

RSS - Gen Issue 4 Spectrum Management and Telecommunications Radio Standards Specifications General Requirements and Information for the Certification of Radio Apparatus For further applied test standards please refer to section 3 of this test report.

Test Item									
Kind of test item:	Car Multi Media Device								
Model name:	AIVICMFB0								
FCC ID:	YBN-AIVICM FB0								
IC:	9595A-AIVICMFB0								
Frequency:	DTS band 2400 MHz to 2483.5 MHz								
Technologytested:	WLAN	Õ T							
Antenna:	Integrated antenna	P04 2000							
Power supply:	9.0 V to 16.0 V DC (Vehicle battery powered)	literature and the second s							
Temperature range:	-30°C to +70°C								

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Marco Bertolino Lab Manager Radio Communications & EMC

Test performed:

p.o. René Oelmann Lab Manager Radio Communications & EMC

1 Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.1 2.2 2.3	Notes and disclaimer Application details Test laboratories sub-contracted	3
3	Test s	tandard/s and references	4
4	Test e	nvironment	5
5	Test it	em	5
	5.1 5.2	General description	
6	Descr	ption of the test setup	6
	6.1 6.2 6.3 6.4 6.5	Shielded semi anechoic chamber Shielded fully anechoic chamber Radiated measurements > 18 GHz Conducted measurements with peak power meter & spectrum analyzer Shielded fully anechoic chamber	8 9 10
7	Seque	nce of testing	12
-	7.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	12
	7.2 7.3	Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 18 GHz	
	7.4	Sequence of testing radiated spurious above 18 GHz	
8	Measu	rement uncertainty	
9	Summ	ary of measurement results	17
10	Add	itional comments	18
11	Add	itional EUT parameter	19
12	Mea	surement results	20
	12.1	Antenna gain	
	12.2	Identify worst case data rate Maximum output power	
	12.3 12.4	Maximum output power Duty cycle	
	12.5	Peak power spectral density	
	12.6	6 dB DTS bandwidth	
	12.7	Occupied bandwidth – 99% emission bandwidth	
	12.8	Occupied bandwidth – 20 dB bandwidth	
	12.9	Band edge compliance conducted	
	12.10	Spurious emissions conducted	
	12.11	Spurious emissions radiated below 30 MHz	
	12.12 12.13	Spurious emissions radiated 30 MHz to 1 GHz Spurious emissions radiated above 1 GHz	
13		ervations	
	ex A	Glossary	
	iex A	Document history	
		-	
Ann	lex C	Accreditation Certificate	.115

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2018-02-22
Date of receipt of test item:	2018-02-19
Start of test:	2018-02-26
End of test:	2018-03-02
Person(s) present during the test:	-/-

2.3 Test laboratories sub-contracted

None

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus

CTC I advanced

Guidance	Version	Description
DTS: KDB 558074 D01	v04	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 American national standard for methods of measurement of radio-
ANSI C63.4-2014	-/-	noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Temperature	:	Tnom Tmax Tmin	+22 °C during room temperature tests No tests under extreme conditions required. No tests under extreme conditions required.
Relative humidity content	:		35 %
Barometric pressure	:		996 hpa
		Vnom	12.0 V DC (Vehicle battery powered)
Power supply	:	Vmax	No tests under extreme conditions required.
		Vmin	No tests under extreme conditions required.

5 Test item

5.1 General description

Kind of test item	:	Car Multi Media Device
Type identification	:	AIVICMFB0
HMN	:	-/-
PMN	:	AIVICMFB0
HVIN	:	AIVICMFB0
FVIN	:	-/-
S/N serial number		Radiated unit: 0000048
	•	Conducted unit: 0000036
HW hardware status	:	001
SW software status	:	0776
Frequency band	:	DTS band 2400 MHz to 2483.5 MHz
Type of radio transmission Use of frequency spectrum		DSSS, OFDM
Type of modulation	:	(D)BPSK, (D)QPSK, 16 – QAM, 64 – QAM
Number of channels	:	11 (20 MHz); 7 (40 MHz)
Antenna	:	Integrated antenna
Power supply	:	9.0 V to 16.0 V DC (Vehicle battery powered)
Temperature range	:	-30°C to +70°C

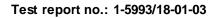
5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

1-5993/18-01-01_AnnexA 1-5993/18-01-01_AnnexB 1-5993/18-01-01_AnnexD

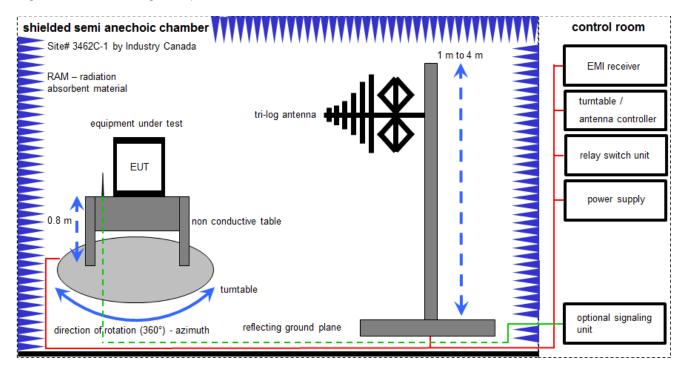
6 Description of the test setup


Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

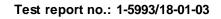

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

6.1 Shielded semi anechoic chamber

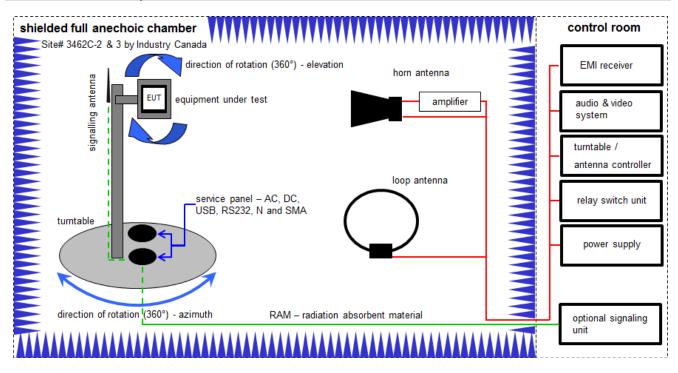
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

CTC | advanced

Measurement distance: tri-log antenna 10 meter


FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


<u>Example calculation</u>: FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	A	Meßkabine 1	HF-Absorberhalle	MWB AG 300023	-/-	300000551	ne	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	15.12.2017	14.12.2018
4	A	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	A	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	A	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	A	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018

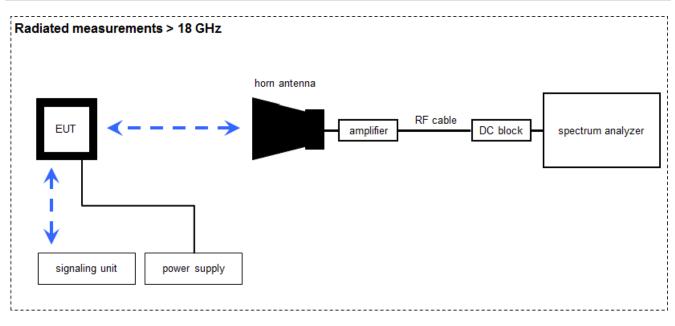
Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 <math>\mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	k	07.07.2017	06.07.2019
2	A, B, C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	В, С	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	viKi!	14.02.2017	13.02.2019
4	A, B, C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	С	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev	-/-	-/-
6	B, C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	20.12.2017	19.12.2018
7	С	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
8	С	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
9	С	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
10	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY 50000037	300004509	ne	-/-	-/-
11	A, B, C	NEXIO EMV- Sof tware	BAT EMC V3.16.0.49	EMCO	-/-	300004682	ne	-/-	-/-
12	A, B, C	PC	ExOne	F+W	-/-	300004703	ne	-/-	-/-

CTC | advanced

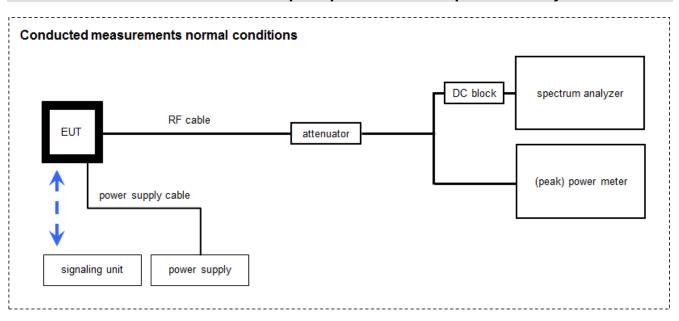
member of RWTÜV group

6.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)


Example calculation:

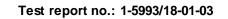
 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

Equipment table:

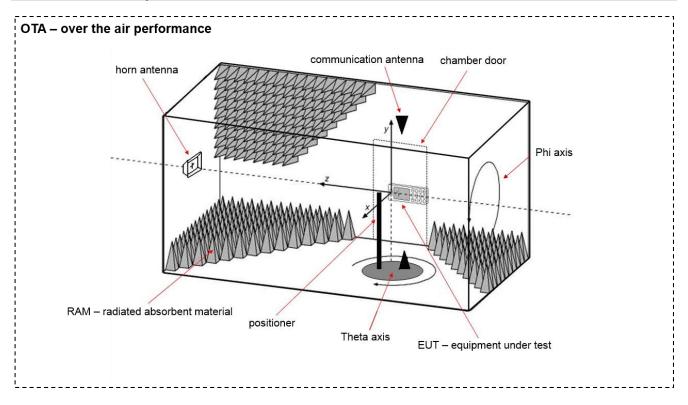
No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Amplifier 2-40 GHz	JS32-02004000-57- 5P	MITEQ	1777200	300004541	ev	-/-	-/-
2	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
3	A	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
4	A	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-
5	А	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	-/-	300000486	k	13.12.2017	12.12.2019
6	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	16.01.2018	15.01.2019

6.4 Conducted measurements with peak power meter & spectrum analyzer

OP = AV + CA


(OP-output power; AV-analyzer value; CA-loss signal path)

<u>Example calculation:</u> OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	16.01.2018	15.01.2019
2	А, В	PC-WLAN Tester	Intel Core i3 3220/3,3 GHz, Prozessor	-/-	2V2403033A45 23	300004589	ne	-/-	-/-
3	А, В	Teststand	Teststand Custom Sequence Editor	National Instruments GmbH	-/-	300004590	ne	-/-	-/-
4	В	Power Sensor	NRP-Z81	R&S	100010	300003780	k	26.01.2017	25.01.2019
5	А, В	RF-Cable	ST18/SMAm/SMAm/ 60	Huber & Suhner	Batch no. 606844	400001181	ev	-/-	-/-
6	A	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-
7	А, В	Coax Attenuator 10 dB 2W 0-40 GHz	MCL BW-K10- 2W44+	Mini Circuits	-/-	400001186	ev	-/-	-/-

