

TEST REPORT No.: 18-1-0048601T03a-C1

According to: FCC Regulations Part 15.205 Part 15.209 Part 15.247

ISED-Regulations RSS-Gen, Issue 5 RSS-247, Issue 2

for

Robert Bosch Car Multimedia GmbH

AIVIV20 Navigationsystem with WLAN and Bluetooth

FCC ID: YBN-AIVIV20 ISED: 9595A-AIVIV20

Laboratory Accred	Laboratory Accreditation and Listings				
Accredited EMC-Test Laboratory					
AUTHORIZED RF LABORATORY	Ctic Authorized [™] Test Lab				
accredited according to	DIN EN ISO/IEC 17025				
CETECOM GmbH Laboratory Radio Communications & Electromagnetic Compatibility Im Teelbruch 116 • 45219 Essen • Germany Registered in Essen, Germany, Reg. No.: HRB Essen 8984 Tel.: + 49 (0) 20 54 / 95 19-954 • Fax: + 49 (0) 20 54 / 95 19-964 E-mail: info@cetecom.com • Internet: www.cetecom.com					
Laboratory Accredi	tation and Listings				

Table of contents

1. SUMMARY OF TEST RESULTS	
1.1. Tests overview of US CFR (FCC) and Canada ISED (RSS) Standards 1.2. Attestation:	3 4
2. ADMINISTRATIVE DATA	5
 2.1. Identification of the testing laboratory 2.2. Test location	
3. EQUIPMENT UNDER TEST (EUT)	6
 3.1. Technical data of main EUT declared by applicant	
4. DESCRIPTION OF TEST SYSTEM SET-UP'S	9
 4.1. Test system set-up for conducted measurements on antenna port	
5. MEASUREMENT RESULTS	13
 5.1. RF-Parameter Duty-Cycle	13 15 17 20 22 24 26 27 29 31 33 35 37 39
6. ABBREVIATIONS USED IN THIS REPORT	
7. ACCREDITATION DETAILS OF CETECOM'S LABORATORIES AND TEST SITES	
8. INSTRUMENTS AND ANCILLARY	
9. VERSIONS OF TEST REPORTS (CHANGE HISTORY)	
END OF TEST REPORT	

1 able of Annex				
Annex No.	Contents	Reference Description Total P		
Annex 1	Test results	CETECOM_TR18_1_0048601T03a_A1	71	
Annex 2	External photographs of EUT	CETECOM_TR18_1_0048601T03a_A2	6	
Annex 4	Test set-up photographs	CETECOM_TR18_1_0048601T03a_A4	6	
The listed attachments are an integral part of this report.				

1. Summary of test results

The test results apply exclusively to the test samples as presented in this Report. The CETECOM GmbH does not assume responsibility for any conclusions and generalizations taken in conjunction with other specimens or samples of the type of the item presented to tests. Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

The presented <u>Equipment Under Test</u> (in this report, hereinafter referred as EUT) integrates a Bluetooth[©]EDR transmitter Other implemented wireless technologies are not considered within this test report.

Following test cases have been performed to show compliance with valid Part 15.209/15.247 of the FCC CFR Title 47 Rules, Edition 2017 and ISED RSS-247 Issue 2/RSS-Gen Issue 5 standards.

		References and Limits			FUT	EUT	
Test cases	Port	FCC Standard	RSS Section	Test limit	set-up	op. mode	Result
			TX-Mode			•	
20 dB bandwidth	Antenna	§15.247	RSS-247, Issue 2: 5.1 (a)	At least 25 kHz or 2/3	2	1	Passed
Channel carrier frequency separation	(conducted)	(a)(1)	RSS-247, Issue 2: 5.1 (b)	of 20 dB bandwith	2	2	- associ
99% occupied bandwidth	Antenna terminal (conducted)	2.1049(h)	RSS-Gen, Issue 5: Chapter 6.6	99% Power bandwidth	2	1	Passed
Channel use, average channel use, input band- width and synchronization between signals		§15.247 (a)(1)	RSS-247, Issue 2: 5.1 (d)	See specification	2	2	Passed
Channel average Occupancy time and number of channels	Antenna terminal (conducted)	§15.247 (a)(1) (iii)	RSS-247, Issue 2: 5.1 (d)	0.4 seconds	2	2	Passed
Transmitter Peak output power	Antenna terminal (conducted)	§15.247 (b)(1)	RSS-247, Issue 2: 5.1 (b)	< 125 mW	2	1	Passed
Transmitter frequency stability	Antenna terminal (conducted)		RSS-Gen Issue 5, Chapter 8.11	Operation within designated operational band	2	1	Passed
Transmitter Peak output power radiated	Enclosure (radiated)	§15.247 (b)(4)	RSS-247, Issue 2: 5.1 (b)	< 125 mW (EIRP) for antenna with directional gain less 6 dBi			Passed (calculated)
Out-Of-Band RF- emissions Band-Edge emissions	Antenna terminal (conducted)	§15.247 (d)	RSS-247, Issue 2, Chapter 5.5	20 dBc and Emissions in restricted bands must meet the general field strength radiated limits	1	1+2	Passed
General field strength emissions + restricted bands	Enclosure + Interconnecting cables (radiated)	§15.247 (d) §15.205 §15.209	RSS-247, Issue 2, Chapter 5.5 RSS-Gen: Issue 5: §8.9 Table 4+5+6	Emissions in restricted bands must meet the general field-strength radiated limits	1	1	Passed

1.1. Tests overview of US CFR (FCC) and Canada ISED (RSS) Standards

AC-Power Lines Conducted Emissions	AC-Power lines	§15.207	RSS-Gen, Issue 5: Chapter 8.8 Table 3	FCC §15.107 class B limits §15.207 limits ISED: Table 3, Chapter 8.8			NA
---	-------------------	---------	---	--	--	--	----

Remark

1.2. Attestation:

I declare that all measurements were performed by me or under my supervision and that all measurements have been performed and are correct to my best knowledge and belief to Industry Canada standards. All requirements as shown in above table are met in accordance with enumerated standards.

The current version of the Test Report CETECOM_TR18-1-0048601T03a-C1 replaces the Test Report CETECOM_TR18-1-0048601T03a dated 2018-12-27. The replaced test report is herewith invalid.

.....

Dipl.-Ing. Niels Jeß Responsible for test section

B.Sc. Mohamed Ahmed Responsible for test report

2. Administrative Data

2.1. Identification of the testing laboratory

Company name:	CETECOM GmbH
Address:	Im Teelbruch 116
	45219 Essen - Kettwig
	Germany
Responsible for testing laboratory:	DiplIng. Niels Jeß
2.2. Test location 2.2.1. Test laboratory "CTC"	
Company name:	see chapter 2.1. Identification of the testing laboratory

2.3. Organizational items

Responsible for test report: project leader:	B.Sc. Mohamed Ahmed DiplIng N. Perez
Receipt of EUT:	2018-08-20
Date(s) of test:	2018-08-22 - 2018-11-29
Date of report:	2019-02-20

2.4. Applicant's details

Applicant's name:	Robert Bosch Car Multimedia GmbH
Address:	Robert-Bosch-Straße 200 31139 Hildesheim Germany
Contact person:	Mr. Salvatore Miraglia

2.5. Manufacturer's details

Manufacturer's name:	see applicant's details
Address:	see applicant's details

3. Equipment under test (EUT)

Model Nr.	AIVIV20					
Туре	Navigationsystem with WLAN	and Bluetooth				
FCC ID	YBN-AIVIV20					
ISED	9595A-AIVIV20	9595A-AIVIV20				
Frequency range	Z402 MHz (Channel 1 or 37	2402 MHz (Channel 1 or 37) to 2480 MHz (Channel 39)				
(US/Canada -bands)						
Type of modulation	GFSK					
Number of channels	1 70					
(USA/Canada -bands)	1 - 79					
Antenna Type	Integrated					
	□ External, no RF- connector					
	□ External, separate RF-conne	ector				
Antenna Model	PCB Antenna					
Antenna Gain						
	-3.30dBi					
Peak Power	RMS power measured					
CH 1 conducted	-2.09dBm					
Ch39 conducted	-1.94dBm					
Ch79 conducted	-2.23dBm					
EIRP Power (calculated)	EIRP power (calculated)					
CH 1 radiated	-2.09dBm -3.30 dBi $=-5.39$ dE	Bm				
Ch39 radiated	-1.94dBm -3.30 dBi $=-5.24$ dE	3m				
Ch79 radiated	-2.23dBm -3.30 dBi $=-5.53$ dE	3m				
	■ 802.11 a/n/ac (not tested wi	thin this report)				
Installed options	■ 802.11 b/g/n (not tested with	hin this report)				
I I I I I I I I I I I I I I I I I I I	Bluetooth LE (not tested within this report)					
D 1	Bluetooth EDR	2 2 3 4 /	1			
Power supply	\square DC power Range: 2.3 V to .	3.3 V (as specified by ap	plicant)			
	■ 13.5 V DC					
Special EMI components						
Does EUT contain devices	L yes					
susceptible to magnetic fields, e.g.	euc neids, e.g. M no					
man elements, electrodynamics						
FUT sample type	□ Production	Pro Production	Engineering			
ECT sample type						
FUU label attached						

3.1. Technical data of main EUT declared by applicant

Short descrip- tion*)	EUT	Туре	S/N serial number	HW hardware status	SW software status
EUT A S06	AIVIV20	Navigationsystem with WLAN and Bluetooth	0005021	Version D	283C37820R
EUT B S04	AIVIV20	Navigationsystem with WLAN and Bluetooth	0005013	Version D	283C37820R

3.2. EUT: Type, S/N etc. and short descriptions used in this test report

*) EUT short description is used to simplify the identification of the EUT in this test report.

3.3. Auxiliary Equipment (AE): Type, S/N etc. and short descriptions

AE short descrip- tion *)	Auxiliary Equipment	Туре	S/N serial number	HW hardware status	SW software status
AE 1	USB-cable (Dongle)	0,38m	\$7291GC0003 79	Version-D1	
AE 2	Power Supply Cable				
AE 3	Notebook	Lenovo X200S	LVZT1DG		

*) AE short description is used to simplify the identification of the auxiliary equipment in this test report.

3.4. EUT set-ups

EUT set-up no.*)	Combination of EUT and AE	Remarks		
set. 1	EUT A + AE 1 + AE 2	Used for radiated measurements.		
set. 2	EUT B + AE 1 + AE 2	Used for conducted measurements.		

*) EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

3.5. EUT operating modes

EUT operating mode no.*1)	Description of operating modes	Additional information
op. 1	Bluetooth BDR/EDR Modes*	The EUT was put to Fixed Channel (Modulated) Continuous transmissions mode
	TX-Fixed Channel (Modulated)	*Other supported wireless technologies were put in idle mode using special test software *2)
op. 2	Bluetooth BDR/EDR Modes*	The EUT was put into normal hopping mode .
	Normal operating mode	*Other supported wireless technologies were put in idle mode using special test software *2)

*1) EUT operating mode no. is used to simplify the test report.

*2) Please refer to document Instructions_RadioTypeApproval_9_6_2017 "Instructions for setting Operating Modes of WLAN, BT and BT-LE for Radio Type Approval."

*3) The BT power level for type approval is set to 0dBm.

3.5.1. Test tool information

Labtool version: 2.0.0.75 Labtool date: Mar 18 2015 (15:56:06)

For BT the following commands were used in Labtool:

80 // reset 114 2 //PowerClass2 116 1 // PowerLevel Automatic off 16 0 0 // PowerLevel 0dBm BDR 12 x // x for BT channel 225 1 15 2 -1 Y // Duty Cycle Mode on, DH5, Payploadpattern PN9, max. possible PayloadLength, Y for Fixed channel (0) and Hopping ON(1)

3.6. Worst case identification

The following BT data rates were used for testing:

Data Rate	
DH5	
2DH5	
3DH5	

4. Description of test system set-up's

4.1. Test system set-up for conducted measurements on antenna port Conducted Set-up W1

Blue	etooth Low Energy co	onducted RF-Setup 1 (V	W1 Set-up)				
General description:	The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to the power meter (3) for conducted power measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings.						
Schematic:	C:>						
Testing method:	ANSI C63.10:2013, K	XDB 558074 D01 DTS M	leas.Guidance v04				
Used Equipment	Passive Elements	Test Equipment	Remark:				
	 20 dB Attenuator Low loss RF- cables 	Power MeterDC-Power SupplySpectrum-Analyser	See List of equipment under each test case and chapter 8 for calibration info				
Measurement uncertainty	See chapter 8						

4.2. Test system set-up for radiated magnetic field measurements below 30 MHz

Specification:

ANSI C63.10-2013 chapter 6.4 (§6.4.4.2)

General Description: Evaluating the radiated field emissions are done first by an exploratory emission measurement and a final measurement for most critical frequencies determined.

The loop antenna was placed at 1 m height above ground plane and 3 m measurement distance from set-up for investigations. Because of reduced measurement distance, correction data were applied, as stated in chapter "General Limit - Radiated field strength emissions below 30 MHz". The tests are performed in the semi anechoic room recognized by the regulatory commission.

Schematic:

Testing method:

Exploratory, preliminary measurement

The EUT and it's associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (step 90°, range 0° to 360°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2orthogonal axis (defined operational position of EUT), the emission spectrum was recorded. The loop antenna was moved at least to 2-perpendicular axes (antenna vector in direction of EUT and parallel to EUT) in order to maximize the emissions. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a data reduction table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position).

