2 (Test Channel : Middle)

TM 1 Conducted Spurious Emissions 3 (Test Channel : Middle)

TM 1 Reference (Test Channel : Highest)

TM 1 High Band-edge (Test Channel : Highest)

TM 1 Conducted Spurious Emissions 1 (Test Channel : Highest)

TM 1 Conducted Spurious Emissions 2 (Test Channel : Highest)

Agile	nt Spe	ctrur	n An	alyzer - Sw	ept SA												
LXI R	L		RF	50 Ω	AC	CORRE	EC		SENS	SE:INT	۸		ALIGN OFF	05:17:25 P	MNov 09, 202	21	Frequency
Cer	nter	Fre	ad .	7.5000	00000		IZ): Fast	Trig	: Free	Run	AV	a i ype	. Log-Fwr	T	7E MWWWW		
						IFGa	in:Low	Atte	en: 30	dB					ет РРРРР	-	A
													Mkr3 2	3.949 2	250 GH	z	Auto Tune
<u>10 d</u>	B/di∖		Ref	20.00	dBm									-34.	49 dBn	n	
Log																	
10.0	"																Center Freq
0.00	"																17.500000000 GHz
-10.C	' 														-16.18 dB		
-20.0																	Start Fred
-30.0															<u> </u>	9	10 00000000 GHz
-40.C							Theorem in the second		-	and the second secon	-	and the local division of	a konstante segustile	and the second list in the secon	A second second second		10.00000000000000
-50 0	- and the	and And			an Sighaga an Anna an Anna Anna Anna Anna Anna				and and a	and the second second		ALC: NO.					
60 C		i limite a															Stop Freq
70.0																	25.00000000 GHz
-70.L																	
Sta	rt 10	0.00	0 G	Hz					1					Stop 2:	.000 GH	z	CE Sten
#Re	s Bl	W 1	.0 ľ	/IHz			#VE	W 3.0 I	٧Hz			S	weep 40	.00 ms (4	0001 pts	5)	1.500000000 GHz
МКВ	MODE	TRC	SCL	1	X			Y		FU	NCTION	FUN	ICTION WIDTH	FUNCT	ON VALUE	~	<u>Auto</u> Man
1	Ν	1	f		24.86	625	GHz	-33.	17 dB	m							
2	N	1	f		24.25	97 875 1 19 250 1	GHz GHz	-33.	<u>74 dB</u> 49 dB	m							Freg Offset
4					20.04	0 200			40 U.D								0 Hz
5							\rightarrow			_						=	
7																	
8										_		_					
10																	
11															>	~	
MSG		_											STATUS	5			
		_	_													_	

TM 1 Conducted Spurious Emissions 3 (Test Channel : Highest)

TM 2 Reference (Test Channel : Lowest)

TM 2 Low Band-edge (Test Channel : Lowest)

TM 2 Conducted Spurious Emissions 1 (Test Channel : Lowest)

TM 2 Conducted Spurious Emissions 2 (Test Channel : Lowest)

Agilent Spect	rum Analyz	er - Swept SA								
Center F	_{RF} rea 17.	50 Q AC CO		SENS	SE:INT	Avg Typ	ALIGN OFF e: Log-Pwr	10:07:29 AM TRAC	4Nov 09, 2021 E 123456	Frequency
			PNO: Fast ⊂ =Gain:Low	Atten: 30	Run dB			TYF		
							Mkr3 2	4.125 5	00 GHz	Auto Tune
10 dB/div	Ref 2	0.00 dBm						-33.9	90 dBm	
10.0										Center Freq
0.00										17.500000000 GHz
-10.0									16 09 dBm	
-20.0									-10.20 dbm	Start Fred
-30.0										10.000000000 GHz
-40.0	lan mater	والمعاركة المعارك والمعارك الروم	in famous parts (sector	and an operation of the second se	States a subscription	a an	 A state of the second se	aparat provide a second	and the second designed	
-50.0			واللين والترجيع والترجيع والتر	on namella and allow	the second s					Stop Fred
-60.0										25.000000000 GHz
-70.0										
Start 10.0	000 GHz							Stop 25	.000 GHz	CF Step
#Res BW	1.0 MH	Z	#VB	W 3.0 MHz			Sweep 40	.00 ms (4	0001 pts)	1.50000000 GHz
MKR MODE T	RC SCL	× 24,910.7	50 GHz	, ≺33.65 dB	FUNC	TION FL	INCTION WIDTH	FUNCTIO	N VALUE	<u>Auto</u> mart
2 N	1 f	24.897 6	25 GHz	-33.86 dB	m					FreqOffset
4		24.1200	00 0112	-00.30 aB						0 Hz
6									=	
8										
9					_					
11									~	
MSG							STATUS			