CTC | advanced

6.5 Shielded fully anechoic chamber

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Switch Unit	TS-RSP	R&S	100155	300003281	ev	-/-	-/-
2	А	CTIA-Chamber	CTIA-Chamber AMS 8500	ETS-Lindgren Finnland	100155	300003327	ne	-/-	-/-
3	A	CTIA-Chamber - Software	CTIA-Chamber - Software	EMCO/2	100155	300003328	ne	-/-	-/-
4	А	CTIA-Chamber - Antenna	3164-04	EMCO/2	00041915	300003328	ne	-/-	-/-
5	A	Limiting Amplifier (Microwave Amplifier)	LA 02-801	JCA Technology	101	300003341	ne	-/-	-/-
6	А	Spectrum Analyzer 9kHz - 30 GHz	FSP30	R&S	100623	300003464	v IKI!	01.02.2017	31.01.2019

CTC I advanced

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

8 Measurement uncertainty

Measurement uncertainty								
Test case	Uncertainty							
Antenna gain	± 3 dB							
Power spectral density	± 1.5 dB							
DTS bandwidth	± 100 kHz (depends on the used RBW)							
Occupied bandwidth	± 100 kHz (depends on the used RBW)							
Maximum output power	± 1.5 dB							
Detailed spurious emissions @ the band edge - conducted	± 1.5 dB							
Band edge compliance radiated	± 3 dB							
Spurious emissions conducted	± 3 dB							
Spurious emissions radiated below 30 MHz	± 3 dB							
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB							
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB							
Spurious emissions radiated above 12.75 GHz	± 4.5 dB							
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB							

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications as certained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

CTC I advanced

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 2	See table!	2018-03-12	-/-

Testspecification clause	Test case	Guideline	Temperature conditions	Power source voltages	Mode	с	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (f)(ii)	Antenna gain	-/-	Nominal	Nominal	DSSS		-,	/_		-/-
§15.35	Duty cycle	-/-	Nominal	Nominal	DSSS OFDM		-/	/_		-/-
§15.247(e) RSS - 247 / 5.2 (b)	Pow er spectral density	KDB 558074 DTS clause: 10.2	Nominal	Nominal	DSSS OFDM	\boxtimes				-/-
§15.247(a)(2) RSS - 247 / 5.2 (a)	DTS bandw idth	KDB 558074 DTS clause: 8.1	Nominal	Nominal	DSSS OFDM	X				-/-
RSS Gen clause 4.6.1	Occupied bandw idth	-/-	Nominal	Nominal	DSSS OFDM	X				-/-
§15.247(b)(3) RSS - 247 / 5.4 (d)	Maximum output pow er	KDB 558074 DTS clause: 9.1.2	Nominal	Nominal	DSSS OFDM	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge – cond.	-/-	Nominal	Nominal	DSSS OFDM	\boxtimes				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance cond. & rad.	KDB 558074 DTS clause: 13.3.2 and clause 12.2.2	Nominal	Nominal	DSSS OFDM	X				-/-
§15.247(d) RSS - 247 / 5.5	TX spurious emissions cond.	KDB 558074 DTS clause: 11.1 & 11.2 11.3	Nominal	Nominal	DSSS OFDM	X				-/-
§15.209(a) RSS-Gen	TX spurious emissions rad. below 30 MHz	-/-	Nominal	Nominal	DSSS OFDM	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5 RSS-Gen	TX spurious emissions rad. 30 MHz to 1 GHz	-/-	Nominal	Nominal	DSSS OFDM	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5 RSS-Gen	TX spurious emissions rad. above 1 GHz	-/-	Nominal	Nominal	DSSS OFDM	X				-/-
§15.109 RSS-Gen	RX spurious emissions rad. 30 MHz to 1 GHz	-/-	Nominal	Nominal	RX / idle	X				-/-
§15.109 RSS-Gen	RX spurious emissions rad. above 1 GHz	-/-	Nominal	Nominal	RX / idle	X				-/-
§15.107(a) §15.207	Conducted emissions < 30 MHz	-/-	Nominal	Nominal	DSSS OFDM					-/-

Notes:

C Compliant NC Not compliant NA Not applicable NP Not performed		-						
	С	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed

10 Additional comments

Reference documents:	Instructions_RadioTypeApproval_9_6_2017.pdf Laptool_Instructions_RadioTypeApproval_AIVIP32R0.doc>						
Special test descriptions:	None						
Configuration descriptions:	Used power settings:	b-mode: g-mode: n-mode HT20: n-mode HT40:					

Provided channels:

Channels with 20 MHz channel bandwidth:

	channel number & centre frequency												
channel	1	2	3	4	5	6	7	8	9	10	11	12	13
f _c / MHz	2412	2417	2422	2427	2432	2437	2442	2447	2452	2457	2462	2467	2472

Channels with 40 MHz channel bandwidth:

channel number & centre frequency													
channel	-/-	-/-	3	4	5	6	7	8	9	10	11	-/-	-/-
f _c / MHz	-/-	-/-	2422	2427	2432	2437	2442	2447	2452	2457	2462	-/-	-/-

Note: The channels used for the tests are marked in bold in the list.

11 Additional EUT parameter

Test mode:		No test mode available Iperf was used to ping another device with the largest support packet size
		Test mode available Special software is used. EUT is transmitting pseudo random data by itself
Modulation types:	\boxtimes	Wide Band Modulation (None Hopping – e.g. DSSS, OFDM)
		Frequency Hopping Spread Spectrum (FHSS)
Antennas and transmit operating modes:	\boxtimes	 Operating mode 1 (single antenna) Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)
		 Operating mode 2 (multiple antennas, no beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
		 Operating mode 3 (multiple antennas, with beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.

12 Measurement results

12.1 Antenna gain

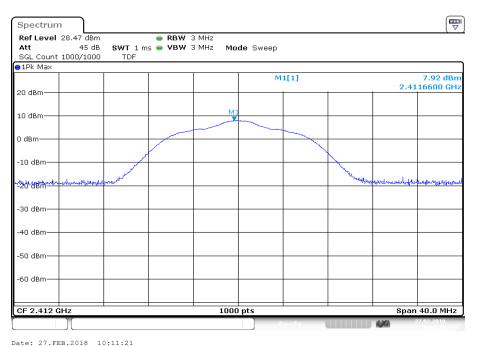
Description:

The antenna gain of the complete system is calculated by the difference of radiated power (@ 3 MHz) in EIRP and the conducted power (@ 3 MHz) of the module.

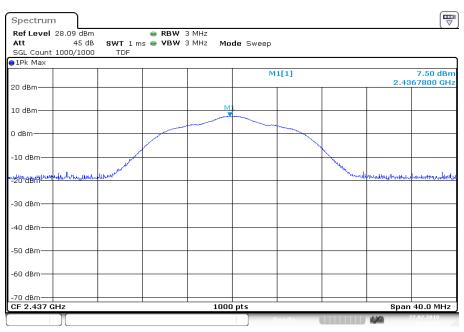
Measurement:

Measurement parameter							
Detector	Peak						
Sweep time	Auto						
Resolution bandwidth	3 MHz						
Video bandwidth	3 MHz / 10 MHz						
Trace mode	Max hold						
Test setup	See chapter 6.4 A (conducted) See chapter 6.5 A (radiated)						
Measurement uncertainty	See chapter 8						

Limits:

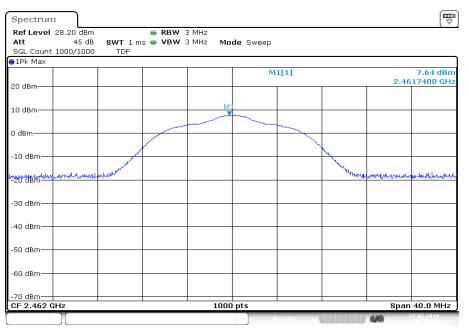

FCC	IC					
6 dBi / > 6 dBi output power and power density reduction required						

	lowest channel	middle channel	highest channel
Conducted power / dBm Measured with DSSS modulation	7.9	7.5	7.6
Radiated power / dBm Measured with DSSS modulation	13.1	12.3	10.7
Gain / dBi Calculated	5.2	4.8	3.1



Plots: DSSS / b - mode

Plot 1: Lowest channel


Plot 2: Middle channel

Date: 27.FEB.2018 10:25:06

Plot 3: Highest channel

Date: 27.FEB.2018 10:36:16

12.2 Identify worst case data rate

Description:

All modes of the module will be measured with an average power meter or spectrum analyzer to identify the maximum transmission power.

In further tests only the identified worst case modulation scheme or bandwidth will be measured and this mode is used as representative mode for all other modulation schemes.

Measurement:

Measurement parameter			
According to DTS clause: 9.1.2			
Peak power meter in averaging mode			
Test setup See chapter 6.4 - A			
Measurement uncertainty See chapter 8			

Results:

	maximum output power / dBm							
	Lowest channel							
Data rate	1 Mbps 2 Mbps 5.5 Mbps 11 Mbps							
Output power conducted DSSS / b – mode	10.1 9.9 9.9		10).1				
Data rate	6 M	9 M	12 M	18 M	24 M	36 M	48 M	54 M
Output power conducted OFDM / g – mode	5.9	5.8	5.9	5.8	5.6	5.8	5.7	5.6
Data rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
Output power conducted OFDM / n HT20 – mode	6.0	5.9	5.9	5.9	5.9	6.0	5.9	5.8
Output power conducted OFDM / n HT40 – mode	5.1	5.0	4.9	5.7	5.0	4.9	5.1	5.0

Worst case data rate:

Modulation scheme / bandwidth				
DSSS / b - mode 1 Mbit/s				
OFDM / g – mode	6 Mbit/s			
OFDM / n HT20 – mode	MCS0			
OFDM / n HT40 – mode	MCS0			

12.3 Maximum output power

Description:

Measurement of the maximum conducted peak output power. The measurements are performed using the data rate identified in the previous chapter.

Measurement:

Measurement parameter			
According to DTS clause: 9.1.2			
Peak power meter			
Test setup See chapter 6.4 - B			
Measurement uncertainty See chapter 8			

Limits:

FCC	IC
Conducted 1.0 W / 30 dBm with	n an antenna gain of max. 6 dBi

	maximum output power / dBm lowest channel middle channel highest channel			
Output power conducted DSSS / b – mode	12.4	12.1	12.1	
Output power conducted OFDM / g – mode	16.4	16.4	15.3	
Output power conducted OFDM / n HT20 – mode	16.3	16.4	15.9	
Output power conducted OFDM / n HT40 – mode	16.7	16.5	16.5	

12.4 Duty cycle

Description:

Measurement of the timing behavior.

Measurement:

Measurement parameter			
Detector	Peak		
Sweep time	Depends on the signal see plot		
Resolution bandwidth	10 MHz		
Video bandwidth	10 MHz		
Trace mode	Max hold		
Test setup	See chapter 6.4 - A		
Measurement uncertainty	See chapter 8		

Limits:

FCC	IC
No lim	itation!