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:	$E_{\rm C} = E_{\rm R} + AF + C_{\rm L} + D_{\rm F} - G_{\rm A}$	AF = Antenna factor			
		$C_L = Cable loss$			
	$M = L_T - E_C$	D _F = Distance correction factor			
		$E_C = Electrical field - corrected value$			
		E_R = Receiver reading			
		G _A = Gain of pre-amplifier (if used)			
		$L_{T} = Limit$			
		M = Margin			
	All units are dB-units, positive marg	gin means value is below limit.			
Distance correction: Reference for applied correction (extrapolating) factors due to reduce					

Reference for applied correction (extrapolating) factors due to reduced measurement distance:

ANSI C63.10:2013, §6.4.4.2 - Equations (2) + (3) + (4)

4.3. Test system set-up for radiated electric field measurement 30 MHz to 1 GHz

Specification:

ANSI C63.4-2014 chapter 8.2.3, ANSI C63.10-2013 chapter 6.5

General Description:

Evaluating the field emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a NSA-compliant semi anechoic room (SAR) recognized by the regulatory commissions.

Schematic:

Testing method:

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (range 0° to 360° , step 90°) and the EUT itself either on 3orthogonal axis (portable equipment) or 2orthogonal axis (defined operational position of EUT) the emission spectrum and it's characteristics was recorded with an EMIreceiver, broadband antenna and software.

Exploratory, preliminary measurements

Measurement antenna: horizontal and vertical, heights: 1,0 m and 1,82 m as worst-case determined by an exploratory emission measurements. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc. either on 10m OATS or 3m semianechoic room.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position). The measurement antenna height between 1 m and 4 m.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:
$$E_C = E_R + AF + C_L + D_F - G_A$$
 (1) $AF = Antenna factor$ $C_L = Cable loss$ $D_F = Distance correction factor (if used)$ $M = L_T - E_C$ (2)

 $E_C = Electrical field - corrected value$

- E_R = Receiver reading
- G_A = Gain of pre-amplifier (if used)
- $L_T = Limit$
- M = Margin

All units are dB-units, positive margin means value is below limit.

4.4. Test system set-up for radiated electric field measurement above 1 GHz

Specification:

ANSI C63.4-2014 chapter 8.3, ANSI C63.10-2013 chapter 6.6.3.3 & 6.6.4

General Description: Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 18-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Testing method: Exploratory, preliminary measurements The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 15°) and the EUT itself either on 3orthogonal axis (portable equipment) or 2orthogonal axis (defined operational position of EUT) the emission spectrum and it's characteristics was recorded with an EMIreceiver, broadband antenna and software. The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions. Formula: $E_C = E_R + AF + C_L + D_F - G_A \quad (1)$ $M = L_T - E_C$ (2)

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined. Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3-orthogonal axis and the height for EUT with large dimensions.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out. On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

$$\begin{split} E_{C} &= Electrical \ field - corrected \ value \\ E_{R} &= Receiver \ reading \\ M &= Margin \\ L_{T} &= Limit \\ AF &= Antenna \ factor \\ C_{L} &= Cable \ loss \\ D_{F} &= Distance \ correction \ factor \ (if \ used) \end{split}$$

 $G_A = Gain of pre-amplifier (if used)$

All units are dB-units, positive margin means value is below limit.

5. Measurement results

5.1. RF-Parameter Duty-Cycle

5.1.1. Test location and equipment

(for reference numbers please see chapter 'List of test equipment')

Ambient Climatic conditions Temperatur		ure: (22±2)°C	Rel. humidity: (45±1			
test site	□ 441 EMI SAR	□ 348 EMI cond.	443 EMI FAR	□ 347 Radio.lab.	□ 337 OATS	🗷 TS 8997
equipment	□ 331 HC 4055					
spectr. analys.	🗆 683 FSU26	□ 120 FSEM	□ 264 FSEK			
power meter	□ 262 NRV-S	□266 NRV-Z31	□ 265 NRV-Z33	□261 NRV-Z55	□ 356 NRV-Z1	
multimeter	□ 341 Fluke 112					
DC power	086 LNG50-10	🗷 087 EA3013	354 NGPE 40	□ 349 car battery	□ 350 Car battery	□463 HP3245A
Supply Voltage	□ 230 V 50 Hz via j	public mains	🗷 13.5V DC			
otherwise	$\Box 530 \frac{\text{Attenuator}}{10 \text{dB}}$	K4 Cable				

5.1.2. Reference

ANSI	☑ ANSI 63.10:2013
------	-------------------

5.1.3. EUT settings:

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

A special firmware program is used for test purposes. In opposite to normal operating mode a higher duty-cycle is set in order to facilitate the measurements. This is maximized at the extent possible.

The necessary duty-cycle correction factor is determined on nominal conditions on one channel in each operable frequency-band. It is assumed that no noticeable changes occur when tested on other channels or climatic conditions. The Duty-Cycle was constant, means without variations.

5.1.4. Measurement method:

Method of measurement: conducted
 radiated

Calculated with following formulas:

Duty cycle: $x = \frac{Tx_{on}}{Tx_{on} + Tx_{off}}$	Duty cycle factor [dB]:	$10\log\left(\frac{1}{x}\right)$
--	-------------------------	----------------------------------

The results were corrected in order to evaluate for worst-case result each time when average values are necessary for example average radiated emissions or similar

 \Box No correction necessary: Duty-Cycle > 98%

5.1.5. RESULTS

	DUT	DutyCycle	DutyCycle	
Modulation	Frequency	(%)	(dB)	
	(MHz)			
	2402	77.61	1.10	
DH5	2441	77.61	1.10	
	2480	77.61	1.10	
	2402	77.57	1.10	
2DH5	2441	77.57	1.10	
	2480	77.56	1.10	
	2402	77.58	1.10	
3DH5	2441	77.58	1.10	
	2480	77.58	1,10	

5.2. RF-Parameter Maximum peak conducted output power

12.1. Test location and equipment (for reference numbers please see enapter Exist of test equipment)										
test location	CETECOM Essen (Chapter. 2.2.1)		□ 443	□ 443 System CTC-FAR-EMI-		□ Please see Chapter. 2.2.3				
test site	441 EMI SAR	□487 SAR NSA	□ 347	Radio.lab.	🗷 TS	8997				
receiver	□ 377 ESCS30	□ 001 ESS	□ 489	ESU 40						
spectr. analys.	□ 584 FSU	□ 120 FSEM	□ 264	FSEK	□ 489	ESU 40				
antenna	□ 574 BTA-L	□ 133 EMCO3115	□ 302	BBHA9170		CBL 6141	\square 0	0 HFH-Z2	□ 477	GPS
signaling	□ 392 MT8820A	□ 436 CMU	□ 547	CMU						
otherwise	□ 266 NRV-Z31	□ 600 NRVD	□ 110	USB LWL	$\Box 482$	Filter Matrix	□ 3 [′]	8 RadiSense	× 693	TS8997
DC power	□ 671 EA-3013S	□463 HP3245A	× 459	EA 2032-50	$\Box 268$	EA- 3050	□ 4	4 AG6632A	□ 498	NGPE 40
otherwise	□ 331 HC 4055	$\Box 248 \frac{6 \text{ dB}}{\text{Attenuator}}$	□ 529	Power divider	□ -	cable OTA20				
	🗷 530 10dB Attenua	ator	🗆 K 4	Cable kit						
Supply Voltage	🗆 230 V 50 Hz via j	public mains	⊠ 13.5	5V DC						

5.2.1. Test location and equipment (for reference numbers please see chapter 'List of test equipment')

5.2.2. Reference

FCC	☑ §15.247(b) (3) + KDB 558074 D01 DTS Meas Guidance v04
ISED	☑ RSS-247, Chapter 5.4(4)
ANSI	🗷 ANSI 63.10:2013
Specification	For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

5.2.3. EUT settings:

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

5.2.4. Test condition and measurement test set-up

Signal ink to test system (if used):	🗆 air link	□ cable connection	🗷 none		
EUT-grounding	🗷 none	□ with power supply	□ additional connection		
Equipment set up	☑ table top 1.5m height		□ floor standing		
Climatic conditions	Temperature: (22±3°C)		Rel. humidity: (40±20)%		
General measurement procedures	ent procedures Please see chapter "Test system set-up		for conducted RF-measurement at antenna Port" (W1		
	Set-up)				

5.2.5. Measurement method and analyzer settings:

The measurement was performed in non-hopping transmission mode with the carrier set to lowest/middle and highest channel.

MEASUREMENT METHOD/ SPECTRUM-ANALYZER SETTINGS:

Measurement Method	§15.247(b)	1.) I 7.8.5 ANSI63:10:2013, Maximum peak conducted output power (RBW > 20dB bandwidth of the signal)			
	Maximum Peak	2.) \Box 9.1.3. PKPM1 Peak reading power meter (broadband PK meter)			
	§15.247(b)	3.) \Box AVGSA-1 / AVGSA-1 alternative (duty-cycle > 98%)			
	(3)	4.) \Box AVGSA-2 / AVGSA-2 alternative (duty-cycle < 98%, constant)			
	Maximum	5.) \Box AVGSA-3 / AVGSA-3 alternative (duty-cycle < 98%, not constant)			
	Average	6.) \Box AVPM(duty-cycle < 98% (constant)			
		7.) \Box AVPM-G (duty-cycle < 98% (constant)			
	MIMO	8.) Summarization of values from two antenna ports			
Center Frequency		Nominal channel frequency			
Span		30% higher than the EBW measured before			
Resolution Bandwidth (RI	3W)	2MHz			
Video Bandwidth (VBW)		10MHz			
Sweep time		coupled			
Detector		Peak, Max hold mode for method PK1/PK2 or RMS and trace average for method AVG1/AVG2			
Sweep Mode		Repetitive mode, allow trace to stabilize			
Analyzer-Mode		R normal			
,		□ activated channel integration method with limits set to the EBW of the signal			

Remark 1: guidance 558074 D01 measurement DTS guidance v04 or ANSI 63.10:2013

5.2.6. RESULTS

APLICANT'S DECLARED ANTENNA CHARACTERISTICS:

☑ Directional Gain < 6 dBi (measured: difference between measured conducted and radiated eirp. power) □ Directional Gain > 6 dBi (measured / applicant's declaration) -> conducted power reduction necessary

The antenna gain was measured at 3 different frequencies. -0.38dBi

Different modulation types and data rates were tested in order to find the maximum conducted output power. **Enclosed are only the maximum values for each modulation format**, pls. compare separate document A1 for all results.

Modulation	DUT Frequency (MHz)	Peak Power (dbm)	Antenna Gain (dBi)	EIRP (dBm)
	2402	-2.09	-5.30	-7.39
DH5	2441	-1.94	-5.40	-7.34
	2480	-2.23	-3.30	-5.53
	2402	-3.08	-5.30	-8.38
2DH5	2441	-2.74	-5.40	-4.68
	2480	-2.87	-3.30	-6.17
	2402	-2.76	-5.30	-8.06
3DH5	2441	-2.47	-5.40	-7.87
	2480	-2.65	-3.30	-5.95

Remark: External Path Loss -> set as correction factor in spectrum-analyzer.

5.2.7. Conducted Peak Output Power Verdict: Pass

5.3. RF-Parameter – Frequency Stability

5.3.1.Test location and equipment (for reference numbers please see chapter 'List of test equipment')

test location	CETECOM Essen (Chapter. 2.2.1)		443 System CTC-FAR-EMI-		□ Please see Chapter. 2.2.3	
test site	□ 441 EMI SAR	□487 SAR NSA	□ 337 OATS	🗷 347 Radio.lab.		
receiver	□ 377 ESCS30	□ 001 ESS	🗷 489 ESU 40	□ 620 ESU 26		
otherwise	□ 600 NRVD	□ 357 NRV-Z1	🗆 693 TS8997			
spectr. analys.	🗆 683 FSU	□ 120 FSEM	□ 264 FSEK	□ 714 FSW 67		
power supply	🗆 456 EA 3013A	□ 457 EA 3013A	□ 459 EA 2032-50	268 EA- 3050	□ 494 AG6632A	□ 354 NGPE 40
otherwise	■ 613 20 dB Attenuator	$\Box 248 \frac{6 \text{ dB}}{\text{Attenuator}}$	□ 529 Power divider	□ - cable OTA20	\Box 530 $\frac{10 \text{dB}}{\text{Atten}}$	□ K5 Cable
Supply voltage	230 V 50 Hz via public mains		🗷 13,5 V DC			

5.3.2. Requirements:

ISED	☑ RSS-Gen, Issue5, Chapter 6.11
Remark	Frequency stability is a measure of frequency drift due to temperature and supply voltage variations, with reference to the frequency measured at an appropriate reference temperature and the rated supply voltage.

5.3.3. EUT settings

For FHSS-systems hopping mode was switched-off so fixed two different channels could be measured. The EUT was instructed to send with maximum power (if adjustable) according applicants instructions.

5.3.4. Measurement method

- 1. The First Measurement was done at Normal Temperature $+20^{\circ}$ C and $\pm 15\%$ of the supply voltage.
- 2. The Second Measurement was done at 3 different Temperatures -20°C (-4°F), +20°C (+68°F) and +50°C (+122°F), and the nominal supply Voltage
- 3. Also the 99% emission bandwidth was measured. Two markers are placed on frequency points such that left to lower f-marker and right to higher f-marker only 1% of the TX-power is contained. Between the markers, 99% of the power is laying.