TM 2 Conducted Spurious Emissions 3 (Test Channel : Lowest)

TM 2 Reference (Test Channel : Middle)

TM 2 Conducted Spurious Emissions 1 (Test Channel : Middle)

TM 2 Conducted Spurious Emissions 2 (Test Channel : Middle)

TM 2 Conducted Spurious Emissions 3 (Test Channel : Middle)

TM 2 Reference (Test Channel : Highest)

TM 2 High Band-edge (Test Channel : Highest)

TM 2 Conducted Spurious Emissions 1 (Test Channel : Highest)

TM 2 Conducted Spurious Emissions 2 (Test Channel : Highest)

Agilent Spectru	m Analyze	r - Swept SA									
L <mark>XI</mark> RL	RF	50 Ω AC	CORREC		SENSE:INT			\Lambda ALIGN OFF	10:12:41 A	MNov 09, 2021	Fraguanov
Center Fr	eq 17.	5000000	00 GHz				Avg Typ	e: Log-Pwr	TRA	^{CE} 1 2 3 4 5 6	Frequency
			PNO: Fast	Trig:	Free Run				19		
			IFGain:Low	, Atter	1:30 dB						
								Mkr3 1	23 943 6	25 GHz	Auto Tune
								in the second	24	Se dBm	
10 dB/div	Ref 20	.00 dBm							-54.	So ubili	
LOG											
10.0											Center Free
0.00											17 50000000 GH
0.00											17.0000000000000
-10.0										16.40 dBm	
20.0										-16.49 dbm	
-20.0										. 2.21	Start Free
-30.0										⊢♦˘ᢣ᠆ᢒ	10.00000000.00
10.0								الأصبار المحدي ان	the state provide some skille	and the second s	10.00000000 GHZ
-40.0		فيسعن والمتعصيرين	and state and state and	A INTERNATION OF THE OWNER.	fine a state of	al al a sur a sur a sur	a stated between	A REAL PROPERTY AND A REAL PROPERTY.	المتكالية ومناقبها ألفا	أأتحد الأخلة طنائل	
-50.0	Acres of the local division of the	and the second second	مىغىلىغىنى جىلىتىپ	Main and a state		· **F					
											Stop Free
-60.0											25 00000000 GH
-70.0											20.0000000000000
Start 10.00						!			Stop 25	000 GHz	05.04
#Doo Bill			-#14	D14/ 2 0 84	LI			Swaan 40	00 mo //	0001 nto	CF Step
#Res DW		4	#v	DVV J.U IV	ΠZ			sweep 40	.00 IIIS (4	ooo r pisj	1.50000000 GHz
MKR MODE TRO	SCL	×		Y		FUNCTIO	ON FU	JNCTION WIDTH	FUNCTI	ON VALUE	Auto Mar
1 N 1	f	24.8	53 375 GHz	-33.4	3 dBm						
2 N 1	f	24.3	17 500 GHz	-33.9	3 dBm						
3 N 1	f	23.9	43 625 GHz	-34.5	5 dBm						Freq Offset
4											0 H
5										=	• • • •
6											
6											
8											
10											
11										~	
<										>	
MEC	_							STATIS	-		
MSG								STATUS			

TM 2 Conducted Spurious Emissions 3 (Test Channel : Highest)

5.5. Unwanted Emissions (Radiated)

Test Requirements and limit,

Part 15.247(d), Part 15.205, Part 15.209 & RSS-247 [5.5], RSS-Gen [8.9], RSS-Gen [8.10]

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of Part 15.247 the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

- Part 15.209 & RSS-Gen[8.9]: General requirements

		oloj. Conoral regali cinenta		
I	Frequency (MHz)	FCC Limit (uV/m)	IC Limit (µA/m)	Measurement Distance (m)
I	0.009 - 0.490	2 400 / F (kHz)	6.37/F (F in kHz)	300
I	0.490 - 1.705	2 4000 / F (kHz)	63.7/F (F in kHz)	30
I	1.705 – 30.0	30	0.08	30

Frequency (MHz)	FCC Limit (uV/m)	IC Limit (uV/m)	Measurement Distance (m)
30 ~ 88	100 **	100	3
88 ~ 216	150 **	150	3
216 ~ 960	200 **	200	3
Above 960	500	500	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