Tnom	Vnom	lowest channel	middle channel	highest channel
DSSS / I	o – mode	100.0 % / 0.0 dB	100.0 % / 0.0 dB	100.0 % / 0.0 dB
OFDM /	g – mode	100.0 % / 0.0 dB	100.0 % / 0.0 dB	100.0 % / 0.0 dB
OFDM / n H	T20 – mode	100.0 % / 0.0 dB	100.0 % / 0.0 dB	100.0 % / 0.0 dB
OFDM / n HT40 – mode		100.0 % / 0.0 dB	100.0 % / 0.0 dB	100.0 % / 0.0 dB

12.5 Peak power spectral density

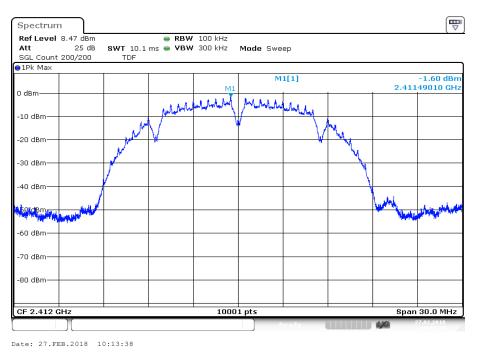
Description:

Measurement of the peak power spectral density of a digital modulated system. The PSD shows the strength of the variations as a function of the frequency. The measurement is repeated for both modulations at the lowest, middle and highest channel.

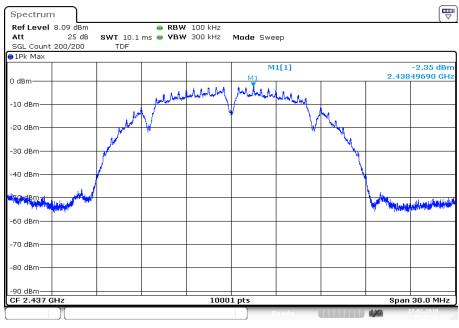
Measurement:

Measurement parameter				
According to DTS clause: 10.2				
Detector Positive Peak				
Sweep time	eep time Auto			
Resolution bandwidth 100 kHz				
Video bandwidth 300 kHz				
Span 30 MHz / 60 MHz				
Trace mode Max. hold (allow trace to fully stabilize)				
Test setup See chapter 6.4 - A				
Measurement uncertainty See chapter 8				

Limits:


FCC	IC			
8 dBm / 3 kHz (conducted)				
8 dBm / 100 kHz (conducted)				

	peak power spectral density / dBm @ 100 kHzLowest channelMiddle channelHighest channel				
DSSS / b – mode	-1.6	-2.4	-2.0		
OFDM / g – mode	-8.3	-10.3	-9.3		
OFDM / n HT20 – mode	-10.4	-10.7	-10.3		
OFDM / n HT40 – mode	-14.1	-13.1	-14.3		



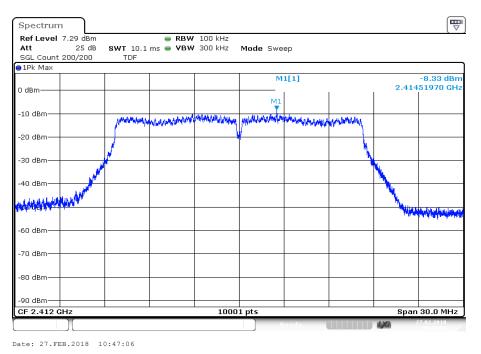
Plots: DSSS / b - mode

Plot 1: Lowest channel

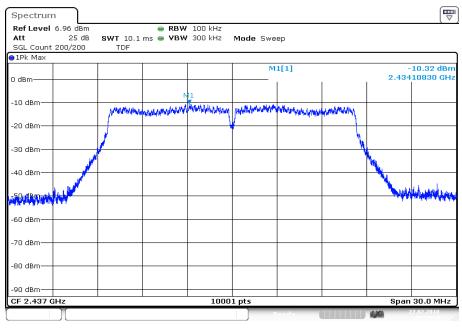
Plot 2: Middle channel

Date: 27.FEB.2018 10:27:22

Plot 3: Highest channel

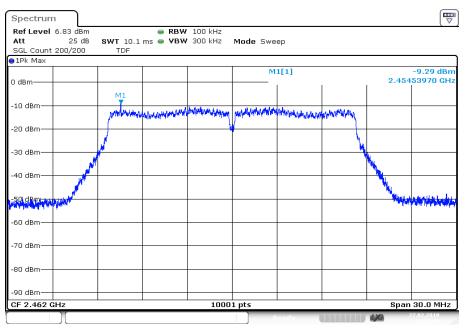


Date: 27.FEB.2018 10:38:33



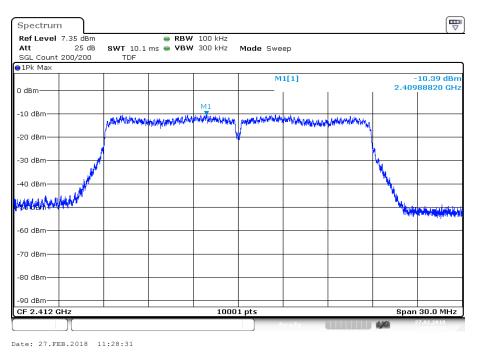
Plots: OFDM / g - mode

Plot 1: Lowest channel

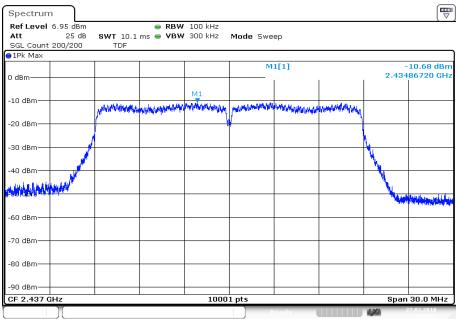

Plot 2: Middle channel

Date: 27.FEB.2018 10:58:34

Plot 3: Highest channel

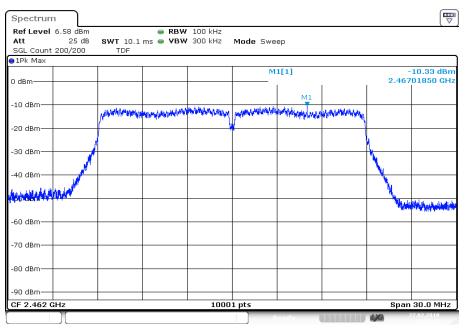


Date: 27.FEB.2018 11:07:09



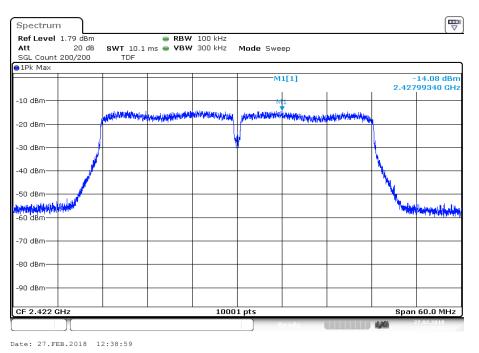
Plots: OFDM / n HT20 - mode

Plot 1: Lowest channel

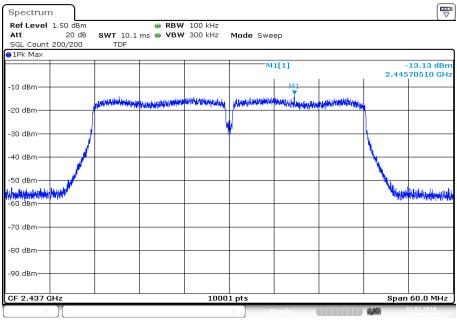

Plot 2: Middle channel

Date: 27.FEB.2018 11:54:52

Plot 3: Highest channel

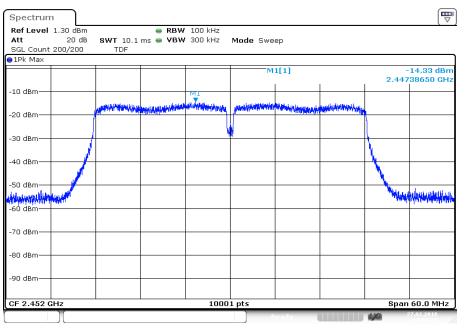


Date: 27.FEB.2018 12:02:14



Plots: OFDM / n HT40 - mode

Plot 1: Lowest channel


Plot 2: Middle channel

Date: 27.FEB.2018 12:47:34

Plot 3: Highest channel

Date: 27.FEB.2018 13:01:18

12.6 6 dB DTS bandwidth

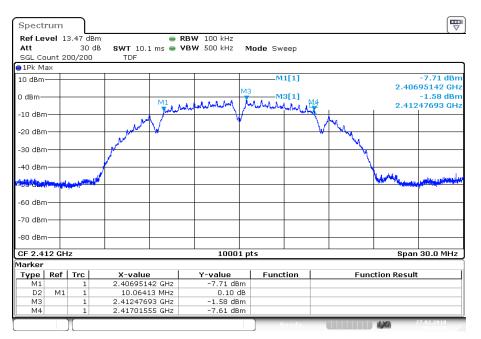
Description:

Measurement of the 6 dB bandwidth of the modulated signal.

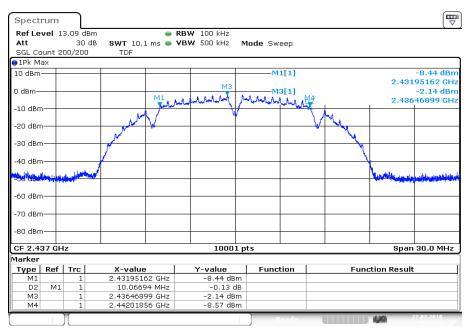
Measurement:

Measurement parameter				
According to DTS clause: 8.1				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	100 kHz			
Video bandwidth	500 kHz			
Span	30 MHz / 50 MHz	30 MHz / 50 MHz		
Trace mode	Single count with 200 counts			
Test setup	up See chapter 6.4 - A			
Measurement uncertainty	See chapter 8	See chapter 8		

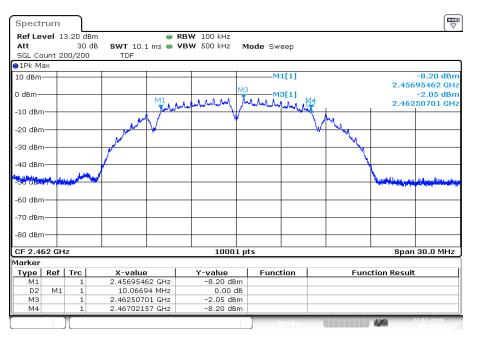
Limits:


FCC	IC			
Systems using digital modulation techniques may operate in the 2400–2483.5 MHz band. The minimum 6 dB bandwidth shall be at least 500 kHz.				