Span	Set as to fully display the emissions and approximate 20dB below the PEAK level
Resolution Bandwidth (RBW)	Set to approx. 1% 3% of the emission width
Video Bandwidth (VBW)	3 times the resolution bandwidth
Sweep time	Coupled and low enough to have no gaps within power envelope
Detector	Sample (if bin width: Span/no. of frequency points SA < 0.5*RBW SA otherwise Peak
	detector)
Sweep mode	Repetitive Mode, Max hold

5.3.5. Spectrum-Analyzer Settings

5.3.6. Tmin – Vnom

			Tnom	Tnom - Vnom		Vnom -Tnom	
Modulation	Channel	99% OBW	left	right	left	right Bandedge	
			Bandedge	Bandedge	Bandedge	inght Buildouge	
	MHZ	in MHZ	in HZ	in HZ	in HZ	in HZ	
DH5	2402	0,950496	2401504950	2402475248	2401545455	2402594059	
	2441	0,950496	2440504950	2441455446	2440544554	2441495050	
	2481	0,950496	2479504950	2480475280	2479544554	2480495050	
					г	Dogg	
verdict					Г	488	
2-DH5	2402	1,227722	2401326733	2402534653	2401405941	2402633663	
	2441	1.227722	2440326733	2441534653	2440405941	2441633663	
2481 1.227722		2479326733	2480534653	2479405941	2480633663		
Deer					Dass		
veruiet					ſ	455	
3-DH5	2402	1.227722	2401326733	2402554455	2401402597	2402623377	
	2441	1.227722	2440326733	2441554455	2440402597	2441623377	
	2481	1.227722	2479326733	2480554455	2479402597	2480636364	
verdict				F	ass		

5.3.7. Tmax – Vnom

			Tnom	Tnom - Vnom		Tmax - Vnom	
Modulation	Channel	99% OBW	left	right	left	right	
			Bandedge	Bandedge	Bandedge	Bandedge	
		in MHZ	in HZ	in HZ	in HZ	in HZ	
DH5	2402	0,970298	2401504950	2402475248	2401504950	2402475248	
	2441	0,950496	2440504950	2441455446	2401504950	2402475248	
	2481	0,970298	2479504950	2480475280	2401504950	2402475248	
verdict				Р	ass		
2-DH5	2402	1,20792	2401326733	2402534653	2401366337	2402594059	
	2441	1,20792	2440326733	2441534653	2440366337	2441594059	
	2481	1,20792	2479326733	2480534653	2479366337	2480594059	
verdict					Р	ass	
3-DH5	2402	1,227722	2401326733	2402554455	2401366337	2402594059	
	2441	1,227722	2440326733	2441554455	2440366337	2441594059	
	2481	1,227722	2479326733	2480554455	2479366337	2480594059	
	verdict					ass	

			Tnom	Tnom - Vnom		Tnom - Vmin	
Modulation	Channel	99% OBW	left	right	left	right	
			Bandedge	Bandedge	Bandedge	Bandedge	
		in MHZ	in HZ	in HZ			
DH5	2402	0,970298	2401504950	2402475248	2401504950	2402475248	
	2441	0,950496	2440504950	2441455446	2440504950	2441475248	
	2481	0,970298	2479504950	2480475280	2479504950	2480475248	
verdict					Р	ass	
2-DH5	2402	1,20792	2401326733	2402534653	2401386139	2402594059	
	2441	1,20792	2440326733	2441534653	2440386139	2441594059	
	2481 1,20792		2479326733	2480534653	2479386139	2480594059	
verdict					Р	ass	
3-DH5	2402	1,227722	2401326733	2402554455	2401405941	2402633663	
	2441	1,227722	2440326733	2441554455	2440405941	2441633663	
	2481	1,227722	2479326733	2480554455	2479405941	2480633663	
	verdict					ass	

5.3.8. Tnom – Vmin

5.3.9. Tnom – Vmax

			Tnom	- Vnom	Tnom - Vmax	
Modulation	Channel	OBW	left Bandedge	right Bandedge	left Bandedge	right Bandedge
		in MHZ	in HZ	in HZ		
DH5	2402	0,970298	2401504950	2402475248	2401504950	2402475248
	2441	0,950496	2440504950	2441455446	2440504950	2441475248
	2481	0,970298	2479504950	2480475280	2479504950	2480475248
verdict				Ра	ISS	
2-DH5	2402	1,20792	2401326733	2402534653	2401386139	2402594059
	2441	1,20792	2440326733	2441534653	2440386139	2441594059
	2481	1,20792	2479326733	2480534653	2479386139	2480594059
verdict				Ра	ISS	
3-DH5	2402	1,227722	2401326733	2402554455	2401386139	2402594059
	2441	1,227722	2440326733	2441554455	2440366337	2441594059
	2481	1,227722	2479326733	2480554455	2479366337	2480613861
verdict				Pa	ISS	

5.3.10. Frequency Stability Verdict: pass

5.4. RF-Parameter – 99% Occupied Bandwidth

5.4.1.Test location and equipment (for reference numbers please see chapter 'List of test equipment')

test location	CETECOM Essen (Chapter. 2.2.1)		□ 443 System CTC-	-FAR-EMI-	□ Please see Chapter. 2.2.3	
test site	□ 441 EMI SAR	□487 SAR NSA	□ 337 OATS	🗷 347 Radio.lab.		
receiver	□ 377 ESCS30	□ 001 ESS	□ 489 ESU 40	□ 620 ESU 26		
otherwise	□ 600 NRVD	□ 357 NRV-Z1	🗷 693 TS8997			
spectr. analys.	🗷 683 FSU	□ 120 FSEM	□ 264 FSEK	□ 714 FSW 67		
power supply	🗆 456 EA 3013A	🗆 457 EA 3013A	□ 459 EA 2032-50	268 EA- 3050	□ 494 AG6632A	□ 354 NGPE 40
otherwise	■ 613 20 dB Attenuator	$\Box 248 \frac{6 \text{ dB}}{\text{Attenuator}}$	□ 529 Power divider	\Box - cable OTA20	\square 530 $\frac{10 \text{dB}}{\text{Atten}}$	□ K5 Cable
Supply voltage	e 🛛 230 V 50 Hz via public mains		🗷 13.5 V DC			

5.4.2. Requirements:

FCC	区 2.1049(h) 区 FCC 2.202 for information
ISED	E RSS-Gen, Issue5, Chapter 6.7
Remark	The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission
	When the occupied bandwidth limit is not stated in the applicable RSS or reference measurement method, the transmitted signal bandwidth shall be reported as the 99% emission bandwidth, as calculated or measured.

5.4.3. EUT settings

For FHSS-systems hopping mode was switched-off so fixed three different channels could be measured. The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

5.4.4. Measurement method

The measurement was performed with the RBW set to 30kHz. The span was set to cover the complete carrier. Three carrier frequencies (low/middle/high) were used for showing the compliance with this requirement. A 99% OBW measurement function was used to measure the bandwidth compared 99% of the highest In-Band power. The operating modes have been varied (e.g. data rate, modulation scheme, etc.). The hopping-mode is switched off.

Span	Set as to fully display the emissions and approximate 20dB below the PEAK level			
Resolution Bandwidth	Set to approx. 1%3% of the emission width			
(RBW)				
Video Bandwidth (VBW)	3 times the resolution bandwidth			
Sweep time	Coupled and low enough to have no gaps within power envelope			
Detector	Sample (if bin width: Span/no. of frequency points SA < 0.5*RBW SA otherwise Peak			
	detector)			
Sweep mode	Repetitive Mode, Max hold			

5.4.5. Spectrum-Analyzer Settings

5.4.6. 99% Occupied Bandwidth Results:

99% Occupied Bandwidth Measurements								
Temperatu	ure :+21 °C	Voltage Supply 13.5 V DC	2 Op. Mode: 1					
	Frequency Hopping OFF							
Channel	Frequency	20 dB Emission Bandwidth Measure	ments	Plot No.				
[Number]	[MHz]	[MHz]						
DH5	2402	0.970298						
DH5	2441	0.970298						
DH5	2480	0.970298						
2DH5	2402	1.207920		D				
2DH5	2441	1.207920		Remark I				
2DH5	2480	1.207920						
3DH5	2402	1.227722						
3DH5	2441	1.227722						
3DH5	2480	1.227722						
Remark 1: For f	Remark 1: For further details please refer → Annex 1: Test results - CETECOM_TR18_1_0048601T03a_A1							

5.4.7. 99% Occupied Bandwidth Verdict: For Information only

5.5. RF-Parameter - 20 dB Bandwith

5.5.1.Test location and equipment (for reference numbers please see chapter 'List of test equipment')

test location	CETECOM Essen (Chapter. 2.2.1)		443 System CTC-	FAR-EMI-	□ Please see Chapter. 2.2.3	
test site	441 EMI SAR	□487 SAR NSA	□ 337 OATS	🗷 347 Radio.lab.		
receiver	□ 377 ESCS30	□ 001 ESS	□ 489 ESU 40	□ 620 ESU 26		
otherwise	□ 600 NRVD	□ 357 NRV-Z1	🗆 693 TS8997			
spectr. analys.	🗷 683 FSU	□ 120 FSEM	□ 264 FSEK	□ 714 FSW 67		
power supply	🗆 456 EA 3013A	🗆 457 EA 3013A	🗆 459 EA 2032-50	268 EA- 3050	□ 494 AG6632A	□ 354 NGPE 40
otherwise	■ 613 20 dB Attenuator	$\Box 248 \frac{6 \text{ dB}}{\text{Attenuator}}$	$\Box 529 \frac{\text{Power}}{\text{divider}}$	□ - cable OTA20	\square 530 $\frac{10 \text{dB}}{\text{Atten}}$	□ K5 Cable
Supply voltage	🗆 230 V 50 Hz via p	public mains	🗷 13.5 V DC			

5.5.2. Requirements:

FCC	☑ §15.247 (a) (1)
ISED	🗷 RSS-247, Issue 2, Chapter 5.1,a
Remark	The bandwidth of a frequency hopping channel is the 20 dB emission bandwidth, measured with the hopping stopped.

5.5.3. EUT settings

For FHSS-systems hopping mode was switched-off so fixed three different channels could be measured. The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

5.5.4. Measurement method

The measurement was performed with the RBW set to 3kHz. The span was set to cover the complete carrier. Three carrier frequencies (low/middle/high) were used for showing the compliance with this requirement. A DELTA Marker method was set to measure the bandwidth compared to the highest In-Band power. The operating modes have been varied (e.g. data rate, modulation scheme, etc.). The hopping-mode is switched off.

Span	Set as to fully display the emissions and approximate 20dB below the PEAK level
Resolution Bandwidth	Set to approx. 1% 3% of the emission width
(RBW)	
Video Bandwidth (VBW)	3 times the resolution bandwidth
Sweep time	Coupled and low enough to have no gaps within power envelope
Detector	Sample (if bin width: Span/no. of frequency points SA < 0.5*RBW SA otherwise Peak
	detector)
Sweep mode	Repetitive Mode, Max hold

5.5.5. Spectrum-Analyzer Settings

5.5.6. 20 dB Bandwidth Results:

20 dB Emission Bandwidth Measurements							
Temperati	ure :+21 °C	Voltage Supply 13.5 V DC	Voltage Supply 13.5 V DC Setup:				
Frequency Hopping OFF							
Channel	Frequency	20 dB Emission Bandwidth Measure	ments		Plot No.		
[Number]	[MHz]	[MHz]					
DH5	2402	1.168316					
DH5	2441	1.128712					
DH5	2480	1.128712					
2DH5	2402	1.445544			Damasla 1		
2DH5	2441	1.405940			Remark 1		
2DH5	2480	1.405940					
3DH5	2402	1.405940					
3DH5	2441	1.425742					
3DH5	3DH5 2480 1.425742						
Remark 1: For further details please refer → Annex 1: Test results - CETECOM_TR18_1_0048601T03a_A1							

5.5.7. 20 dB Bandwidth Verdict: Pass

5.6. RF-Parameter - Channel Carrier Frequency Separation for FHSS-systems

5.6.1.Test location and equipment (for reference numbers please see chapter 'List of test equipment')

test location	CETECOM Essen (Chapter. 2.2.1)		□ 443 System CTC-	-FAR-EMI-	□ Please see Chapter. 2.2.3		
test site	🗆 441 EMI SAR	□487 SAR NSA	□ 337 OATS	🗷 347 Radio.lab.			
receiver	□ 377 ESCS30	□ 001 ESS	□ 489 ESU 40	□ 620 ESU 26			
otherwise	□ 600 NRVD	□ 357 NRV-Z1	🗷 693 TS8997				
spectr. analys.	🗷 683 FSU	□ 120 FSEM	□ 264 FSEK	🗷 714 FSW 67			
power supply	🗆 456 EA 3013A	🗆 457 EA 3013A	□ 459 EA 2032-50	268 EA- 3050	□ 494 AG6632A	□ 354 NGPE 40	
otherwise	$\square 613 \frac{20 \text{ dB}}{\text{Attenuator}}$	$\Box 248 \frac{6 \text{ dB}}{\text{Attenuator}}$	□ 529 Power divider	\Box - cable OTA20	$\square 530 \frac{10 \text{dB}}{\text{Atten}}$	□ K5 Cable	
Supply voltage	🗆 230 V 50 Hz via p	public mains	🗷 13.5 V DC				

5.6.2. Requirements:

FCC	☑ §15.247 (a) (1)
ISED	🗷 RSS-247, Issue 2, Chapter 5.1,b
Remark	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals

5.6.3. EUT settings

For FHSS-systems hopping mode was switched-on so that adjacent Frequency Hopping channels could be measured. The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

5.6.4. Measurement method

The measurement to prove this requirement was performed with a low RBW of 100kHz, peak detector and trace Hold-Max function in order to resolve each frequency carrier separately.