- Part 15.205(a): Restricted band of operation

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.414 25 ~ 8.414 75	108 ~ 121.94	1 300 ~ 1 427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1 435 ~ 1 626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.173 5 ~ 2.190 5	12.519 75 ~ 12.520 25	149.9 ~ 150.05	1 645.5 ~ 1 646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.576 75 ~ 12.577 25	156.524 75 ~ 156.525 25	1 660 ~ 1 710	8.025 ~ 8.5	22.01 ~ 23.12
4.177 25 ~ 4.177 75	13.36 ~ 13.41	156.7 ~ 156.9	1 718.8 ~ 1 722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.207 25 ~ 4.207 75	16.42 ~ 16.423	162.012 5 ~ 167.17	2 200 ~ 2 300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.694 75 ~ 16.695 25	167.72 ~ 173.2	2 310 ~ 2 390	10.6 ~ 12.7	36.43 ~ 36.5
6.267 75 ~ 6.268 25	16.804 25 ~ 16.804 75	240 ~ 285	2 483.5 ~ 2 500	13.25 ~ 13.4	Above 38.6
6.311 75 ~ 6.312 25	25.5 ~ 25.67	322 ~ 335.4	2 655 ~ 2 900		
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3 260 ~ 3 267		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3 332 ~ 3 339		
8.376 25 ~ 8.386 75	74.8 ~ 75.2	960 ~ 1 240	3 345.8 ~ 3 358		
			3 600 ~ 4 400		

- RSS-Gen[8.10]: Restricted frequency bands

MHz	MHz	MHz	MHz	MHz	GHz
0.090 ~ 0.110	8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3 345.8 ~ 3 358	9.0 ~ 9.2
0.495 ~ 0.505	8.376 25 ~ 8.386 75	74.8 ~ 75.2	960 ~ 1 427	3 500 ~ 4 400	9.3 ~ 9.5
2.173 5 ~ 2.190 5	8.414 25 ~ 8.414 75	108 ~ 138	1 435 ~ 1 626.5	4 500 ~ 5 150	10.6 ~ 12.7
3.020 ~ 3.026	12.29 ~ 12.293	149.9 ~ 150.05	1 645.5 ~ 1 646.5	5 350 ~ 5 460	13.25 ~ 13.4
4.125 ~ 4.128	12.519 75 ~ 12.520 25	156.524 75 ~	1 660 ~ 1 710	7 250 ~ 7 750	14.47 ~ 14.5
4.177 25 ~ 4.177 75	12.576 75 ~ 12.577 25	156.525 25	1 718.8 ~ 1 722.2	8 025 ~ 8 500	15.35 ~ 16.2
4.207 25 ~ 4.207 75	13.36 ~ 13.41	156.7 ~ 156.9	2 200 ~ 2 300		17.7 ~ 21.4
5.677 ~ 5.683	16.42 ~ 16.423	162.01 25 ~ 167.17	2 310 ~ 2 390		22.01 ~ 23.12
6.215 ~ 6.218	16.694 75 ~ 16.695 25	167.72 ~ 173.2	2 483.5 ~ 2 500		23.6 ~ 24.0
6.267 75 ~ 6.268 25	16.804 25 ~ 16.804 75	240 ~ 285	2 655 ~ 2 900		31.2 ~ 31.8
6.311 75 ~ 6.312 25	25.5 ~ 25.67	322 ~ 335.4	3 260 ~ 3 267		36.43 ~ 36.5
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3 332 ~ 3 339		Above 38.6

5.5.1. Test Setup

Refer to the APPENDIX I.

5.5.2. Test Procedures

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Note: Measurement Instrument Setting for Radiated Emission Measurements.

- KDB558074 D01v05r02 Section 8.6
- ANSI C63.10-2013 Section 11.12
- 1. Frequency Range Below 1 GHz

RBW = 100 or 120 kHz, VBW = 3 x RBW, Detector = Peak or Quasi Peak

2. Frequency Range > 1 GHz

Peak Measurement > 1 GHz

RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Sweep time = Auto, Trace mode = Max Hold until the trace stabilizes Average Measurement > 1 GHz

- 1. RBW = 1 MHz (unless otherwise specified).
- 2. VBW \geq 3 x RBW.
- 3. Detector = RMS (Number of points \geq 2 x Span / RBW)
- 4. Averaging type = power (i.e., RMS).
- 5. Sweep time = auto.
- 6. Perform a trace average of at least 100 traces.

7. A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:

- 1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is 10 log(1 / D), where D is the duty cycle.
- 2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is 20 log(1 / D), where D is the duty cycle.
- 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Test Mode	T _{on} (ms)	T _{on} + T _{off} (ms)	$D = T_{on} / (T_{on+off})$	DCCF = 10 log(1 / D) (dB)
TM 1	0.392	0.624	0.628 2	2.02
TM 2	0.392	0.624	0.628 2	2.02

Note1: Where, T= Transmission duration / D= Duty cycle Note2: Please refer to the appendix II for duty cycle plots.