	6 dB DTS bandwidth / kHz		
	lowest channel	middle channel	highest channel
DSSS / b – mode	10064	10067	10067
OFDM / g – mode	16549	16534	16393
OFDM / n HT20 – mode	17617	17611	17662
OFDM / n HT40 – mode	36374	36375	36350

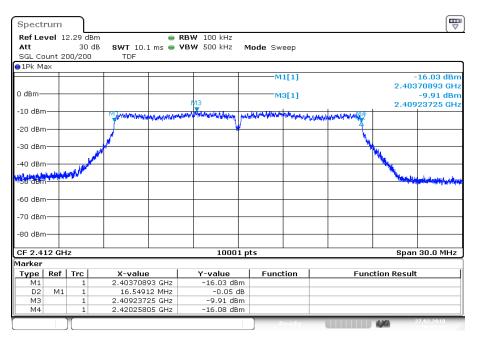

Plots: DSSS / b - mode

Plot 1: Lowest channel

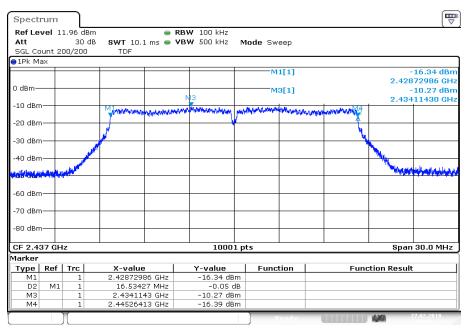

Date: 27.FEB.2018 10:11:30

Plot 2: Middle channel

Date: 27.FEB.2018 10:25:14



Date: 27.FEB.2018 10:36:24

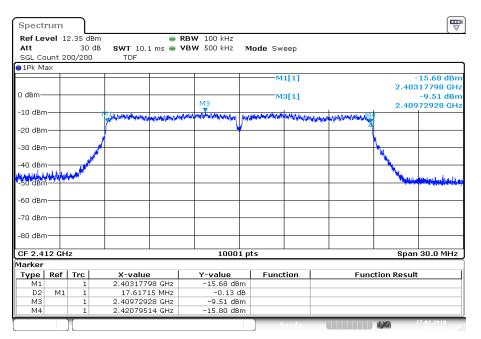

Plots: OFDM / g - mode

Plot 1: Lowest channel

Date: 27.FEB.2018 10:45:01

Plot 2: Middle channel

Date: 27.FEB.2018 10:56:27


Spectrum									
Ref Level 13	1.83 dBm		👄 RB	W 100 kHz					
Att	30 dB	SWT 10.1	1 ms 👄 🗸 🖪	W 500 kHz	Mode Sw	eep			
SGL Count 20	00/200	TDF				•			
1Pk Max									
					M	1[1]			-15.24 dBn
								2.45	379277 GH
) dBm					M	3[1]			-9.17 dBn
		M3						2.45	446784 GH
-10 dBm		M1	and a second second	Manananan Anger	MARINA	Marchank walk	an and the second		
-20 dBm		1				· · · · · · · · · · · · · · · · · · ·	4		
-20 ubiii		4							
-30 dBm									
							1	N.,	
-40 dBm									
	. Longhand							19 Mar 14	ويستارد وبالاعاقان
to a state of the second									
-60 dBm									
-70 dBm									
-/0 ubiii									
-80 dBm									
00 00									
CF 2.462 GH	z			1000	1 pts			Spa	n 30.0 MHz
1arker									
Type Ref	Trc	X-value	.	Y-value	Func	tion	Fund	tion Resu	lt
M1	1	2.4537927	77 GHz	-15.24 dB	Im				
D2 M1	1	16.3934		-0.18 (
M3	1	2.4544678		-9.17 dB					
M4	1	2.4701862	24 GHz	-15.42 dB	sm				

Date: 27.FEB.2018 11:05:02

Plots: OFDM / n HT20 - mode

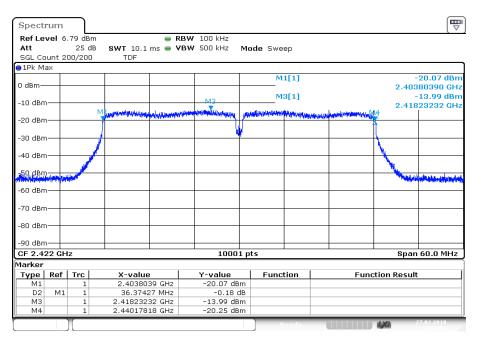
Plot 1: Lowest channel

Date: 27.FEB.2018 11:26:26

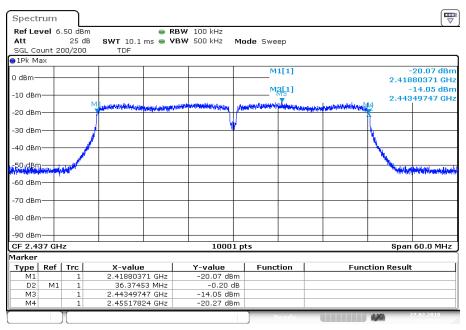
Plot 2: Middle channel

Spectr	um									
Ref Lev	vel 1	1.95 dBr	n	🖷 R	BW 100 kHz					
Att		30 d	B SWT 10.	1 ms 👄 🗸	BW 500 kHz	Mode Sw	еер			
SGL Co	unt 2	00/200	TDF							
⊖1Pk Ma	ах									
						M	1[1]			-16.08 dBm
									2.4	2818995 GH
0 dBm—						M	3[1]			-10.07 dBm
-10 dBm			M3						2.4	2956365 GH
-10 uBm				the set of the set of the set	ner and the second states and	with the water and	(whighly have	and the second states of the s	N.	
-20 dBm	_		_		¥				2	
			1						k	
-30 dBm	+		/						<u>h</u> u -	
		X							N	
-40 dBm									<u> </u>	
-50 dBm	WWW									ويقدرون ورعال وبالد معرو
-se usin										a de la contra de la
-60 dBm										
00 00										
-70 dBm	\rightarrow									
-80 dBm	+									
CF 2.43	87 GH	z			10001	. pts			Sp	an 30.0 MHz
Marker										
	Ref	Trc	X-value		Y-value	Func	tion	Fu	nction Res	ult
M1		1	2.428189		-16.08 dB					
D2	M1	1	17.6112		-0.17 d					
M3 M4		1	2.429563		-10.07 dB -16.25 dB					
1914			2.445801		-10.25 UB					
		П				F	teady		4,70	27.02.2018

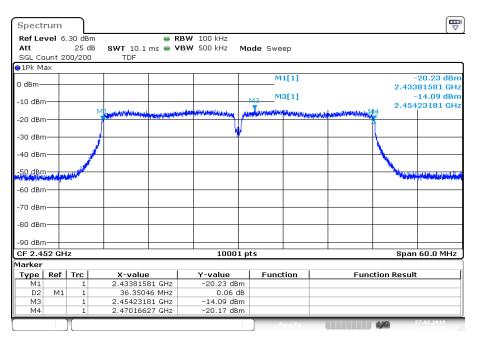
Date: 27.FEB.2018 11:52:46


Spectrur	n								
Ref Level	11.58 dBi	m	👄 RB	W 100 kHz					
Att	30 d	B SWT 10.3	1 ms 👄 🗸 🛛	W 500 kHz	Mode Sw	еер			
SGL Count	t 200/200	TDF							
∋1Pk Max									
					M	1[1]			-16.80 dBm
								2.4	5317478 GHz
) dBm——					M	3[1]			-10.70 dBm
10 -10				MB				2.4	5948621 GHz
-10 dBm—		M. Jacobson Margan	and shifts a reason of the light	North Marking Long Long	man and the second	Vandalas	NAME AND	WM#	
-20 dBm—			44 4 8					1	
		4						1	
-30 dBm—		/						- ftx.	
	∦	·							
40 dBm—	1.1	-						- N.	
الالعام فالعا	La coloresta and							- N.	1000 1000 1000 1000 1000
SU OBM	1								and the second
-60 dBm									
-60 UBIII-									
-70 dBm									
yo abiii									
-80 dBm									
CF 2.462	GHz			1000	1 nts			Sn	an 30.0 MHz
larker									
	ef Trc	X-value		Y-value	Func	tion	F	unction Res	ult
M1	1	2.453174		-16.80 dB		CION		unction Kes	uic
	V1 1	17.6622		-0.35 (
M3	1	2.459486		-10.70 dB					
M4	1	2.470836		-17.15 dB					
								4.562	27.02.2018
								100	

Date: 27.FEB.2018 12:00:07


Plots: OFDM / n HT40 - mode

Plot 1: Lowest channel


Date: 27.FEB.2018 12:36:05

Plot 2: Middle channel

Date: 27.FEB.2018 12:44:40

Date: 27.FEB.2018 12:58:24

12.7 Occupied bandwidth – 99% emission bandwidth

Description:

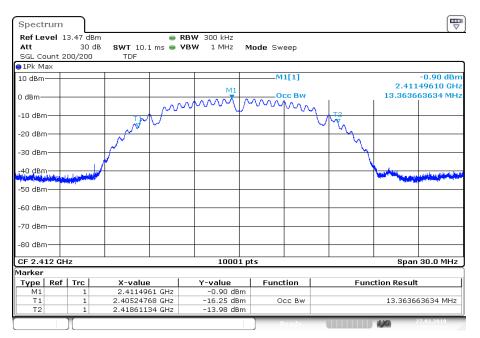
Measurement of the 99% bandwidth of the modulated signal acc. RSS-GEN.

Measurement:

Measureme	nt parameter
Detector	Peak
Sweep time	Auto
Resolution bandwidth	300 kHz
Video bandwidth	1 MHz
Span	30 MHz / 50 MHz
Measurement procedure	Measurement of the 99% bandwidth using the integration function of the analyzer
Trace mode	Single count with 200 counts
Test setup	See chapter 6.4 - A
Measurement uncertainty	See chapter 8

<u>Usage:</u>

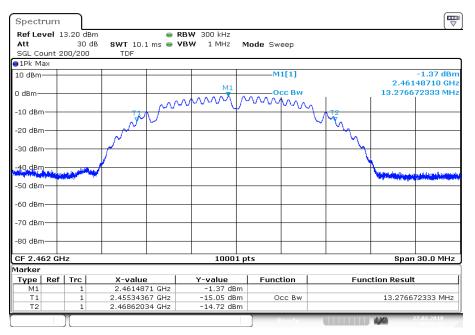
-/-	IC
OBW is necessary fo	r Emission Designator


Results:

	99%	emission bandwidth	/ kHz
	lowest channel	middle channel	highest channel
DSSS / b – mode	13364	13310	13277
OFDM / g – mode	16702	16708	16711
OFDM / n HT20 - mode	17674	17686	17677
OFDM / n HT40 – mode	36290	36302	36266