The span of the frequency analyzer was set to cover the carrier investigated as well as its neighbour channels. A frequency DELTA Marker method was set to measure the frequency separation between the channels.

5.6.5. Channel Carrier Frequency Separation Results:

Channel Carrier Frequency Separation Measurements						
Temperature :+21 °C	Voltage Supply 13 V DC - 3 V	Op. Mode: 2				
Frequency Hopping ON						
Neighboring Channels	Carrier Frequency Separation Minimum CFS Plot No					
[Number]	[MHz]	[kHz]				
Low channel	0.980	25				
Mid Channel	0.980	25 Remark 1				
High Channel	h Channel 0.980 25					
Hopping Channel Carrier Frequencies Separation Limits- FCC 15.247						
Hopping Channel Carrier Frequencies Separation Limits - RSS-247, Issue 2						
Remark 1: For further details please refer → Annex 1: Test results - CETECOM_TR18-1-0048601T03a-A1						

5.6.6. Hopping Channel Carrier Frequencies Separation Verdict: Pass

5.7. RF-Parameter – Number of Hopping Channels for FHSS-systems

5.7.1.Test location and equipment (for reference numbers please see chapter 'List of test equipment')

test location	CETECOM Essen (Chapter, 2.2.1)		□ 443 System CTC	-FAR-EMI-	□ Please see Chapter, 2.2.3	
test site	□ 441 EMI SAR	□ 487 SAR NSA	□ 337 OATS	⊠ 347 Radio.lab.		
receiver	□ 377 ESCS30	□ 001 ESS	□ 489 ESU 40	□ 620 ESU 26		
otherwise	□ 600 NRVD	□ 357 NRV-Z1	🗷 693 TS8997			
spectr. analys.	🗷 683 FSU	□ 120 FSEM	□ 264 FSEK	🗷 714 FSW 67		
power supply	🗆 456 EA 3013A	🗆 457 EA 3013A	□ 459 EA 2032-50	268 EA- 3050	□ 494 AG6632A	□ 354 NGPE 40
otherwise	$\square 613 \begin{array}{c} 20 \text{ dB} \\ \text{Attenuator} \end{array}$	$\square 248 \frac{6 \text{ dB}}{\text{Attenuator}}$	□ 529 Power divider	\Box - cable OTA20	\Box 530 $\frac{10 \text{dB}}{\text{Atten}}$	□ K5 Cable
Supply voltage	🗆 230 V 50 Hz via j	public mains	🗷 13.5 V DC			

5.7.2. Requirements:

FCC	⊠ §15.247 (a) (1) (iii)
ISED	🗷 RSS-247, Issue 2, Chapter 5.1,d
Remark	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

5.7.3. EUT settings

For FHSS-systems hopping mode was switched-on so that adjacent Frequency Hopping channels could be measured. The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

5.7.4. Measurement method

The measurement to prove this requirement was performed with a low RBW of 100kHz, peak detector and trace Hold-Max function in order to resolve each frequency carrier separately.

The span of the frequency analyzer was set to cover the Hopping channels in two parts namely 2.4 GHz Lower spectrum and 2.4 GHz Upper spectrum. On extreme right & left channels Markers were set to indicate the corresponding channel frequency.

5.7.5. Number of Hopping Channels Results:

Number of Hopping Channels Measurements							
Temperature :+21 °C	13.5 VDC	Setup: 2	Op. Mode: 2				
	Total Channels 2.4 GHz Spectrum	Plot No.					
Frequency I	Hopping ON	[Number]	D				
		79	Remark 1				
Minimum Number of Hopping	Minimum Number of Hopping Channels Limits- FCC 15.247						
Minimum Number of Hopping Channels Limits - RSS-247, Issue 2							
Remark 1: For further details please refer → Annex 1: Test results - CETECOM_TR18_1_0048601T03a_A1							

5.7.6. Minimum Number of Hopping Channels Verdict: Pass

5.8. RF-Parameter – Average Time of Occupancy for FHSS systems

5.8.1.Test location and equipment (for reference numbers please see chapter 'List of test equipment')

test location	CETECOM Essen (Chapter. 2.2.1)		□ 443 System CTC-	-FAR-EMI-	□ Please see Chapter. 2.2.3	
test site	441 EMI SAR	487 SAR NSA	□ 337 OATS	🗷 347 Radio.lab.		
receiver	□ 377 ESCS30	□ 001 ESS	□ 489 ESU 40	□ 620 ESU 26		
otherwise	□ 600 NRVD	□ 357 NRV-Z1	🗆 693 TS8997			
spectr. analys.	🗷 683 FSU	□ 120 FSEM	□ 264 FSEK	□ 714 FSW 67		
power supply	🗆 456 EA 3013A	🗆 457 EA 3013A	□ 459 EA 2032-50	268 EA- 3050	□ 494 AG6632A	□ 354 NGPE 40
otherwise	$\square 613 \frac{20 \text{ dB}}{\text{Attenuator}}$	$\Box 248 \begin{array}{c} 6 \text{ dB} \\ \text{Attenuator} \end{array}$	□ 529 Power divider	\Box - cable OTA20	≥ 530 10dB Atten	□ K5 Cable
Supply voltage	🗆 230 V 50 Hz via p	public mains	🗷 13.5 V DC(AE5)			

5.8.2. Requirements:

FCC	☑ §15.247 (a) (1) (iii)
ISED	🗷 RSS-247, Issue 2, Chapter 5.1,d
Remark	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

5.8.3. EUT settings

For FHSS-systems hopping mode was switched-on so that occupancy time of Frequency Hopping channels could be measured. The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

5.8.4. Measurement method:

The measurement was performed with a spectrum analyzer set to ZERO span. The device was set to work within the defined specification with frequency Hopping Mode ON. The spectrum-analyzer was set the MAX-Hold positive peak detector mode. The sweep time set as long as necessary to capture the full signal burst per hopping channel. The burst on-period is captured by setting appropriate markers in the rising and falling edges.

5.8.5. Average occupancy time calculations:

Formula for calculating the dwell time (pseudo-hopping sequence over all channels assumed):

Average Dwell Time =
$$Timeslot \ length \cdot \frac{Hop \ rate}{number \ of \ hopping \ channels} \cdot time \ period$$

The EUT employs Proprietary 2.4 GHz RF Transceiver Frequency Hopping system with total 79 channels. The maximum staying time of 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. = 0.4 seconds X 79 = 31,6 Seconds.

That means the average time of occupancy on any channel shall not be greater than 0.4 seconds within 240 seconds.

5.8.6. Average occupancy time Results:

Average Occupancy Time Measurements									
Temper	cature :+21 °	C Voltage	Supply 13.5 V DC	apply 13.5 V DC Setup: 2					
	Μ	Fre	equency Hoppin	g ON					
Data Rate	Channel	Single Transmission Time	Number of Transmissions in 31.6 Seconds	Average Occupancy Time in 31.6 Seconds					
[Kbps]	[Number]	[milliseconds]	[Number]	[milliseconds]					
DH1		0.380609	640		243.590				
DH3	39	1.638622	213 349.026		349.026				
DH5		2.902564	128		371.528				
A	verage Occu	-	\leq 400 millis	seconds					
F	For further det	ails please refer \rightarrow Anne	x 1: CETECOM_TR	18_1	_0048601T03a_	A1			

5.8.7. Average Occupancy Time Verdict: Pass

5.9. RF-Parameter – Out-of-Band 20 dBc Conducted Emissions for FHSS systems

5.9.1.1 est loc	5.9.1.1 est location and equipment (for reference numbers please see chapter List of test equipment)										
test location	CETECOM Essen (Chapter. 2.2.1)			443 System CTC-FAR-EMI-			-	□ Please see Chapter. 2.2.3			
test site	🗆 441 EMI SAR	□ 487 SAR	NSA [337	OATS	X 347	Radio.lab.				
receiver	□ 377 ESCS30	□ 001 ESS	[x 683	FSU 26	□714	FSW67				
spectr. analys.	🗆 489 ESU	□ 120 FSEM	/	264	FSEK						
power supply	🗆 456 EA 3013A	□ 457 EA 30	013A [⊒ 459	EA 2032-50	$\Box 268$	EA- 3050	□ 494 AG6632A	🗷 354 NGPE 40		
otherwise	■ 530 10dB Attenuator ■ RTK10			51 Directional Couple			ectional Couple	er 1539R-10			
Supply voltage	🗷 24 V DC										

5.9.1.Test location and equipment (for reference numbers please see chapter 'List of test equipment')

5.9.2. Requirements:

FCC	⊠ §15.247 (d)
Remark	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating. the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. based on either an RF conducted or a radiated measurement. provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval. as permitted under FCC15.247 paragraph (b)(3) / RSS-247 section 5.4(d). the attenuation required shall be 30 dB instead of 20 dB

5.9.3. EUT settings

Fixed Channel Mode:

For FHSS-systems Hopping mode was switched-off so fixed three different channels could be measured. The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked. e.g. data rates which EUT can operate.

Hopping Mode:

For FHSS-systems Hopping mode was switched- ON so emissions from hopping channels could be measured. The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked. e.g. data rates which EUT can operate.

5.9.4. Measurement Method:

The measurements were performed with the RBW set to 100kHz & maximum carrier level was indicated with MAX-Hold positive peak detector using markers. Then a frequency line was set 20 dB below this measured maximum carrier level.

Then using RBW 100 kHz & spectrum analyzer span from 150 kHz to 25 GHz in three steps spurious emissions were measured with MAX-Hold positive peak detector.

The sweep time set as long as necessary to capture the full signal burst per hopping channel. The burst on-period is captured by setting appropriate markers in the rising and falling edges.

Set-up no.: 2 Op-Mode: 1		RF-Cor	nducted test: 20	dBc spurious er	nissions		
•	Modulation	8-DPSK	Modulation	Pi/4-QPSK	Modulation GFSK		
	Low chann	nel = 0	Middle cha	annel = 39	High char	nnel = 78	
	(2402 M	Hz)	(2441	MHz)	(2480)	MHz)	
	Level Refe	erence	Level Re	eference	Level Re	eference	
Frequency	Frequency (In-Band)= -2.9		(In-Band) = -2	.02 dBm−10	(In-Band) = -	-3.94 dBm –	
Range	dB (Offs	set)	dB (O	ffset)	10 dB (Offset)		
	Limit= -22.91 dE	Bm − 10 dB	Limit = -22.02	dBm - 10 dB	Limit= -23.94 d	dBm −10 dB	
	(Offset)		(Off	set)	(Offset)		
	Frequency	Value	Frequency	Value	Frequency	Value	
	[MHz]	[dBc]	[MHz]	[dBc]	[MHz]	[dBc]	
150kHz to 30 MHz	1.0127	> 35	1.3321	> 35	1.3768	> 35	
30MHz to 2.8 GHz	2114.148	> 35	1484.527	> 35	1735.766	> 35	
2.8 to 25 GHz	25 4200.00	> 35	23.768.16	> 35	22501.44	> 35	
Band-Edge (no hopping)				-			

5.9.5. Results: Hopping mode off

Remark 1: see diagrams in separate document TR18_1_0048201T03a_A1 The limit on the diagrams is 20dB under the reference level measured In-Band for each channel

Remark 2: Plots are 10dB less, 10dB offset was used.

5.9.6. Results: Hopping mode on

Set-up no.: 2 Op-Mode: 2	RF-Conducted test: 20 dBc spurious emissions							
	Modulation Level Refe	GFSK erence	Modulation Level Re	Pi/4-QPSK eference	Modulation 8-DPSK Level Reference			
Frequency	(In-Band) = 5.18 dBm - 10 dB (Offset)		(In-Band) = 2.3 (Off	4 dBm - 10 dB set)	(In-Band) = 2.26 dBm - 10 dB (Offset)			
Range	Limit = -14.82 dE (Offset	3m – 10 dB t)	Limit= -17.66 (Off	dBm – 10 dB set)	Limit= $-17.74 \text{ dBm} - 10 \text{ dB}$ (Offset)			
	Frequency [MHz]	Value [dBc]	Frequency [MHz]	Value [dBc]	Frequency [MHz]	Value [dBc]		
150kHz to 30 MHz	16.845	> 35		> 40		> 40		
30MHz to 2.8 GHz	1459.939	> 35		> 40		> 40		
2.8 to 25 GHz	24 810.26	> 35		> 40		> 40		
Band-Edge (hopping)	>40			> 40		> 40		

Remark 1: see diagrams in separate document TR18_1_0048201T03a_A1 The limit on the diagrams is 20dB under the reference level measured In-Band for each channel Only worst case from non-hopping Modulation was measured

Remark 2: Plots are 10dB less, 10dB offset was used.