This test report is prohibited to copy or reissue in whole or in part without the approval of DT&C Co., Ltd. TRF-RF-238(06)210316 Page

5.5.3. Test Results

Test Notes

1. The radiated emissions were investigated 9 kHz to 1 GHz and the worst case data was reported.

2. Information of Distance Correction Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance factor is applied to the result.

- Calculation of distance correction factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

3. Sample Calculation.

Margin = Limit - Result / Result = Reading + TF + DCCF + DCF / TF = AF + CL + HL + AL - AG

Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, HL = High pass filter Loss, AL = Attenuator Loss, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

Frequency Range : 9 kHz ~ 25 GHz_TM 2

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
46.49	V	Х	PK	31.1	-10.0	N/A	N/A	21.1	40.0	18.9
216.24	Н	Х	PK	40.2	-10.7	N/A	N/A	29.5	46.0	16.5
319.06	Н	Х	PK	37.7	-7.5	N/A	N/A	30.2	46.0	15.8
359.80	V	Х	PK	35.5	-6.6	N/A	N/A	28.9	46.0	17.1
610.06	V	Х	PK	36.3	-1.6	N/A	N/A	34.7	46.0	11.3
769.13	Н	Х	PK	34.5	0.8	N/A	N/A	35.3	46.0	10.7

- Test Notes

1. The radiated emissions were investigated up to 25 GHz. And no other spurious and harmonic emissions were found below listed frequencies. 2. Information of Distance Correction Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance factor is applied to the result.

- Calculation of distance correction factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

3. Sample Calculation. Margin = Limit - Result / Result = Reading + TF+ DCCF + DCF / TF = AF + CL + HL + AL - AG

Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, HL = High pass filter Loss, AL = Attenuator Loss, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

Frequency Range : 1 ~ 25 GHz_TM 1

Lowest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 383.36	V	Х	PK	45.70	4.41	N/A	N/A	50.11	74.00	23.89
2 384.13	V	Х	AV	33.73	4.42	2.02	N/A	40.17	54.00	13.83
4 804.72	V	Х	PK	41.10	8.70	N/A	N/A	49.80	74.00	24.20
4 804.41	V	Х	AV	30.77	8.70	2.02	N/A	41.49	54.00	12.51

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4 880.98	V	Х	PK	41.54	8.82	N/A	N/A	50.36	74.00	23.64
4 879.67	V	Х	AV	30.98	8.82	2.02	N/A	41.82	54.00	12.18

Highest Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2 484.78	V	Х	PK	45.68	4.78	N/A	N/A	50.46	74.00	23.54
2 484.92	V	Х	AV	34.98	4.78	2.02	N/A	41.78	54.00	12.22
4 959.96	V	Х	PK	41.31	8.75	N/A	N/A	50.06	74.00	23.94
4 959.29	V	Х	AV	31.00	8.75	2.02	N/A	41.77	54.00	12.23

TM 2_Worst Case Data

Middle Channel

Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4 879.49	V	Х	PK	41.67	8.82	N/A	N/A	50.49	74.00	23.51
4 879.87	V	Х	AV	31.35	8.82	2.02	N/A	42.19	54.00	11.81

5.6. AC Power-Line Conducted Emissions

Test Requirements and limit, Part 15.207 & RSS-Gen [8.8]

An intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

	Conducted Limit (dBuV)					
Frequency Range (MHZ)	Quasi-Peak	Average				
0.15 ~ 0.5	66 to 56 *	56 to 46 *				
0.5 ~ 5.0	56	46				
5 ~ 30	60	50				

* Decreases with the logarithm of the frequency

5.6.1 Test Setup

NA

5.6.2 Test Procedures

Conducted emissions from the EUT were measured according to the ANSI C63.10-2013.

- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

5.6.3 Test Results

NA

5.7. Occupied Bandwidth

Test Requirements, RSS-Gen [6.7]

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99 % emission bandwidth, as calculated or measured.

5.7.1. Test Setup

Refer to the APPENDIX I.

5.7.2. Test Procedures

The 99 % power bandwidth was measured with a calibrated spectrum analyzer.

The resolution bandwidth (RBW) shall be in the range of 1 % to 5 % of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3 × RBW.