Plots: DSSS / b - mode

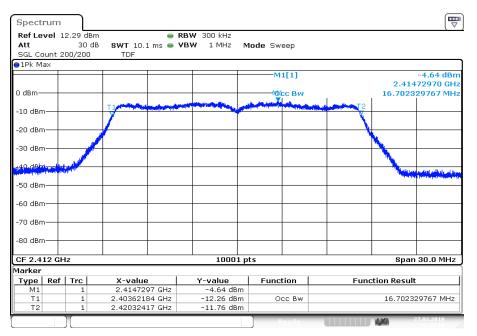
Plot 1: Lowest channel


Date: 27.FEB.2018 10:11:46

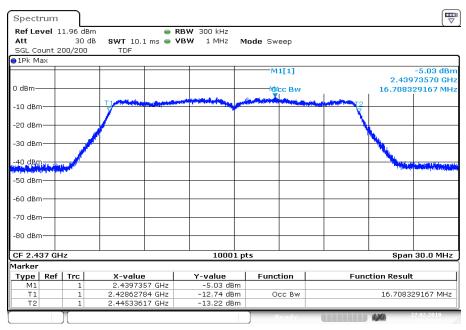
Plot 2: Middle channel

Spectrum										
Ref Level 1 Att SGL Count 2	30	dB SWT 10.3	● RI 1 ms ● VI	BW 300 kHz BW 1 MHz	Мо	ode Swe	ер			
●1Pk Max			_							
10 dBm						M1	[1]		2.43	-1.37 dBm 549310 GHz
0 dBm			/	VVVV	\sim	ww	C BW	1	13.3096	69033 MHz
-10 dBm		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		V (<u>۲</u>		and	12		
-20 dBm			~					~ ~		
-30 dBm								- ~		
-40 dBm										أالان فياديه والملاء والمقارب
-50 dBm										
-60 dBm										
-70 dBm								_		
-80 dBm										
CF 2.437 GH	lz			1000	1 pt:	5			Spar	1 30.0 MHz
Marker					<u> </u>					
Type Ref	Trc	X-value		Y-value		Funct	ion	Fun	ction Resul	t
M1	1	2.43649		-1.37 dB						
T1 T2	1	2.430319 2.443629		-15.90 dB -14.94 dB		Oc	C BW		13.3096	69033 MHz
][R	eady		4,70	27.02.2018

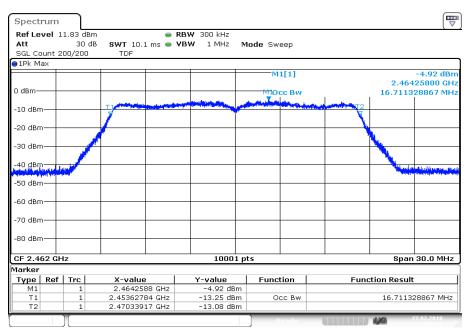
Date: 27.FEB.2018 10:25:30



Date: 27.FEB.2018 10:36:42

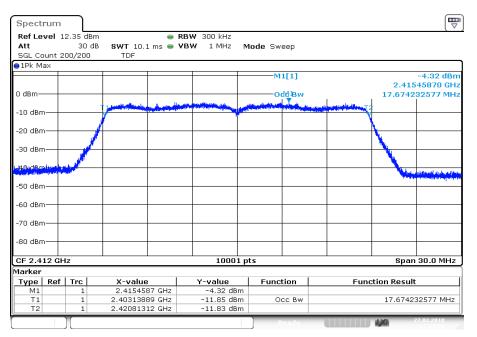

Plots: OFDM / g - mode

Plot 1: Lowest channel


Date: 27.FEB.2018 10:45:16

Plot 2: Middle channel

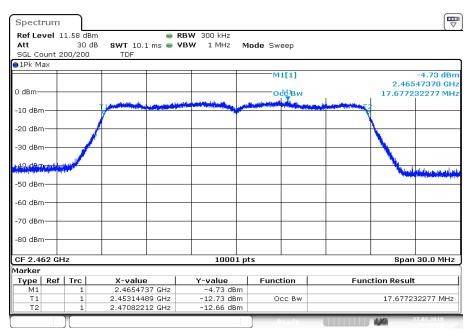
Date: 27.FEB.2018 10:56:43



Date: 27.FEB.2018 11:05:18

Plots: OFDM / n HT20 - mode

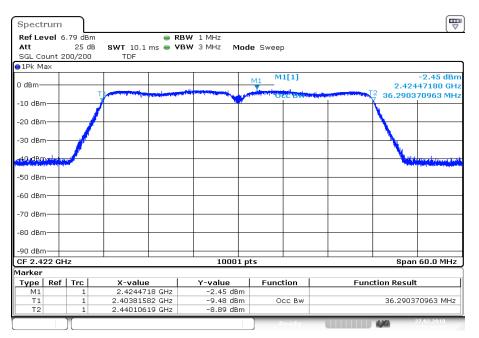
Plot 1: Lowest channel


Date: 27.FEB.2018 11:26:41

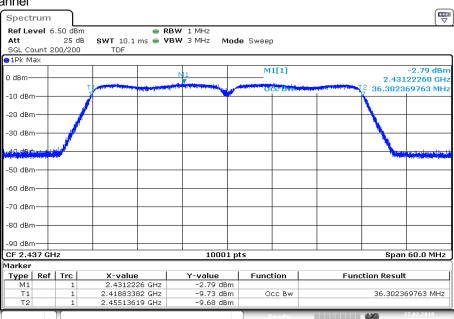
Plot 2: Middle channel

Spectrum						
Ref Level 1 Att SGL Count 2	30		RBW 300 kHz VBW 1 MHz W	1ode Sweep		X
● 1Pk Max 0 dBm						-4.48 dBm 2.44050960 GHz 17.686231377 MHz
-10 dBm		The second states and		-		
-20 dBm		A				
-30 dBm						
-40 dBhulu	and a state of the					Construction of the second second
-50 dBm						
-60 dBm						
-70 dBm						
-80 dBm						
CF 2.437 GF	łz		10001 p	ts		Span 30.0 MHz
Marker	1 - 1					
Type Ref M1	Trc 1	X-value 2.4405096 GHz	Y-value -4,48 dBm	Function	Fu	nction Result
T1 T2	1 1 1	2.4405096 GHz 2.42814189 GHz 2.44582812 GHz	-4.48 dBm -12.01 dBm -12.20 dBm	Occ Bw		17.686231377 MHz
				Ready		27.02.2018

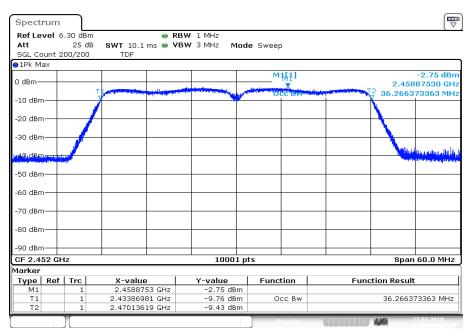
Date: 27.FEB.2018 11:53:02



Date: 27.FEB.2018 12:00:23


Plots: OFDM / n HT40 - mode

Plot 1: Lowest channel


Date: 27.FEB.2018 12:36:19

Plot 2: Middle channel

Date: 27.FEB.2018 12:44:54

Date: 27.FEB.2018 12:58:38

12.8 Occupied bandwidth – 20 dB bandwidth

Description:

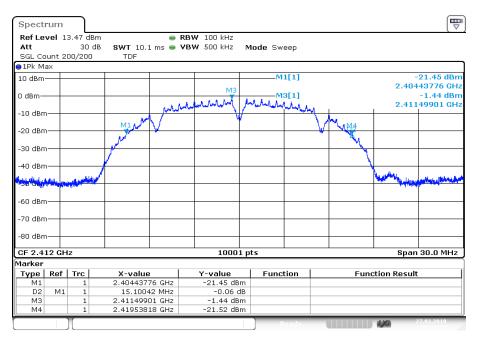
Measurement of the 20 dB bandwidth of the modulated carrier.

Measurement:

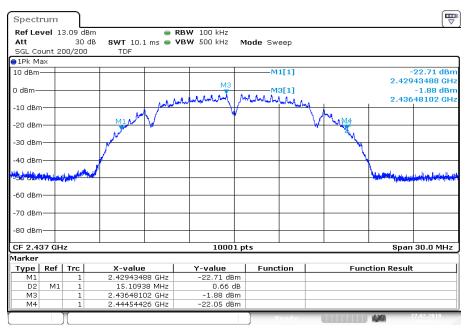
Measurer	nent parameter
Detector	Peak
Sweep time	Auto
Resolution bandwidth	100 kHz
Video bandwidth	500 kHz
Span	30 MHz / 50 MHz
Trace mode	Single count with min. 200 counts
Test setup	See chapter 6.4 - A
Measurement uncertainty	See chapter 8

<u>Usage:</u>

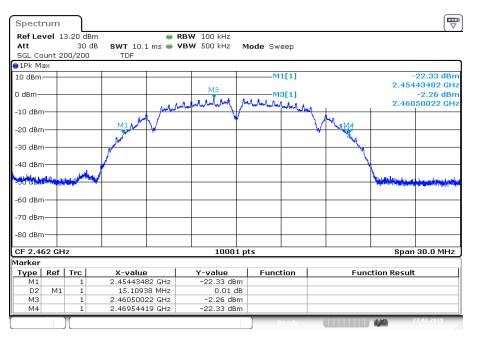
-/-	IC
Within	he used band!


Results:

	2	0 dB bandwidth / MH	z
	lowest channel	middle channel	highest channel
DSSS / b – mode	15.100	15.109	15.109
OFDM / g – mode	18.076	18.061	18.037
OFDM / n HT20 – mode	18.811	18.832	18.787
OFDM / n HT40 – mode	37.802	37.604	37.916

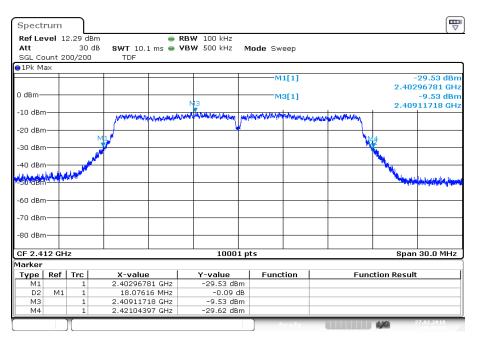

Plots: DSSS / b - mode

Plot 1: Lowest channel

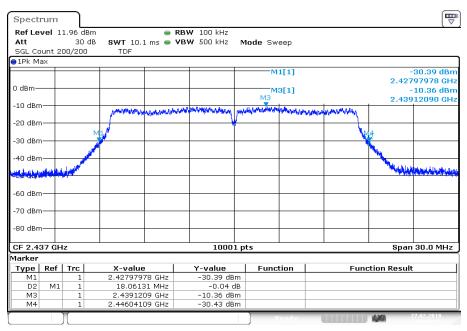

Date: 27.FEB.2018 10:11:38

Plot 2: Middle channel

Date: 27.FEB.2018 10:25:22



Date: 27.FEB.2018 10:36:33

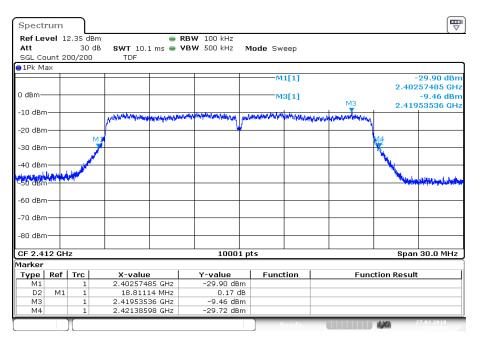

Plots: OFDM / g - mode

Plot 1: Lowest channel

Date: 27.FEB.2018 10:45:08

Plot 2: Middle channel

Date: 27.FEB.2018 10:56:36


Spect		L																[₩
Ref Le	vel 1							₩ 100 kHz										
Att		30				ms 😑	/B	W 500 kHz	Μ	ode Sw	еер							
SGL Co		200/200)	TDF														
1Pk M	ах																	
										M	1[1]						-30.46	
) dBm—																	299789	
J ubiii—								140		M	3[1]						-10.33	
-10 dBm	ŋ							M3								2.45	973222	GH
10 0.011	·			10mp Juny	man	had a special day	Marin	And the second second	-	the states and the states of t	nothing marking	man	hadataan	ય				
-20 dBm	י—⊢			1	_				₩					+				
			M1,	/										$\mathbb{A}_{\mathbb{N}}$	4			
-30 dBrr	-+-י		7		-									-				
10.10			.												×.			
40 dBm		مول ا	-													L		
والمحداد والألي	darie de	all														The second	A line and	أحمالية
																1		
-60 dBm	n				_													
-70 dBr					-													
-80 dBm	ד ו																	
CF 2.4	63.01	1-1						1000	1.01	-						Pna	n 30.0 M	41.1-1
larker		12					_	1000	тр	.5				_		əpa	1 30.0 6	Inz
	Ref	Trc		X-va	luo	1		Y-value	- 1	Func	tion 1		-		tion	Resu	I+	
Type M1	REI	1		2.4529		2 GH7		-30.46 dt	2m	Func	uon		F	unit	Juon	Resu	n	
D2	M1	-				5 MHz		-0.62										
MЗ		1		2.4597				-10.33 dE										
M4		1		2.4710				-31.08 dE										