5.9.7. Out-of-Band 20 dBc Conducted Emissions Verdict: Pass

5.10. General Limit - Radiated field strength emissions below 30 MHz

5.10.1. Test location and equipment

test location	CETECOM Esser	n (Chapter. 2.2.1)	□ Please see Chapte	er. 2.2.2	□ Please see Chapter. 2.2.3					
test site	🗷 441 EMI SAR	□487 SAR NSA	□ 347 Radio.lab.							
receiver	□ 377 ESCS30	🗷 001 ESS								
spectr. analys.	□ 584 FSU	□ 120 FSEM	□ 264 FSEK							
antenna	□ 574 BTA-L	□ 133 EMCO3115	□ 302 BBHA9170	289 CBL 6141	🗷 030 HFH-Z2	□ 477 GPS				
signaling	□ 392 MT8820A	□ 371 CBT32	□ 547 CMU	□ 594 CMW						
otherwise	□ 400 FTC40x15E	□ 401 FTC40x15E	□ 110 USB LWL	□ 482 Filter Matrix	□ 378 RadiSense					
DC power	□ 671 EA-3013S	□ 457 EA 3013A	🗷 459 EA 2032-50	268 EA- 3050	□ 494 AG6632A	□ 498 NGPE 40				
Supply Voltage	🗆 230 V 50 Hz via	public mains	☑ 13.5V DC							

5.10.2. Requirements

FCC	Part 15, Subpart 0	art 15, Subpart C, §15.205 & §15.209									
ISED	RSS-Gen: Issue 5	SS-Gen: Issue 5: §8.9 Table 5 RSS-247, Issue 2,									
ANSI	C63.10-2013	63.10-2013									
Frequency [MHz]	Field strength limit [µV/m] [dBµV/m]		Distance [m]	Remarks							
0.009 - 0.490	2400/f (kHz)	67.6 – 20Log(f) (kHz)	300	Correction factor used due to measurement distance of 3 m							
0.490 - 1.705	24000/f (kHz) 87.6 – 20Log(f) (kHz)		30	Correction factor used due to measurement distance of 3 m							
1.705 - 30	30	29.5	30	Correction factor used due to measurement distance of 3 m							

5.10.3. Test condition and test set-up

Signal link to test s	ystem (if used):	🗆 air link	□ cable connection	🗷 none		
EUT-grounding		🗷 none	□ with power supply	□ additional connection		
Equipment set up		🗷 table top		□ floor standing		
Climatic conditions		Temperature:	(22±3°C)	Rel. humidity: (40±20)%		
		⊠ 9 – 150 kH	z RBW/VBW =	= 200 Hz Scan step = 80 Hz		
	Scan data	$\blacksquare 150 \text{ kHz} - 30 \text{ MHz} \text{RBW/VBW} = 9 \text{ kHz} \text{Scan step} = 4 \text{ kHz}$				
		\Box other:				
EMI-Receiver or	Scan-Mode	🗷 6 dB EMI-l	Receiver Mode 🗆 3dB Sp	bectrum analyser Mode		
Analyzer Settings	Detector	Peak (pre-mea	surement) and Quasi-PK	Average (final if applicable)		
	Mode:	Repetitive-Sca	an, max-hold			
	Sweep-Time	Coupled - cali	ibrated display if continue	ous signal otherwise adapted to EUT's individual		
		transmission duty-cycle				
General measureme	nt procedures	Please see chapter "Test system set-up radiated magnetic field measurements below 30 MHz"				

5.10.4. Measurement Results

The results are presented below in summary form only. For more information please consult the diagrams included in annex 1.

The EUT is put on operation on middle channel only. If critical peaks are found (Margin <10 dB) the lowest and highest channels will be performed too.

Table of measurement results:

Diagram No.	Carr Chai Range	rier 1nel _{No.}	Frequency range	Set- up no.	OP- mode no.	Remark	Use PK	ed dete	ector QP	Result
2.02a	Low	0	9 kHz - 30 MHz	1	1	BT-BDR-GFSK-1Mbps EUT laying	×			Pass
2.02b	Low	0	9 kHz - 30 MHz	1	1	BT-BDR-GFSK-1Mbps EUT standing	×			Pass

Remark: see diagrams in Annex A1 \rightarrow TR18_1_0048201T03a_A1A1 for more details

5.10.5. Correction factors due to reduced meas. distance (f< 30 MHz)

The used correction factors when the measurement distance is reduced compared to regulatory measurement distance, are calculated according Extrapolation formulas valid for EUT's with maximum dimension of 0.625xLambda. Formula 2+3+4 as presented in ANSI C63.10, Chapter 6.4.4 are used for the calculations of proper extrapolation factors.

Frequency			Far-Field	Distance Limit		1st Condition	2'te Condition	Distance Correction
-Range	f [kHz/MHz]	Lambda [m]	Point [m]	accord, 15,209 [m]		(dmeas<	(Limit distance	accord, Formula
. tungo						D _{near-field})	bigger d _{near-field})	door an onnaid
	9,00E+03	33333, 33	5305,17			fullfilled	not fullfilled	-80,00
	1,00E+04	30000,00	4774,65			fullfilled	not fullfilled	-80,00
	2,00E+04	15000,00	2387,33			fullfilled	not fullfilled	-80,00
	3,00E+04	10000,00	1591,55			fullfilled	not fullfilled	-80,00
	4,00E+04	7500,00	1193,66			fullfilled	not fullfilled	-80,00
	5,00E+04	6000,00	954, 93			fullfilled	not fullfilled	-80,00
	6,00E+04	5000,00	795, 78			fullfilled	not fullfilled	-80,00
	7,00E+04	4285,71	682,09	300		fullfilled	not fullfilled	-80,00
	8,00E+04	3750,00	596,83			fullfilled	not fullfilled	-80,00
	9,00E+04	3333,33	530, 52			fullfilled	not fullfilled	-80,00
kHz	1,00E+05	3000,00	477,47			fullfilled	not fullfilled	-80,00
	1,25E+05	2400,00	381,97			fullfilled	not fullfilled	-80,00
	2,00E+05	1500,00	238,73			fullfilled	fullfilled	-78,02
	3,00E+05	1000,00	159, 16			fullfilled	fullfilled	-74,49
	4,00E+05	750,00	119, 37			fullfilled	fullfilled	-72,00
	4,90E+05	612,24	97,44			fullfilled	fullfilled	-70,23
	5,00E+05	600,00	95,49			fullfilled	not fullfilled	-40,00
	6,00E+05	500,00	79,58			fullfilled	not fullfilled	-40,00
	7,00E+05	428,57	68,21			fullfilled	not fullfilled	-40,00
	8,00E+05	375,00	59,68			fullfilled	not fullfilled	-40,00
	9,00E+05	333,33	53,05			fullfilled	not fullfilled	-40,00
	1,00	300,00	47,75			fullfilled	not fullfilled	-40,00
	1,59	188,50	30,00			fullfilled	not fullfilled	-40,00
	2,00	150,00	23,87			fullfilled	fullfilled	-38,02
	3,00	100,00	15,92			fullfilled	fulfilled	-34,49
	4,00	75,00	11,94			fullfilled	fulfilled	-32,00
	5,00	60,00	9,55			fullfilled	fullfilled	-30,06
	6,00	50,00	7,96			fullfilled	fulfilled	-28,47
	7,00	42,86	6,82			fullfilled	fulfilled	-27,13
	8,00	37,50	5,97			fullfilled	fullfilled	-25,97
	9,00	33, 33	5,31			fullfilled	fulfilled	-24,95
	10,00	30,00	4,77	30		fullfilled	fulfilled	-24,04
	10,60	28,30	4,50			fullfilled	fulfilled	-23,53
MHz	11,00	27,27	4,34			fullfilled	fulfilled	-23,21
	12,00	25,00	3,98			fullfilled	fulfilled	-22,45
	13,56	22,12	3,52			fullfilled	fulfilled	-21,39
	15,00	20,00	3, 18			fullfilled	fulfilled	-20,51
	15,92	18,85	3,00			Tuimied	tuiniled	-20,00
	17,00	17,65	2,81			not fulfilled	tuiniled	-20,00
	18,00	16,67	2,65			not fulfilled	TUITIIIed	-20,00
	20,00	15,00	2,39			not fulfilled	fulfilled	-20,00
	21,00	14,29	2,2/			not fulfilled	fulfilled	-20,00
	23,00	13,04	2,08			not fulfilled	fulfilled	-20,00
	25,00	12,00	1,91			not fulfilled	tuttilled	-20,00
	27,00	11, 11	1, //			not fulfilled	fulfilled	-20,00
	29,00	10,34	1,65			not fulfilled	fulfilled	-20,00
1	30,00	10,00	1,59			not fulfilled	fulfilled	-20,00

5.11. General Limit - Radiated field strength emissions, 30 MHz - 1 GHz

5.11.1. Test location and equipment

	····································									
test location	CETECOM Esser	n (Chapter. 2.2.1)	Please see Chapte	er. 2.2.2	□ Please see Chapter. 2.2.3					
test site	🗷 441 EMI SAR	🗷 487 SAR NSA								
receiver	□ 377 ESCS30	🗷 001 ESS	□ 489 ESU 40	□ 620 ESU 26						
spectr. analys.	□ 584 FSU	□ 120 FSEM	□ 264 FSEK							
antenna	🗷 574 BTA-L	□ 133 EMCO3115	□ 302 BBHA9170	289 CBL 6141	□ 030 HFH-Z2	□ 477 GPS				
signaling	□ 392 MT8820A	□ 371 CBT32	□ 547 CMU	□ 594 CMW						
otherwise	□ 400 FTC40x15E	□ 401 FTC40x15E	□ 110 USB LWL	🗷 482 Filter Matrix						
DC power	🗆 456 EA 3013A	🗷 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	□ 498 NGPE				
Supply Voltage	🗆 230 V 50 Hz via p	oublic mains	🗵 13.5 V DC							

5.11.2. Requirements/Limits

	FCC	□ Part 15 Subpart B. §15.109. class B ☑ Part 15 Subpart C. §15.209 @ frequencies defined in §15.205 ☑ Part 15.247 (d)				
	ISED	 RSS-Gen., Issue 5. Chapter 8.9. Table 5+7 RSS-Gen., Issue 5. Chapter 7.1.2. Table 3 (ICES-003. Issue 6. Table 5 (Class B) RSS-247. Issue 2. Chapter 5 	 RSS-Gen Issue 5. Chapter 8.9. Table 5+7 (licence-exempt radio apparatus) RSS-Gen Issue 5. Chapter 7.1.2. Table 3 (receiver) ICES-003. Issue 6. Table 5 (Class B) RSS-247. Issue 2. Chapter 5 			
	ANSI	□ C63.4-2014 ⊠ C63.10-2013				
	Eraguan ay [MII]	Radiated emissions limits. 3 meters				
	Frequency [WHZ]	QUASI Peak [µV/m]	QUASI-Peak [dBµV/m]			
I imit	30 - 88	100	40.0			
88 - 216		150 43.5				
	216 - 960	200 46.0				
	above 960	500	54.0			

5.11.3. Restricted bands of operation (FCC §15.205)

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.20725-4.20775	37.5-38.25	1645.5-1646.5	9.3-9.5
6.215-6.218	73-74.6	1660-1710	10.6-12.7
6.26775-6.26825	74.8-75.2	1718.8-1722.2	13.25-13.4
6.31175-6.31225	108-121.94	2200-2300	14.47-14.5
8.291-8.294	123-138	2310-2390	15.35-16.2
8.362-8.366	149.9-150.05	2483.5-2500	17.7-21.4
8.37625-8.38675	156.52475-156.52525	2690-2900	22.01-23.12
8.41425-8.41475	156.7-156.9	3260-3267	23.6-24.0
12.29-12.293	162.0125-167.17	3332-3339	31.2-31.8
12.51975-12.52025	167.72-173.2	3345.8-3358	36.43-36.5
12.57675-12.57725	240-285	3600-4400	
13.36-13.41	322-335.4		
Remark: only spurious emissions	are allowed within these frequency ba	ands not exceeding the limits per §1	5.209

Signal link to test sy	/stem (if used):	🗆 air link	□ cable connection	🗵 none			
EUT-grounding		\blacksquare none \square with power supply \square additional connection					
Equipment set up		☑ table top 0.8	3m height	□ floor standing			
Climatic conditions	5	Temperature: (22±3°C) Rel. humidity: (40±20)%					
EMI-Receiver	Scan frequency range:	¥ 30−1000 M	1Hz 🗆 other:				
(Analyzer) Settings	Scan-Mode	🗷 6 dB EMI-Receiver Mode 🗆 3 dB spectrum analyser mode					
	Detector	Peak / Quasi-peak					
	RBW/VBW	100 kHz/300 k	Hz				
	Mode:	Repetitive-Sca	n, max-hold				
	Scan step	80 kHz					
	Sweep-Time	Coupled - cali	brated display if continue	ous tx-signal otherwise adapted to EUT's individual			
	-	duty-cycle					
General measureme	ent procedures	Please see chapter "Test system set-up for electric field measurement in the range 30 MHz					
	-	to 1 GHz"					

5.11.4. Test condition and measurement test set-up

5.11.5. MEASUREMENT RESULTS

5.11.5.1. Measurement Results 30MGHz to 1GHz

The results are presented below in summary form only. For more information please consult the diagrams included in annex 1.