5.7.3. Test Results

Test Mode	Tested Channel	Test Results (MHz)			
	Lowest	1.034			
TM 1	Middle	1.044			
	Highest	1.040			
	Lowest	1.033			
TM 2	Middle	1.045			
	Highest	1.039			

TM 1 Test Channel : Lowest

Occupied Bandwidth

TM 1 Test Channel : Middle

TM 1 Test Channel : Highest

TM 2 Test Channel : Lowest

Occupied Bandwidth

TM 2 Test Channel : Middle

APPENDIX I

Test set up diagrams

Radiated Measurement

Conducted Measurement

Path loss information

Frequency (GHz)	Path Loss (dB)	Frequency (GHz)	Path Loss (dB)
0.03	0.55	15	5.05
1	1.40	20	5.45
2.402 & 2.440 & 2.480	1.95	25	6.76
5	2.69	-	-
10	3.46	-	-

Note 1 : The path loss from EUT to Spectrum analyzer was measured and used for test. Path loss (S/A's correction factor) = Cable A

APPENDIX II

Duty cycle plots

Test Procedures

- KDB558074 D01v05r02 - Section 6

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average.

The zero-span measurement method shall not be used unless both RBW and VBW are > 50 /T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

Duty Cycle

TM 1 Test Channel : Middle

Agilent Spectrum Analyzer - Swept SA				
X RL RF 50 Ω AC CORREC	SENSE:INT		04:52:52 PMNov 09, 2021	Sweep/Control
Sweep Time 4.000 ms PNO: Fast	🖵 Trig: Free Run	ing type. Log i hi		
IFGain:Lov	v #Atten: 30 dB		Del	Sweep Time
		4	۵Mkr3 624.0 μs	4.000 ms
10 dB/div Ref 20.00 dBm			-0.06 dB	
10.0		<u> </u>		
				Sweep Setup ►
10.0				
20.0				
-20.0				
-30.0				
-40.0				
-50.0 And	higherer picturer	HAW UN	ivykjątety.	
-60.0				
-70.0				
Cepter 2 44000000 GHz			Snan û Hz	
Res BW 2.4 MHz #V	/BW 8.0 MHz	Sweep 4	.000 ms (1001 pts)	
MKB MODELTBC SCILL X	Y FUNCTIO			
1 Δ2 1 t (Δ) 392.0 μs	(Δ) -0.05 dB			
2 F 1 t 1.724 ms 3 Δ4 1 t (Δ) 624.0 μs	4.46 dBm (Δ) -0.06 dB			Gate
4 F 1 t 1.724 ms	4.46 dBm			[Off,LO]
6			=	
7				
9				Points
			~	1001
<	ш			
MSG		STATUS	3	

Detector Mode : PK

APPENDIX III

Unwanted Emissions (Radiated) Test Plot

TM1 & Lowest & X & Ver

TM1 & Lowest & X & Ver

Detector Mode : AV

Detector Mode : PK

TM1 & Highest & X & Ver

TM1 & Highest & X & Ver

Detector Mode : AV

Detector Mode : AV

TM1 & Middle & X & Ver

Agile	nt Spectru	ım Analyzer - Sw	ept SA								
L <mark>XI</mark>		RF 50 Ω	AC		SEM	JSE:INT	Ava Type	ALIGNAUTO	03:44:55 Pf TRAC	4Nov 22, 2021	Frequency
				PNO: Fast ++ IFGain:Low	Trig: Free Atten: 6	Run 18	Avg Hold:	200/200			Auto Tune
5 dB Log	/div	Ref 66.99 (dBµV					IVIKT	30.97	66 GHZ 5 dBµV	
62.0											Center Freq
57.0											4.88000000 GH2
57.U											Start Freq
52.0											4.877500000 GH2
47.0											Stop Freq
42.0											4.882500000 GHz
37.0											CF Step 2.44000000 GHz
32.0					∮ 1						Auto <u>Man</u>
27.0		(ing) ing range i bilan sajarik	(aligned and a second sec	i nevi intere në një përjetje	unal/yaya/wikit	ahijarahiji dagi karyan yang	han an the second states	Yeldandir <mark>yaya</mark>	rie ^{ten} er ⁱ eten in der	hand - to be a straight of	Freq Offset
22.0											0 Hz
-22.0											
Cen #Re	ter 4.8 s BW	80000 GHz 1.0 MHz		#VBW	/ 3.0 MHz	*		Sweep	Span 5 1.000 ms (.000 MHz 5001 pts)	
MSG								STATU	s		

Detector Mode : PK

TM2 & Highest & X & Ver

TM2 & Highest & X & Ver

Detector Mode : AV

Detector Mode : AV

TM2 & Middle & X & Ver