Date: 27.FEB.2018 11:05:10

Plots: OFDM / n HT20 - mode

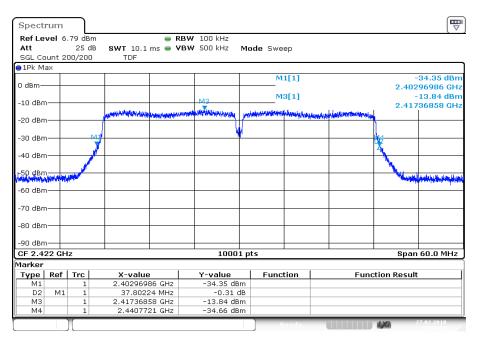
Plot 1: Lowest channel

Date: 27.FEB.2018 11:26:34

Plot 2: Middle channel

annei									_
Spectrum									
Ref Level 1	1.95 dBm		👄 RB1	₩ 100 kHz					
Att	30 dB	SWT 10.1	ms 👄 VB	W 500 kHz	Mode Swi	еер			
SGL Count 2	200/200	TDF							
●1Pk Max									
					M	1[1]			-30.65 dBm
									756582 GHz
0 dBm					M	3[1]			-10.52 dBm
-10 dBm				MB				2.43	472333 GHz
10 0.011		March Marthan Martin	and the state of the state of the state	mail has him has many	polyters along the way	14MAAAAAAAAAA	and a start of the		
-20 dBm		ſ		•					
	M1	4 1						44	
-30 dBm								X	
10.10-	X							<u> </u>	
-40 dBm	- Land								
-so abm	MA								A state of a later of
00 0.0									and the second sector sector
-60 dBm									
-70 dBm									
-80 dBm									
CF 2.437 GI	-17			1000	1 nts			Snai	n 30.0 MHz
Marker	12			1000	1 pt3			opu	100.0 1012
Type Ref	Trc	X-value	1	Y-value	Funct	tion	Eupe	tion Resul	I I 1
M1	1	2.4275658		-30.65 dB			Fund	Alon Kesu	
D2 M1		18.8321		0.02 0					
M3	1	2.4347233		-10.52 dB					
M4	1	2.4463979	95 GHz	-30.63 dB	m				
_	11					eady		4.00	27.02.2018
(age of the second se	

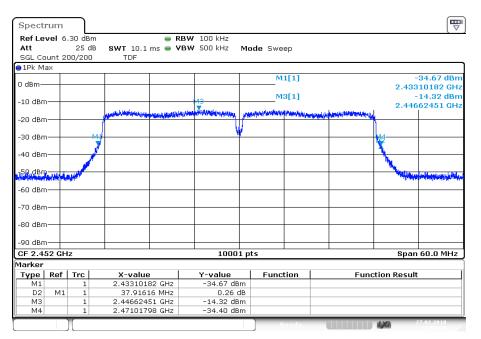
Date: 27.FEB.2018 11:52:54


Spectrum									
Ref Level 1	1.58 dBm		👄 RB	W 100 kHz					
Att	30 dB	SWT 10.1	. ms 👄 VB	₩ 500 kHz	Mode Sw	еер			
SGL Count 2	00/200	TDF							
1Pk Max									
					M	1[1]			-31.05 dBn
								2.45	256883 GH
) dBm					M	3[1]			-10.42 dBn
-10 dBm				M3				2.45	973530 GH
-10 ubiii		Manna	where we want	Manager and a second second	moundated	www.later.re	the state of the s		
-20 dBm		(*)			<u> </u>				_
	MI							14	
-30 dBm								X .	
	<u> </u>							N .	
-40 dBm									
-50 GBM								1 N.	واللار ويدار والمعاد
-50 asm								TH(and the last of th
-60 dBm									
-70 dBm									
-80 dBm									
CF 2.462 GH	lz			1000	1 pts			Spa	n 30.0 MHz
1arker									
Type Ref	Trc	X-value		Y-value	Func	tion	Fund	Function Result	
M1	1	2.4525688		-31.05 dB					
D2 M1	1	18.7873		0.62					
M3	1	2.459735		-10.42 dB					
M4	1	2.4713561	L6 GHz	-30.43 dB	sm				

Date: 27.FEB.2018 12:00:16

Plots: OFDM / n HT40 - mode

Plot 1: Lowest channel


Date: 27.FEB.2018 12:36:11

Plot 2: Middle channel

Spectrum						
Ref Level 6 Att SGL Count 2	25 dB		RBW 100 kHz VBW 500 kHz	Mode Sweep		X
●1Pk Max						
0 dBm				M1[1]		-34.94 dBn 2.41820979 GH
-10 dBm		MB		M3[1]		-14.28 dBn
		PROVING STATISTICS	animphone in the second second	MANANAMANAMANAN	Constant of the second states of the	2.42162355 GH
-20 dBm						
-30 dBm	N	4	¥	(10
-40 dBm						
-50 IdBm	WHIT WAR					Contraction of the state of the
-60 dBm						
-70 dBm						
-80 dBm						
-90 dBm						
CF 2.437 GH	Ηz		1000	1 pts	I	Span 60.0 MHz
Marker						
Type Ref	Trc	X-value	Y-value	Function	Fund	ction Result
M1	1	2.41820979 GHz				
D2 M1		37.60435 MHz				
M3 M4	1	2.42162355 GHz 2.45581414 GHz				
)[Ready		27.02.2018

Date: 27.FEB.2018 12:44:46

Date: 27.FEB.2018 12:58:30

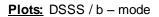
12.9 Band edge compliance conducted

Description:

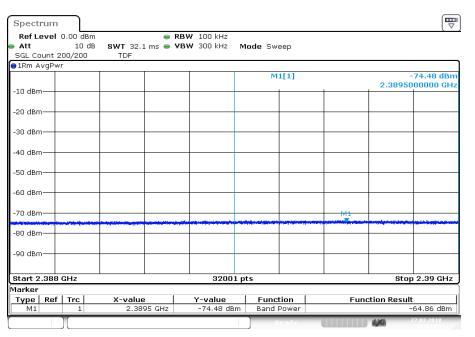
Measurement of the radiated band edge compliance with a conducted test setup.

Measurement:

Measurement parameter for measurements						
According to DTS clause: 13.3.2 and clause 12.2.2						
Detector	RMS					
Sweep time	Auto					
Resolution bandwidth 100 kHz						
Video bandwidth	300 kHz					
	2 MHz					
Span	lower band edge 2388 MHz to 2390 MHz					
	upper band edge 2483.5 MHz to 2485.5 MHz					
Trace mode	Trace average with 200 counts					
Test setup	See chapter 6.4 - A					
Measurement uncertainty	See chapter 8					

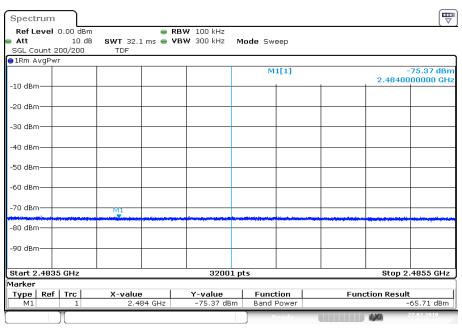

Limits:

FCC	IC				
-41.26 dBm					



Results:

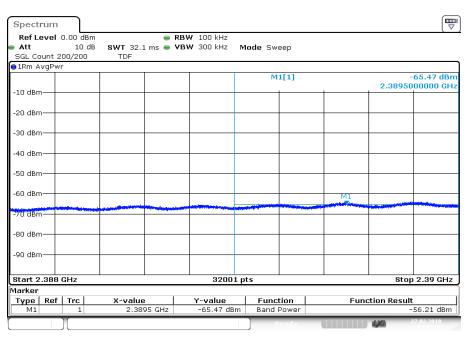
	band edge compliance / dBm (gain calculation)					
Modulation:	DSSS / b – mode	OFDM / g – mode	OFDM / n HT20 – mode	OFDM / n HT40 – mode		
Max. lower band edge power conducted	-64.9	-56.2	-54.8	-57.0		
Antenna gain / dBi	ain / dBi 5			.2		
Max. lower band edge power radiated	-59.7	-51.0	-49.6	-51.8		
Max. upper band edge power conducted	-65.7	-57.1	-59.5	-55.9		
Antenna gain / dBi	3.1					
Max. upper band edge power radiated	-62.6	-54.0	-56.4	-51.8		



Plot 1: Lower band edge

Date: 27.FEB.2018 10:14:06

Plot 2: Upper band edge



Date: 27.FEB.2018 10:39:15

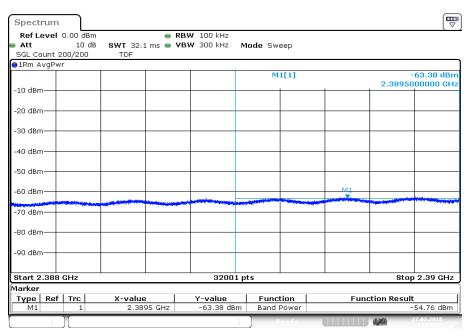
CTC I advanced

Plot 1: Lower band edge

Date: 27.FEB.2018 10:47:33

Plot 2: Upper band edge

Spectrum					
Ref Level 0.00 dBm Att 10 dB SGL Count 200/200	● F SWT 32.1 ms ● V TDF	RBW 100 kHz /BW 300 kHz M	ode Sweep		
1Rm AvgPwr					
			M1[1]		-67.87 dBr
10 dBm				2.4	4840000000 GH
20 dBm					
30 dBm					
40 dBm					
40 UBIII					
50 dBm					
60 dBm	M1				
70 dBm					
80 dBm					
90 dBm					
start 2.4835 GHz		32001 pt	s	s	top 2.4855 GHz
larker					
Type Ref Trc M1 1	2.484 GHz	<u>Y-value</u> -67.87 dBm	Function Band Power	Function I	-57.09 dBm
M1 1	2.484 GHZ	-07.87 dBm	Bariu Power		-57.09 aBm