Dia- gram	Carrier C	hannel	Frequency range	Set- up	OP- mode	Remark	Use	d detec	ctor	Result
no.	Range	No.		no.	no.		РК	AV	QP	
3.01a	High	78	30 MHz – 1 GHz	1	1	BT-EDR-2Mbps EUT laying	×			Pass
3.01b	High	78	30 MHz – 1 GHz	1	1	BT-EDR-2Mbps EUT standing	×			Pass
3.02a	Low	0	30 MHz – 1 GHz	1	1	BT-EDR-3Mbps EUT laying	×			Pass
3.02b	Low	0	30 MHz – 1 GHz	1	1	BT-EDR-3Mbps EUT standing	×			Pass
3.03a	Low	39	30 MHz – 1 GHz	1	1	BT-BDR-1Mbps EUT laying	×			Pass
3.03b	Low	39	30 MHz – 1 GHz	1	1	BT-BDR-1Mbps EUT standing	×			Pass

Table of measurement results:

Remark: see diagrams in Annex A1 →TR18-1-0048201T03a-A1 for more details

5.12. General Limit - Radiated emissions, above 1 GHz

5.12.1. Test location and equipment FAR

	_					
test site	□441 EMI SAR	□ 348 EMI cond.	🗷 443 EMI FAR	□ 347 Radio.lab.	E337 OATS	
spectr. analys.	□584 FSU	□ 120 FSEM	□ 264 FSEK	🗷 489 ESU 40	C	
antenna meas	□574 BTA-L	289 CBL 6141	🗷 608 HL 562	🗷 549 HL025	■302 BBHA9170	□ 477 GPS
antenna meas	□123 HUF-Z2	□ 132 HUF-Z3	□ 030 HFH-Z2	□ 376 BBHA9120E		
antenna subst	□071 HUF-Z2	□ 020 EMCO3115	🗆 063 LP 3146	□ 303 BBHA9170	C	
multimeter	□ 341 Fluke 112				Ľ	
signaling	□392 MT8820A	□ 371 CBT32	□ 547 CMU	□ 594 CMW		
DC power	□086 LNG50-10	🗷 087 EA3013	□ 354 NGPE 40	□ 349 car battery	□350 Car battery	
Supply Voltage	□ 230 V 50 Hz via	public mains	🗷 313.5 V DC			

5.12.2. Requirements/Limits (CLASS B equipment)

FCC	 □ Part 15 Subpart B. §15.109 class B ☑ Part 15 Subpart C. §15.209 for frequencies defined in §15.205 ☑ Part 15.247 (d) 						
ISED	 RSS-Gen Issue 5. Chapter 8.9. Table 5+7 (transmitter licence excempt) RSS-Gen Issue 5. Chapter 8.9. Table 3 (receiver) ICES-003. Issue 6. Chapter 6.2.2. Table 7 (class B) RSS-247. Issue 2. Chapter 5 						
ANSI	□ C63.4-2014 ⊠ C63.10-2013	□ C63.4-2014 ☑ C63.10-2013					
		Limit	s				
Frequency	AV	AV	Peak	Peak			
[MHz]	[µV/m]	[dBµV/m]	[µV/m]	[dBµV/m] or [dBm/MHz]			
above 1 GHz for frequencies as defined in §15.205 or RSS-Gen Issue 5. §8.10 - Table 5	500 54.0 5000 74.0 dBμ V/m						

5.12.3. Test condition and measurement test set-up

Signal link	to test system (if used):	🗆 air link	□ cable connection	🗷 none		
EUT-groun	ding	🗷 none	□ with power supply	□ additional connection		
Equipment	set up	☑ table top 1.5	5m height	□ floor standing		
Climatic co	nditions	Temperature: ((22±3°C)	Rel. humidity: (40±20)%		
Spectrum-	Scan frequency range:	\blacksquare 1 – 18 GHz \blacksquare 18 – 25 GHz \Box 18 – 40 GHz \Box other:				
Analyzer	Scan-Mode	🗷 6 dB EMI-F	Receiver Mode 🗆 3 dB S	Spectrum analyser Mode		
settings	Detector	Peak and Aver	age			
	RBW/VBW	1 MHz / 3 MHz				
	Mode:	Repetitive-Scan, max-hold				
	Scan step	400 kHz				
	Sweep-Time	Coupled - calibrated display if CW signal otherwise adapted to EUT's individual duty-cycle				
General mea	surement procedures	Please see chapter "Test system set-up for radiated electric field measurements above 1 GHz"				

5.12.4. Measurement Results

The results are presented below in summary form only. For more information please consult the diagrams included in annex 1.

Dia- gram	Carrier C	Channel	Frequency range	Set- up	OP- mode	Remark	Use	d detec	ctor	Result
no.	Range	No.		no.	no.		РК	AV	QP	
4.01a	High	78	1 GHz – 18 GHz	1	1	BT-EDR-2Mbps	×	×		Pass
4.02a	Low	0	1 GHz – 18 GHz	1	1	BT-EDR-3Mbps	X	×		Pass
4.03a	Low	39	1 GHz – 18 GHz	1	1	BT-BDR-1Mbps	×	×		Pass

5.12.4.1. Measurement Results for frequency range 1 GHz to 18 GHz

Remark: see diagrams in Annex A1

5.12.4.2. Measurement Results for frequency range 18 GHz to 26.5 GHz

Dia- gram no.	Carri Chanı Range	er nel No	Frequency range	Set- up no.	OP- mode no.	Remark	Use PK	d detec	tor OP	Result
									`	
4.01b	High	78	18 GHz – 26.5 GHz	1	1	BT-EDR-2Mbps	×	×		Pass
4.02b	Low	0	18 GHz – 26.5 GHz	1	1	BT-EDR-3Mbps	X	x		Pass
4.03b	Low	39	18 GHz – 26.5 GHz	1	1	BT-BDR-1Mbps	X	X		Pass

Remark: see diagrams in Annex A1

5.13. RF-Parameter - Radiated Band Edge compliance measurements

5.13.1. Test location and equipment FAR

test site	□441 EMI SAR	□ 348 EMI cond.	🗷 443 EMI FAR	□ 347 Radio.lab.	□ 337 OATS	
spectr. analys.	□584 FSU	□ 120 FSEM	🗷 264 FSEK	🗆 489 ESU 40		
antenna meas	□574 BTA-L	289 CBL 6141	🗆 608 HL 562	🗷 549 HL025	□ 302 BBHA9170	□ 477 GPS
antenna meas	□123 HUF-Z2	□ 132 HUF-Z3	□ 030 HFH-Z2			
antenna subst	□071 HUF-Z2	□ 020 EMCO3115	🗆 063 LP 3146	□ 303 BBHA9170		
multimeter	□341 Fluke 112					
signaling	□392 MT8820A	□ 371 CBT32	□ 547 CMU	□ 594 CMW		
DC power	□086 LNG50-10	🗷 087 EA3013	□ 354 NGPE 40	□ 349 car battery	□ 350 Car battery	
Supply Voltage	□ 230 V 50 Hz via	public mains	🗷 13.5 V DC			

5.13.2. Requirements/Limits

FCC	□ Part 15 Subpart B. §15.109 class B ☑ Part 15 subpart C. §15.209 @ frequencies defined in §15.205 ☑ Part 15.247 (d)
ISED	 RSS-247. Issue 2. Chapter 5 RSS-Gen: Issue 5. Chapter 8.9. Table 5+7
ANSI	□ C63.4-2009 □ C63.4-2014 □ C63.10-2009 ⊠ C63.10-2013. Chapter 6.10.6

5.13.3. Test condition and measurement test set-up

Signal ink t	o test system (if used):	🗆 air link	□ cable connection	🗷 none	
EUT-groun	ding	🗷 none	□ with power supply	□ additional connection	
Equipment	set up	☑ table top 1.:	5m height	□ floor standing	
Climatic co	nditions	Temperature:	(22±3°C)	Rel. humidity: (40±20)%	
Spectrum-	Scan frequency range:	□ 1 – 18 GHz	□ 18 – 25 GHz □ 18 -	– 40 GHz 🗷 other: see diagrams	
Analyzer	Scan-Mode	🗆 6 dB EMI-I	Receiver Mode 🗷 3 dB S	pectrum analyser Mode	
settings	Detector	Peak and Aver	age		
-	RBW/VBW	Left band-edge	e: 100kHz/300kHz		
		Right band-ed	ge: 1 MHz / 3 MHz		
	Mode:	Repetitive-Scan, max-hold			
	Scan step	40kHz or 400	kHz		
Sweep-Time Coupled – calibrated display if CW signal otherwise adapted to EUT's indiv				nal otherwise adapted to EUT's individual duty-cycle	
General mea	asurement procedures	Please see chapter "Test system set-up for radiated electric field measurements above 1 GHz"			
		for general measurements procedures in anechoic chamber.			

5.13.4. Measurement Method

For <u>uncritical results</u> where a measurement resolution bandwidth of 1MHz can clearly show the compliance without influencing the results, a field strength measurement was performed to show compliance.

For <u>critical results</u> a Marker-Delta marker method was used for showing compliance to restricted bands. The method is according ANSI C63.10:2013, Chapter 6.10.6 "Marker-Delta method",. The method consists of three independent steps:

- **1. Step:** Prior to the measurement the fundamental radiated In-Band field strength was performed. The determined value is used as reference value.
- **2. Step**: Second step consist of finding the relative attenuation between the fundamental emission and the maximum local out-of-band emission (within 2 MHz range around the band edge either on the band-edge directly or some modulation product if the level is greater than that on the band-edge) when measured with lower resolution bandwidth.
- **3. Step:** The delta value recorded in step 2 will be subtracted from value recorded in step 1. thus giving the required field strength at the band-edge. This value must fulfil the requirements for radiated spurious emissions in restricted bands in FCC §15.205 or RSS-Gen. Issue 5. Chapter 8.10. Table 7 with the general limits of FCC §15.209 or RSS-Gen. Issue 5 Chapter 8.9. Table 5.

5.13.5. EUT settings

The EUT was instructed to send with maximum power (if adjustable) according to applicants instructions.

5.13.6. Results: for non-restricted bands near-by

5.13.6.1. Non-restricted bands near-by - limits according FCC §15.247

Diagramm	Channel	Restricted	Fundame	ental Value	Peak-Value	Difference	Limit	Margin	Vardiat	Remark:	
no.	no.	band ?	Peak-Value	Average-Value	at Band-Edge	[dB]	[dBc]	[dB]	veruici		
9.01a	0	no	90,717	80,909	50,17	40,547	20	20,547	PASS	PWR-VALUE=0dBm 2-DH5	
9.02a	0	no	90,717	80,909	50,17	40,547	20	20,547	PASS	PWR-VALUE=0dBm DH5	
9.03a	0	no	103,021	97,361	49,951	53,07	20	33,07	PASS	PWR-VALUE=0dBm 3-DH5	
9.04a	0	no	101,748	100,907	50,249	51,499	20	31,499	PASS	PWR-VALUE=0dBm Hopping ON	

5.13.6.2. Restricted bands near-by §15.205 with limits accord. FCC §15.209/RSS-Gen.

Diagramm	Channel	Postricted	Fundamental Value		Value at Band-Edge		Limits		Duty-Cycle	Margin				
Diagramm	channer	hand 2	Poak-Value	Average-	Peak	Average	Peak	Average	[dB]	Poak	Average	Verdict	Remark:	
no.	no.	Danu ?	Feak-value	Value	-Value	-Value	-Value	-Value	[ub]	геак	Average			
9.01b	78	yes	88,635	85,494	57,86	45,899	74	54	5,06	16,14	3,041	PASS	PWR-VALUE=0dBm 2-DH5	
9.02b	78	yes	88,468	84,83	57,2	45,5	74	54	5,06	16,8	3,44	PASS	PWR-VALUE=0dBm DH5	
9.03b	78	yes	101,417	100,33	57,404	46,562	74	54	5,06	16,596	16,596 2,378 PA		PWR-VALUE=0dBm 3-DH5	
9.04b	78	yes	101,423	99,979	58,5	46,765	74	54	5,06	15,5	2,175	PASS	PWR-VALUE=0dBm Hopping ON	

5.14. Measurement uncertainties

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor \mathbf{k} , such that a confidence level of approximately 95% is achieved. For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it's contribution to the overall uncertainty according it's statistical distribution calculated.

Following table shows expectable uncertainties for each measurement type performed.

RF-Measurement	Reference	Frequency range	Calculated uncertainty based on a confidence level of 95%						Remarks	
Conducted emissions (U _{CISPR})	CISPR 16-2-1	9 kHz - 150 kHz 150 kHz - 30 MHz	4.0 dB 3.6 dB						-	
Radiated emissions Enclosure	CISPR 16-2-3	30 MHz - 1 GHz 1 GHz - 18 GHz	4.2 dB 5.1 dB						E-Field	
Disturbance power	CISPR 16-2-2	30 MHz - 300 MHz							-	
Power Output radiated	-	30 MHz - 4 GHz	3.17 d	В					Substitution method	
Downer Output conducted		Set-up No.	Cel- C1	Cel- C2	BT1	W1	W2			
Power Output conducted	-	9 kHz - 12.75 GHz	N/A	0.60	0.7	0.25	N/A		-	
		12.75 - 26.5GHz	N/A	0.82		N/A	N/A			
Conducted emissions	-	9 kHz - 2.8 GHz	0.70	N/A	0.70	N/A	0.69		N/A - not	
on RF-port		2.8 GHz - 12.75GHz	1.48	N/A	1.51	N/A	1.43		applicable	
		12.75 GHz - 18GHz	1.81	N/A	1.83	N/A	1.77		-	
		18 GHz - 26.5GHz	1.83	N/A	1.85	N/A	1.79			
			0.1272	2 ppm (Delta M	/larker)	1		Frequency	
Occupied bandwidth	-	9 kHz - 4 GHz				error				
			1.0 dB						Power	
	-		0.1272	2 ppm (Delta N	/larker)			Frequency	
Emission bandwidth		9 kHz - 4 GHz	G 1	0	70. ID				error	
D (1.11)	-		See at	bove: $0.$	/0 dB				Power	
Frequency stability	-	9 kHz - 20 GHz	0.0630	5 ppm					-	
Dedicted envious		150 kHz - 30 MHz	5.0 dE	5					Magnetic	
Englosure	-	1 CH ₂ 20 CH ₂	4.2 dE	D					F field	
Enclosule		1 0112 - 20 0112	5.170	D					Substitution	

Table: measurement uncertainties, valid for conducted/radiated measurements

6. Abbreviations used in this report

The abbreviation	S						
ANSI	American National Standards Institute						
AV , AVG, CAV	Average detector						
EIRP	Equivalent isotropically radiated power, determined within a separate measurement						
EGPRS	Enhanced General Packet Radio Service						
EUT	Equipment Under Test						
FCC	Federal Communications Commission, USA						
IC	Industry Canada						
n.a.	not applicable						
Op-Mode	Operating mode of the equipment						
РК	Peak						
RBW	resolution bandwidth						
RF	Radio frequency						
RSS	Radio Standards Specification, Dokuments from Industry Canada						
Rx	Receiver						
TCH	Traffic channel						
Tx	Transmitter						
QP	Quasi peak detector						
VBW	Video bandwidth						
ERP	Effective radiated power						

7. Accreditation details of CETECOM's laboratories and test sites

Ref No.	Accreditation Certificate	Valid for laboratory area or test site	Accreditation Body			
-	D-PL- 12047-01-01	All laboratories and test sites of CETECOM GmbH, Essen	DAkkS, Deutsche Akkreditierungsstelle GmbH			
337 487 558 348 348	736496	Radiated Measurements 30 MHz to 1 GHz, 3 m / 10 m (OATS) Radiated Measurements 30 MHz to 1 GHz, 3 m (SAR) Radiated Measurements above 1 GHz, 3 m (FAR) Mains Ports Conducted Interference Measurements Telecommunication Ports Conducted Interference Measurem.	FCC, Federal Communications Commission Laboratory Division, USA (MRA US-EU 0003)			
337 487 550 558	3462D-1 3462D-2 3462D-2 3462D-3	Radiated Measurements 30 MHz to 1 GHz, 3 m / 10 m (OATS) Radiated Measurements 30 MHz to 1 GHz, 3 m (SAR) Radiated Measurements 1 GHz to 6 GHz, 3 m (SAR) Radiated Measurements above 1 GHz, 3 m (FAR)	ISED, Industry Canada Certification and Engineering Bureau			
487 550 348 348	R-2666 G-301 C-2914 T-1967	Radiated Measurements 30 MHz to 1 GHz, 3 m (SAR) Radiated Measurements 1 GHz to 6 GHz, 3 m (SAR) Mains Ports Conducted Interference Measurements Telecommunication Ports Conducted Interference Measurem.	VCCI, Voluntary Control Council for Interference by Information Technology Equipment, Japan			
OATS	S = Open Area Te	est Site, SAR = Semi Anechoic Room, FAR = Fully Anechoic Room				

8. Instruments and Ancillary

the left column of the following tables allows the clear identification of the laboratory equipment.

8.1	1.	1.	Test	software	and	firmware	of	equipment
-----	----	----	------	----------	-----	----------	----	-----------

RefNo.	Equipment	Туре	Serial-No.	Version of Firmware or Software during the test
001	EMI Test Receiver	ESS	825132/017	Firm.= 1.21, OTP=2.0, GRA=2.0
012	Signal Generator (EMS-cond.)	SMY 01	839069/027	Firm.= V 2.02
013	Power Meter (EMS cond.)	NRVD	839111/003	Firm.= V 1.51
017	Digital Radiocommunication Tester	CMD 60 M	844365/014	Firmware = V 3.52 .22.01.99, DECT = D2.87 13.01.99
053	Audio Analyzer	UPA3	860612/022	Firm. V 4.3
119	RT Harmonics Analyzer dig. Flickermeter	B10	G60547	Firm.= V 3.1DHG
140	Signal Generator	SMHU	831314/006	Firm.= 3.21
261	Thermal Power Sensor	NRV-Z55	825083/0008	EPROM-Datum 02.12.04, SE EE 1 B
262	Power Meter	NRV-S	825770/0010	Firm.= 2.6
263	Signal Generator	SMP 04	826190/0007	Firm.=3.21
295	Racal Digital Radio Test Set	6103	1572	UNIT Firmware= 4.04, SW-Main=4.04, SW-BBP=1.04, SW-DSP=1.02, Hardboot=1.02, Softboot=2.02
298	Univ. Radio Communication Tester	CMU 200	832221/091	R&S Test Firmware =3.53 /3.54 (current Testsoftw. f. all band used
323	Digital Radiocommunication Tester	CMD 55	825878/0034	Firm.= 3.52 .22.01.99
335	CTC-EMS-Conducted	System EMS Conducted	-	EMC 32 V 8.52
340	Digital Radiocommunication Tester	CMD 55	849709/037	Firm.= 3.52 .22.01.99
355	Power Meter	URV 5	891310/027	Firm.= 1.31
365	10V Insertion Unit 50 Ohm	URV5-Z2	100880	Eprom Data = 31.03.08
366	Ultra Compact Simulator	UCS 500 M4	V0531100594	Firm. UCS 500=001925/3.06a02, rc=ISMIEC 4.10
371	Bluetooth Tester	CBT32	100153	CBT V5,30+ SW-Option K55, K57
377	EMI Test Receiver	ESCS 30	100160	Firm.= 2.30, OTP= 02.01, GRA= 02.36
378	Broadband RF Field Monitor	RadiSense III	03D00013SNO-08	Firm.= V.03D13
389	Digital Multimeter	Keithley 2000	0583926	Firm. = A13 (Mainboard) A02 (Display)
392	Radio Communication Tester	MT8820A	6K00000788	Firm.= 4.50 #005, IPL=4.01#001,OS=4.02#001, GSM=4.41#013, W-CDMA= 4.54#004, scenario= 4.52#002
436	Univ. Radio Communication Tester	CMU 200	103083	R&S Test Firmware Base=5.14, Mess-Software= GSM:5.14 WCDMA:5.14 (current Testsoftw. F. all band
441	CTC-SAR-EMI Cable Loss	System EMI field (SAR)	-	EMC 32 Version 8.52
442	CTC-SAR-EMS	System EMS field (SAR)	-	EMC 32 Version 8.40
443	CTC-FAR-EMI-RSE	System CTC-FAR-EMI- RSE	-	Spuri 7.2.5 or EMC 32 Ver. 9.15.00
444	CTC-FAR-EMS field	System-EMS-Field (FAR)	-	EMC 32 Version 9.15.00
460	Univ Radio Communication Tester	CMU 200	108901	R&S Test Firmware Base=5.14, GSM=5.14
400	Chiv. Radio Communication Tester	CM0 200	100901	WCDMA=5.14 (current Testsoftw.,f. all band to be used,
489	EMI Test Receiver	ESU40	1000-30	Firmware=4.43 SP3, Bios=V5.1-16-3, Spec. =01.00
491	ESD Simulator dito	ESD dito	dito307022	V 2.30
524	Voltage Drop Simulator	VDS 200	0196-16	Software Nr: 000037 Version V4.20a01
526	Burst Generator	EFT 200 A	0496-06	Software Nr. 000034 Version V2.32
527	Micro Pulse Generator	MPG 200 B	0496-05	Software-Nr. 000030 Version V2.43
528	Load Dump Simulator	LD 200B	0496-06	Software-Nr. 000031 Version V2.35a01
546	Univ. Radio Communication Tester	CMU 200	106436	R&S Test Firmware Base=5.14, GSM=5.14 WCDMA=5.14 (current Testsoftw.,f. all band to be used
547	Univ. Radio Communication Tester	CMU 200	835390/014	R&S Test Firmware Base=V5.1403 (current Testsoftw., f. all band used, GSM = 5.14 WCDMA: = 5.14
584	Spectrum Analyzer	FSU 8	100248	2.82_SP3
597	Univ. Radio Communication Tester	CMU 200	100347	R&S Test Firmware Base=5.01, GSM=5.02 WCDMA= not installed, Mainboard= µP1=V.850
598	Spectrum Analyzer	FSEM 30	831259/013	Firmware Bios 3.40, Analyzer 3.40 Sp 2
607	Signal Generator	SMR 20	832033/011	V1.25
620	EMI Test Receiver	ESU 26	100362	4.43_SP3
642	Wideband Radio Communication Tester	CMW 500	126089	Setup V03.26, Test programm component V03.02.20
670	Univ. Radio Communication Tester	CMU 200	106833	μ P1 =V8.50, Firmware = V.20
689	Vector Signal Generator	SMU200	100970	02.20.360.142
692	Bluetooth Tester	CBT 32	100236	CBT V 5.40, FW: V.2.41 (FPGA Digital, V. 3.09 FPGA RF)

8.1.2. Single instruments and test systems

RefNo.	Equipment	Туре	Serial-No.	Manufacturer	interval of calibration	Remark	Cal due
001	EMI Test Receiver	ESS	825132/017	Rohde & Schwarz	12 M	-	16.05.2019
005	AC - LISN (50 Ohm/50µH, test site 1)	ESH2-Z5	861741/005	Rohde & Schwarz	12 M	-	16.05.2019
007	Single-Line V-Network (50 Ohm/5µH)	ESH3-Z6	892563/002	Rohde & Schwarz	12 M	-	16.05.2019
009	Power Meter (EMS-radiated)	NRV	863056/017	Rohde & Schwarz	24 M	-	15.05.2019
010	Line Impedance Simulating Network	Op. 24-D	B0300	Spitzenberger+Spies	36/12	-	30.05.2019
020	Horn Antenna 18 GHz (Subst 1)	3115	9107-3699	ЕМСО	М	-	31.07.2021
021	Loop Antenna (H-Field) PE current probe (100kHz 30MHz)	6502 FSH2 71	9206-2770	EMCO Robde & Schwarz	36 M	-	30.05.2021
053	RI-current probe (TOORHZ-SOWHZ)	ESH2-Z1	404440/002	Ronde & Schwarz	pre-	-	15.05.2019
057	relay-switch-unit (EMS system)	KSU	494440/002	Konde & Schwarz	m	Ta	
060	power amplifier (DC-2kHz)	PAS 5000	B6363	Spitzenberger+Spies	-	3	
086	DC - power supply, 0 -10 A	LNG 50-10	-	Electronic	m	2	
087	DC - power supply, 0 -5 A	EA-3013 S	-	Elektro Automatik	m	2	
091	USB-LWL-Converter	OLS-1 ESH2 73	007/2006	Ing. Büro Scheiba	- 36 M	4	30.05.2021
100	passive voltage probe	Probe TK 9416	without	Schwarzbeck	36 M	-	30.05.2021
110	USB-LWL-Converter	OLS-1	-	Ing. Büro Scheiba	-	4	
119	RT Harmonics Analyzer dig.	B10	G60547	BOCONSULT	36 M	-	30.05.2019
122	Flickermeter	2115	0012 2620	EMCO	26 M	1.	10.02.2020
133	horn antenna 18 GHz (Meas 1)	3115	9012-3629 9005-3414	EMCO	36 M	- 1c	10.03.2020
248	attenuator	SMA 6dB 2W	-	Radiall	pre- m	2	1010012020
249	attenuator	SMA 10dB 10W	-	Radiall	pre- m	2	
252	attenuator	N 6dB 12W	-	Radiall	pre- m	2	
256	attenuator	SMA 3dB 2W	-	Radiall	pre- m	2	
257	hybrid	4031C	04491	Narda	pre- m	2	
260	hybrid coupler	4032C	11342	Narda	pre- m	2	
261	Thermal Power Sensor	NRV-Z55	825083/0008	Rohde & Schwarz	24 M	-	30.05.2020
262	Power Meter Signal Generator	NRV-S SMP 04	825770/0010	Ronde & Schwarz	24 M 36 M	-	30.05.2019
265	peak power sensor	NRV-Z33, Model 04	840414/009	Rohde & Schwarz	24 M	-	30.05.2020
266	Peak Power Sensor	NRV-Z31, Model 04	843383/016	Rohde & Schwarz	24 M	-	30.05.2020
267	notch filter GSM 850	WRCA 800/960- 6EEK	9	Wainwright GmbH	pre- m	2	
270	termination	1418 N	BB6935	Weinschel	pre- m	2	
271	termination	1418 N	BE6384	Weinschel	pre- m	2	
272	attenuator (20 dB) 50 W	Model 47	BF6239	Weinschel	pre- m	2	
273	attenuator (10 dB) 100 W	Model 48	BF9229	Weinschel	pre- m	2	
274	attenuator (10 dB) 50 W	Model 47 (10 dB) 50 W	BG0321	Weinschel	pre- m	2	
275	DC-Block	Model 7003 (N)	C5129	Weinschel	pre- m	2	
276	DC-Block	Model 7006 (SMA)	C7061	Weinschel	pre- m	2	
279	power divider	1515 (SMA)	LH855	Weinschel	pre- m	2	
298	Univ. Radio Communication Tester	CMU 200	832221/091	Rohde & Schwarz	pre- m	3	
300	AC LISN (50 Ohm/50µH, 1-phase)	ESH3-Z5	892 239/020	Rohde & Schwarz	12 M	-	17.05.2019
301	attenuator (20 dB) 50W, 18GHz	47-20-33	AW0272	Lucas Weinschel	pre-	2	
302	horn antenna 40 GHz (Meas 1)	BBHA9170	155	Schwarzbeck	36 M	-	14.03.2020
303	horn antenna 40 GHz (Subst 1)	BBHA9170	156	Schwarzbeck	36 M	-	20.03.2020
331	Climatic Test Chamber -40/+180 Grad	HC 4055	43146	Heraeus Vötsch	24 M	-	30.10.2019
341	Digital Multimeter	Fluke 112	81650455	Fluke	24 M	-	30.05.2020
342	laboratory site	voltcraft M-4660A	IB 255466	voltcraft	24 M	- 5	17.05.2019
348	laboratory site	EMI conducted	-	-	-	5	
254	DC Bower Summer 40.4	NCDE 40/40	110	Dahda & Salara	pre-	2	
354	DC - Power Supply 40A	NOPE 40/40	440	Konue & Schwarz	m	2	