Date: 27.FEB.2018 11:07:50

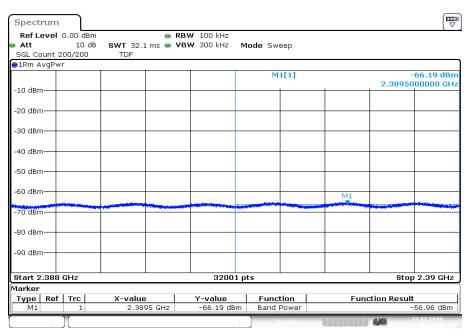
CTC I advanced

Plots: OFDM / n HT20 - mode

Plot 1: Lower band edge

Date: 27.FEB.2018 11:28:58

Plot 2: Upper band edge


Spectrum				
Ref Level 0.00 dBm Att 10 dB SGL Count 200/200	● R SWT 32.1 ms ● V TDF	BW 100 kHz BW 300 kHz Mo	ode Sweep	<u>x</u>
●1Rm AvgPwr	101			
			M1[1]	-70.30 dBm 2.4840000000 GHz
-10 dBm				
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm	M1			
70 dem				
-80 dBm				
-90 dBm				
Start 2.4835 GHz		32001 pt	s	Stop 2.4855 GHz
Marker				
Type Ref Trc	2.484 GHz	-70.30 dBm	Function Band Power	Function Result -59,47 dBm
	2		Ready	27.02.2018

Date: 27.FEB.2018 12:02:55

Plots: OFDM / n HT40 - mode

Plot 1: Lower band edge

Date: 27.FEB.2018 12:39:25

Plot 2: Upper band edge

Spectrum						
Ref Level 0.00 dBm Att 10 dB SGL Count 200/200	● R SWT 32.1 ms ● V TDF	(BW 100 kHz /BW 300 kHz M	ode Sweep			
1Rm AvgPwr						
			M1[1]			44 dBr
-10 dBm					2.48400000	UU GH
-20 dBm						
-30 dBm				_		
-40 dBm						
-50 dBm						-
-60 dBm	M1					
-70 dBm						
-80 dBm						
-90 dBm						
Start 2.4835 GHz		32001 pt	s		Stop 2.485	5 GHz
1arker						
Type Ref Trc M1 1	2,484 GHz	Y-value -66,44 dBm	Function Band Power	Fund	tion Result	0 dBm
	2.101.012	00. 11 ubili			27.02	2010

Date: 27.FEB.2018 13:01:58

12.10 Spurious emissions conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The measurement is performed at the lowest; the middle and the highest channel. The measurement is repeated for all modulations.

Measurement:

Measurement parameter				
Detector	Peak			
Sweep time	Auto			
Resolution bandwidth	100 kHz			
Video bandwidth	500 kHz			
Span	9 kHz to 25 GHz			
Trace mode	Max Hold			
Test setup	See chapter 6.4 - A			
Measurement uncertainty	See chapter 8			

Limits:

FCC	IC
intentional radiator is operating, the radio frequency po at least 30 dB below that in the 100 kHz bandwidth with	

Results: DSSS / b - mode

	TX spurious emissions conducted						
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results		
Lowest channel		-2.3	30 dBm		Operating frequency		
All detected emissions are below the -20 dBc & - 30 dBc criteria.		-20 dBc (peak) -30 dBc (average)		compliant			
Middle channel		-3.0	30 dBm		Operating frequency		
All detected emissions are below the -20 dBc & - 30 dBc criteria.		-20 dBc (peak) -30 dBc (average)		compliant			
Highest channel		-2.4	30 dBm		Operating frequency		
All detected emissions are below the -20 dBc & - 30 dBc criteria.		-20 dBc (peak) -30 dBc (average)		compliant			

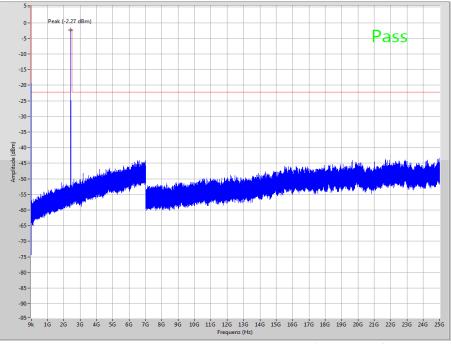
Results: OFDM / g - mode

TX spurious emissions conducted							
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results		
Lowest channel		-10.5	30 dBm		Operating frequency		
All detected emissions are below the -20 dBc & - 30 dBc criteria.			-20 dBc (peak) -30 dBc (average)		compliant		
Middle channel		-11.2	30 dBm		Operating frequency		
All detected emissions are below the -20 dBc & - 30 dBc criteria.			-20 dBc (peak) -30 dBc (average)		compliant		
Highest channel		-10.6	30 dBm		Operating frequency		
All detected emissions are below the -20 dBc & - 30 dBc criteria.			-20 dBc (peak) -30 dBc (average)		compliant		

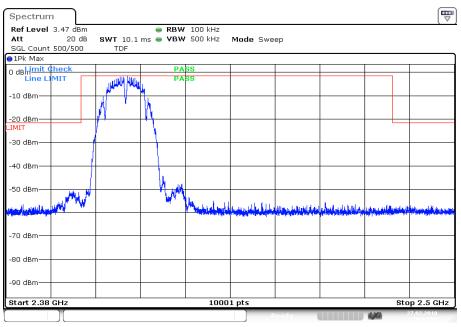
Results: OFDM / n HT20 - mode

TX spurious emissions conducted							
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results		
Lowest channel		-10.7	30 dBm		Operating frequency		
All detected e	All detected emissions are below the -20 dBc & - 30 dBc criteria.				compliant		
Middle channel		-10.6	30 dBm		Operating frequency		
All detected emissions are below the -20 dBc & - 30 dBc criteria.			-20 dBc (peak) -30 dBc (average)		compliant		
Highest channel		-11.4	30 dBm		Operating frequency		
All detected emissions are below the -20 dBc & - 30 dBc criteria.			-20 dBc (peak) -30 dBc (average)		compliant		

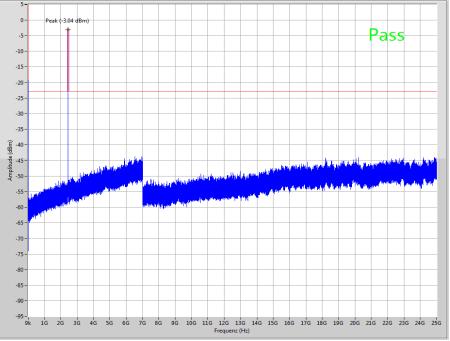
Results: OFDM / n HT40 - mode


TX spurious emissions conducted							
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results		
Lowest channel		-14.2	30 dBm		Operating frequency		
All detected emissions are below the -20 dBc & - 30 dBc criteria.			-20 dBc (peak) -30 dBc (average)		compliant		
Middle channel		-14.5	30 dBm		Operating frequency		
All detected emissions are below the -20 dBc & - 30 dBc criteria.			-20 dBc (peak)		compliant		
			-30 dBc (average)				
Highest channel		-14.9	30 dBm		Operating frequency		
All detected emissions are below the -20 dBc & - 30 dBc criteria.			-20 dBc (peak) -30 dBc (average)		compliant		
			-50 ubc (average)				

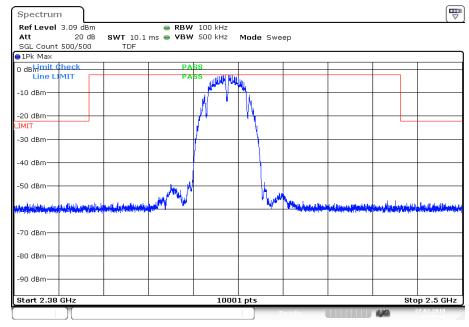
Test report no.: 1-5993/18-01-03


Plots: DSSS / b - mode

Plot 1: Lowest channel, up to 25 GHz


The peak at the beginning of the plot is the LO from the SA.

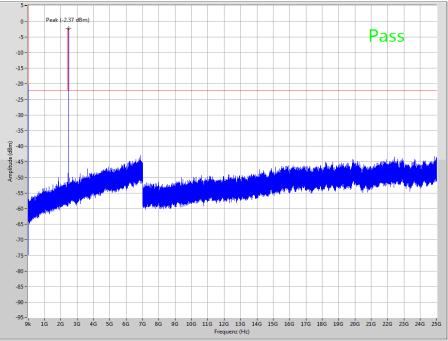
Plot 2: Lowest channel, zoomed carrier



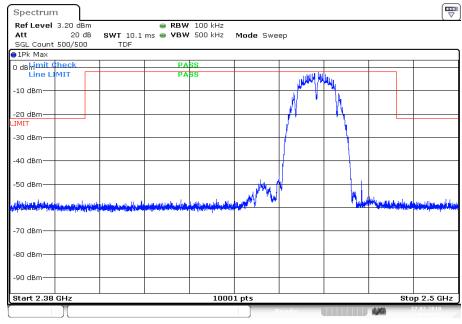
Date: 27.FEB.2018 10:13:50

Plot 3: Middle channel, up to 25 GHz

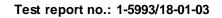
The peak at the beginning of the plot is the LO from the SA.


Plot 4: Middle channel, zoomed carrier

Date: 27.FEB.2018 10:27:34

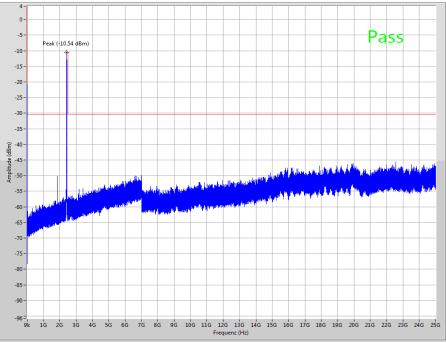

CTC I advanced

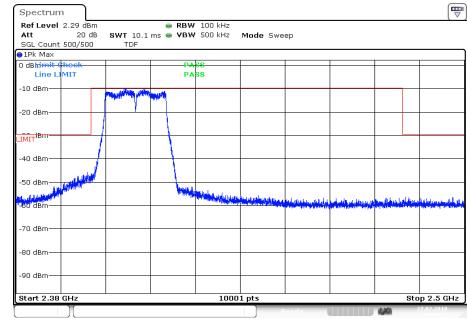
Plot 5: Highest channel, up to 25 GHz



The peak at the beginning of the plot is the LO from the SA.