Test Report 18-1-0048601T03a-C1, Page 43 of 45

RefNo.	Equipment	Туре	Serial-No.	Manufacturer	Interval of calibration	Remark	Cal due
357	power sensor	NRV-Z1	861761/002	Rohde & Schwarz	24 M	-	24.05.2019
371	Single-Line V-Network (50	CB132 FSH3-76	100153	R&S Robde & Schwarz	36 M	-	30.05.2019
373	Ohm/5µH) EMI Test Receiver	ESCS 30	100160	Rohde & Schwarz	12 M	-	30.05.2019
380	Digital Multimeter	Keithley 2000	0583026	Keithley	pre-		
309		Kenney 2000	0383920	Keitilley	m	-	20.06.2010
392	Radio Communication Tester	M18820A	6K00000788	Anritsu LUFFT Mess u	12 M	-	30.06.2019
405	Thermo-/Hygrometer	OPUS 10 THI Near-Field Probe	126.0604.0003.3.3.3.22	Regeltechnik GmbH	24 M	-	30.03.2019
431	Model 7405	Set	9305-2457	EMCO	-	4	
436	Univ. Radio Communication Tester	CMU 200	103083	Rohde & Schwarz	12 M	-	06.03.2019
439	UltraLog-Antenna	HL 562	100248 0210 P 20661	Rohde & Schwarz	36 M	-	10.03.2020
434		HM 203-3	9210 F 29001	Filter	- pre-	4	
456	DC-Power supply 0-5 A	EA 3013 S	207810	Elektro Automatik	m nre-	2	
459	DC -Power supply 0-5 A, 0-32 V	EA-PS 2032-50	910722	Elektro Automatik	m	2	
460	Univ. Radio Communication Tester	CMU 200	108901	Rohde & Schwarz	12 M	-	30.05.2019
463	Universal source	HP3245A	2831A03472	Agilent	-	4	20.05.2020
460	Digital Multimeter	Fluke 112 Fluke 112	89210157	Fluke USA	24 M 36 M	-	30.05.2020
468	Digital Multimeter	Fluke 112	90090455	Fluke USA	36 M	-	30.04.2021
177	PePadiating GPS System	AS 47		Automotive Cons.		3	
4//	Recadiating Of 5-System	A3-47	-	Fink	-	5	
480	power meter (Fula)	NRVS	838392/031	Rohde & Schwarz	24 M	- 14	16.05.2019
482	System CTC NSA-Verification SAR-	System FMI field	-	ETS Lindgren /	-	10	
487	EMI	(SAR) NSA	-	CETECOM	24 M	-	31.03.2019
489	EMI Test Receiver	ESU40	1000-30	Rohde & Schwarz	12 M	-	30.06.2019
502	band reject filter	WRCG 1709/1786- 1699/1796-	SN 9	Wainwright	pre- m	2	
503	band reject filter	WRCG 824/849- 814/859-60/10SS	SN 5	Wainwright	pre- m	2	
517	relais switch matrix	HF Relais Box Keithley System	SE 04	Keithley	pre-	2	
523	Digital Multimeter	L4411A	MY46000154	Agilent	24 M	-	18.05.2019
529	6 dB Broadband resistive power divider	Model 1515	LH 855	Weinschel	pre- m	2	
530	10 dB Broadband resistive power divider	R 416110000	LOT 9828	-	pre- m	2	
546	Univ. Radio Communication Tester	CMU 200	106436	R&S	12 M	-	30.07.2019
547	Univ. Radio Communication Tester	CMU 200	835390/014	Rohde & Schwarz	12 M	-	30.07.2019
549	Log.Per-Antenna	HL025	1000060	Rohde & Schwarz	36/12 M	-	31.07.2021
550	System CTC S-VSWR Verification SAR-EMI	System EMI Field SAR S-VSWR	-	ETS Lindgren/CETECOM	24 M	-	30.03.2019
558	System CTC FAR S-VSWR	System CTC FAR S-VSWR	-	CTC	24 M	-	08.08.2019
574	Biconilog Hybrid Antenna	BTA-L	980026L	Frankonia	36/12 M	-	31.03.2019
584	Spectrum Analyzer	FSU 8	100248	Rohde & Schwarz	pre- m	-	
594	Wideband Radio Communication Tester	CMW 500	101757	Rohde & Schwarz	12 M	-	30.05.2019
597	Univ. Radio Communication Tester	CMU 200	100347	Rohde & Schwarz	pre- m	-	
600	power meter	NRVD (Reserve)	834501/018	Rohde & Schwarz	24 M	-	17.05.2019
601	medium-sensitivity diode sensor	NRV-Z5 (Reserve)	8435323/003	Rohde & Schwarz	24 M	-	15.05.2019
602	peak power sensor	NRV-Z32 (Reserve)	835080	Ronde & Schwarz	24 M	-	
611	DC power supply	E3632A	KR 75305854	Agilent	m	2	
612	DC power supply	E3632A	MY 40001321	Agilent	m	2	
613	Attenuator	10W	Lot. 9828	Radiall	m	2	
616	Digitalmultimeter	Fluke 177	88900339 5 E087001109	Fluke Mini Cinovita	24 M	-	30.05.2020
610	Power Splitter/Combiner	2FSC-2-2-5+	5 F98/001108	IVIIII CITCUITS	-	2	
619	Power Splitter/Combiner	50PD-634	600995	IFW Industries USA	-	2	
620	EMI Test Receiver	ESU 26	100362	Rohde-Schwarz	12 M	-	30.05.2019
621	Step Attenuator 0-139 dB	RSP	100017	Rohde & Schwarz	pre- m	2	
625	Generic Test Load USB	Generic Test Load USB	-	CETECOM	-	2	
627	data logger	OPUS 1	201.0999.9302.6.4.1.43	G. Lufft GmbH	24 M	-	30.03.2019

Test Report 18-1-0048601T03a-C1, Page 44 of 45

RefNo.	Equipment	Туре	Serial-No.	Manufacturer	Interval of calibration	Remark	Cal due
634	Spectrum Analyzer	FSM (HF-Unit)	826188/010	Rohde & Schwarz	pre- m	2	
637	High Speed HDMI with Ethernet 1m	HDMI cable with Ethernet 1m	-	KogiLink	-	2	
638	HDMI Kabel with Ethernet 1,5 m flach	HDMI cable with Ethernet 1,5m	-	Reichelt	-	2	
640	HDMI cable 2m rund	HDMI cable 2m rund	-	Reichelt	-	2	
641	HDMI cable with Ethernet	Certified HDMI cable with	-	PureLink	-	2	
642	Wideband Radio Communication Tester	CMW 500	126089	Rohde&Schwarz	24 M	-	24.05.2019
644	Amplifierer	ZX60-2534M+	SN865701299	Mini-Circuits	-	-	20.05.2020
670	Univ. Radio Communication Tester	CMU 200	106833	Rohde & Schwarz	24 M	-	30.05.2020
671	DC-power supply 0-5 A	EA-3013S	-	Elektro Automatik	m m	2	
678	Power Meter	NRP	101638	Rohde&Schwarz	m	-	
683	Spectrum Analyzer	FSU 26	200571	Rohde & Schwarz	12 M	-	30.05.2019
686	Field Analyzer	EHP-200A	160WX30702	Narda Safety Test Solutions	24 M	-	29.03.2019
687	Signal Generator	SMF 100A	102073	Rohde&Schwarz	12 M	-	30.05.2019
688	Pre Amp	JS-18004000-40-8P	1750117	Miteq	pre-	-	
690	Spectrum Analyzer	FSU	100302/026	Rohde&Schwarz	24 M	-	16.05.2019
691	OSP120 Base Unit	OSP120	106833	Rohde & Schwarz	12 M	-	30.05.2019
692	Bluetooth Tester	CBT 32	100236	Rohde & Schwarz	36 M	-	29.05.2020
693	TS8997	CTC-Radio Lab 1_TS8997	-	Rohde&Schwarz	12 M	5	30.05.2019
697	Power Splitter	ZN4PD-642W-S+	165001445	Mini-Circuits	-	2	
701	CMW500 wide. Radio Comm.	CMW500	158150	Rohde & Schwarz	12 M	-	30.07.2019
703	INNCO Antennen Mast	MA 4010-K1080- XPET-ZSS3	MA4170-KT100-XPET- ZSS3	INNCO	pre- m	-	
704	INNCON Controller	CO 3000-4port	CO3000/933/38410516/L	INNCO Systems GmBh	pre- m	-	
711	Harmonic Mixer 90 GHz - 140GHz	RPG FS-Z140	101004	RPG	36 M	-	22.02.2020
712	Harmonic Mixer 75 GHz - 110GHz	FS-Z110	101468	Rohde & Schwarz	36 M	-	22.02.2020
714	Signal Analyzer 67GHz	FS-Z/5 FSW67	101022	Ronde & Schwarz	36 M	-	22.05.2020
715	Harmonic Mixer, 140 GHz - 220GHz	FS-Z220	101009	RPG Radiometer	36 M	-	03.08.2020
716	Harmonic Mixer 220 GHz to 325	FS-Z325	101005	RPG Radiometer	36 M	-	13.02.2020
747	Spectrum Analyzer	FSU 26	200152	Rohde & Schwarz	12 M	-	30.05.2019
748	Pickett-Potter Horn Antenna	FH-PP 4060	010001	Radiometer Physiscs	36 M	-	
749	Pickett-potter Horn Antenna	FH-PP 60-90	010003	Radiometer Physics	-	-	
750	Pickett-Potter Horn Antenna	FH-PP 140-220	010011	Radiometer Physics	-	-	
751	Digital Optical System	optoCAN-FD Transceiver	17-010416	mk-messtechnik GmbH	-	-	
752	Digital Optical System	optoCAN-FD Transceiver	17-010083	mk-messtechnik GmbH	-	-	
753	Digital Optical System	optoCAN-FD Transceiver	17-010084	mk-messtechnik GmbH	-	-	
754	Digital Optical System	optoCAN-FD Transceiver	17-010415	mk-messtechnik GmbH	-	-	
755	Digital Optical System	optoLAN-100-MAX Transceiver	17-010795	mk-messtechnik GmbH	-	-	
758	Signal Generator	SMU 200A	100754	Rohde & Schwarz	24 M	-	11.10.2019
780	Spectrum Analyzer	FSH3	101726	Rohde & Schwarz Elektro-Automatik	24 M	-	19.07.2019
/81	Power Supply	PS 2042-10 B	2815450369	GmbH &Co.KG lektro-Automatik	-	-	
782	Power Supply	PS 2042-10 B	2815450348	GmbH &Co.KG	-	-	
783	Spectrum Analyzer	FSU 26	100414	Rohde & Schwarz	12 M	-	30.05.2019
784	Power Supply	NGSM 32/10 RF Step Attenuator	00196	Rohde & Schwarz	12 M	-	
785	RSP	0139.9dB	860712/012	Rohde & Schwarz	12 M	-	14.02.2021
/86	SAK Probe	ES3DV3 OSP B157WV	5340 101264	Speag Robde & Sobruarz	36 M	-	14.02.2021
/0/		DOD (10	101204	Seibersdorf	12 11	-	30.05.2019
788	Precision Omnidirectional Dipole	POD 618	6182558/Q	Labaratories Seibersdorf	36 M	-	30.06.2021
789	Precision Omnidirectional Dipole	POD 16	162496/Q	Laboratories	36 M	-	30.06.2021

Note / remarks		Calibrated during system calibration:
	1a	System CTC-SAR-EMS (RefNo. 442)
	1b	System-CTC-EMS-Conducted (RefNo. 335)
	1c	System CTC-FAR-EMI-RSE (RefNo . 443)
	1d	System CTC-SAR-EMI (RefNo . 441)
	1e	System CTC-OATS (EMI radiated) (RefNo. 337)
	1 f	System CTC-CTIA-OTA (RefNo. 420)
	1 g	System CTC-FAR-EMS (RefNo . 444)
	2	Calibration or equipment check immediately before measurement
	3	Regulatory maintained equipment for functional check or support purpose
	4	Ancillary equipment without calibration e.g. mechanical equipment or monitoring equipment
	5	Test System

8.1.3. Legend

Interval of calibration	12 M	12 month
	24 M	24 month
	36 M	36 month
	24/12 M	Calibration every 24 months. between this every 12 months internal validation
	36/12 M	Calibration every 36 months. between this every 12 months internal validation
	Pre-m	Check before starting the measurement
	-	Without calibration

9. Versions of test reports (change history)

Version	Applied changes	Date of release
	Inital release	2018-12-27
C1	Accreditation details updated	2019-02-20

END OF TEST REPORT