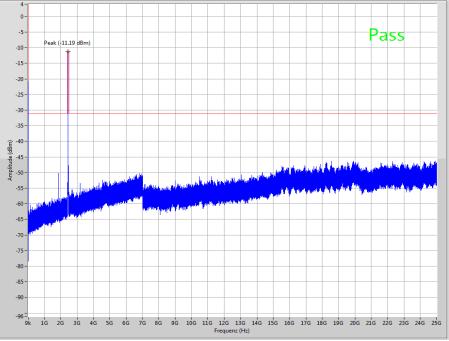
Plot 6: Highest channel, zoomed carrier

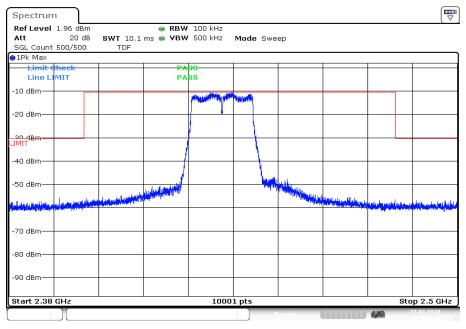

Date: 27.FEB.2018 10:38:45



Plots: OFDM / g - mode

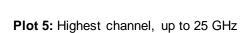
Plot 1: Lowest channel, up to 25 GHz

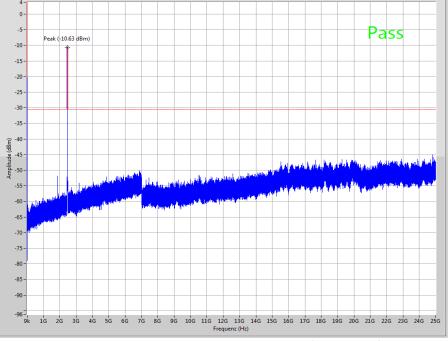

The peak at the beginning of the plot is the LO from the SA.

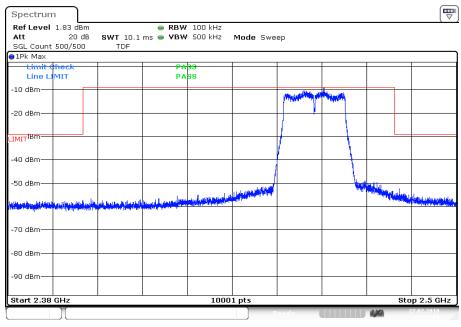

Plot 2: Lowest channel, zoomed carrier

Date: 27.FEB.2018 10:47:18

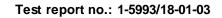
Plot 3: Middle channel, up to 25 GHz

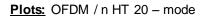


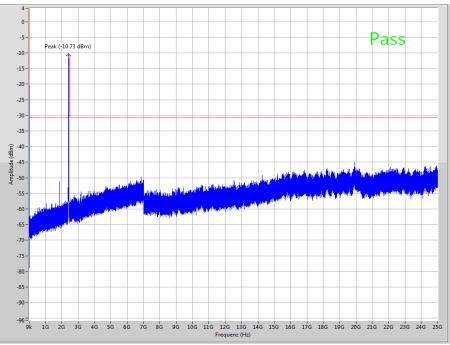

The peak at the beginning of the plot is the LO from the SA.


Plot 4: Middle channel, zoomed carrier

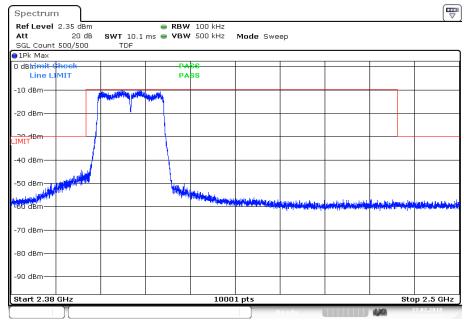
Date: 27.FEB.2018 10:58:46



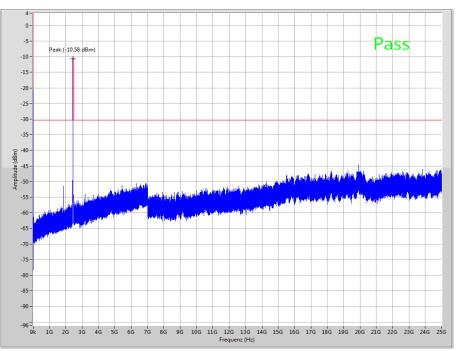

The peak at the beginning of the plot is the LO from the SA.


Plot 6: Highest channel, zoomed carrier

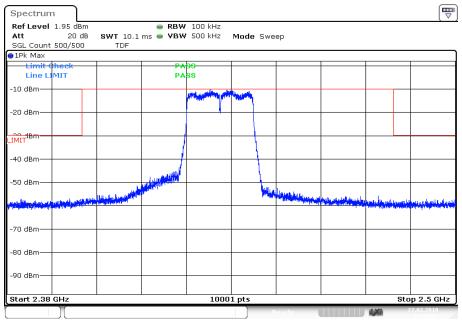
Date: 27.FEB.2018 11:07:21



Plot 1: Lowest channel, up to 25 GHz



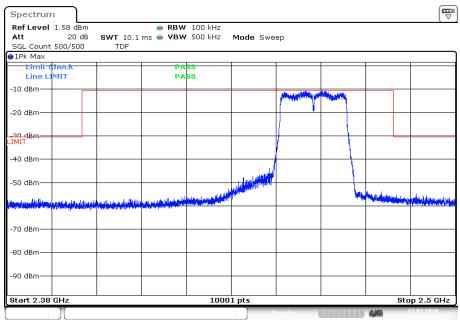
The peak at the beginning of the plot is the LO from the SA.



Plot 2: Lowest channel, zoomed carrier

Date: 27.FEB.2018 11:28:43

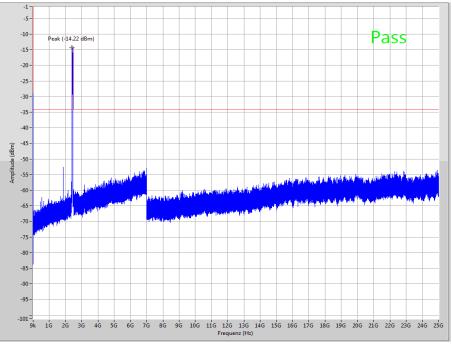
The peak at the beginning of the plot is the LO from the SA.


Plot 4: Middle channel, zoomed carrier

Date: 27.FEB.2018 11:55:04

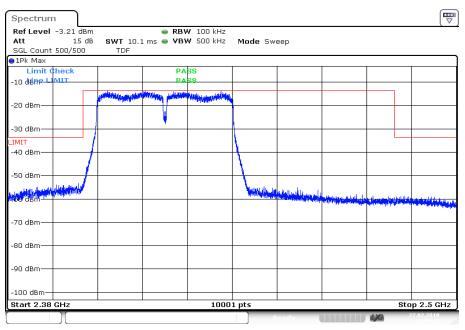
Plot 5: Highest channel, up to 25 GHz

The peak at the beginning of the plot is the LO from the SA.

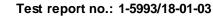


Plot 6: Highest channel, zoomed carrier

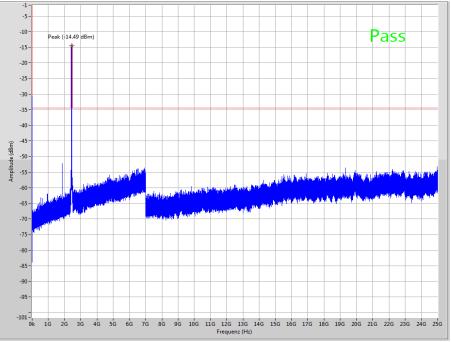
Date: 27.FEB.2018 12:02:26

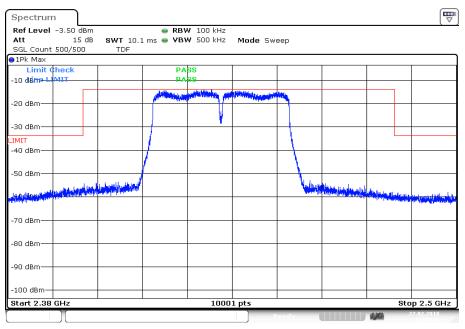

Plots: OFDM / n HT 40 - mode

Plot 1: Lowest channel, up to 25 GHz



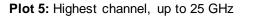
The peak at the beginning of the plot is the LO from the SA.

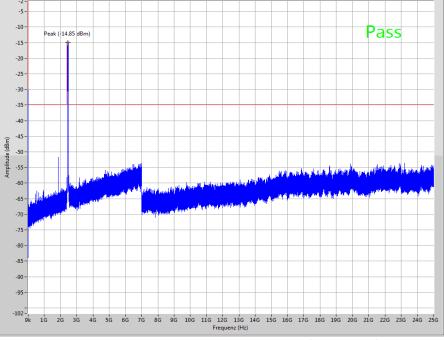

Plot 2: Lowest channel, zoomed carrier


Date: 27.FEB.2018 12:39:11

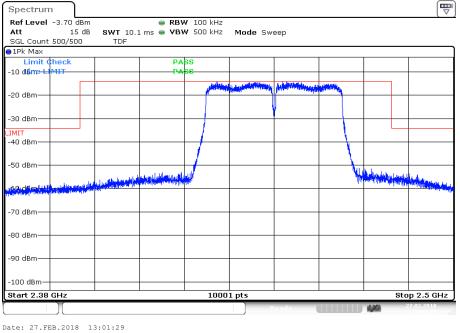
Plot 3: Middle channel, up to 25 GHz

The peak at the beginning of the plot is the LO from the SA.




Plot 4: Middle channel, zoomed carrier

Date: 27.FEB.2018 12:47:45



The peak at the beginning of the plot is the LO from the SA.

12.11 Spurious emissions radiated below 30 MHz

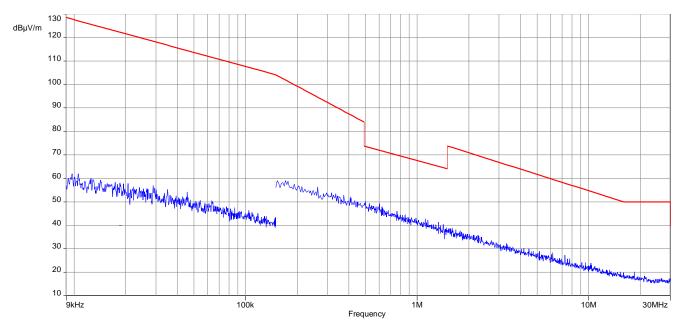
Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are recalculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

Measurement:

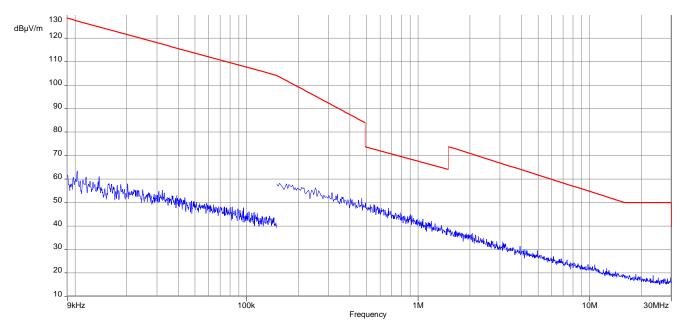
Measureme	nt parameter
Detector	Peak / Quasi Peak
Sweep time	Auto
Resolution bandwidth	F < 150 kHz:
Video bandwidth	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz
Span	9 kHz to 30 MHz
Trace mode	Max Hold
Measured modulation	 DSSS b - mode OFDM g - mode OFDM n HT20 - mode OFDM n HT40 - mode
Test setup	See chapter 6.2 A
Measurement uncertainty	See chapter 8

Limits:

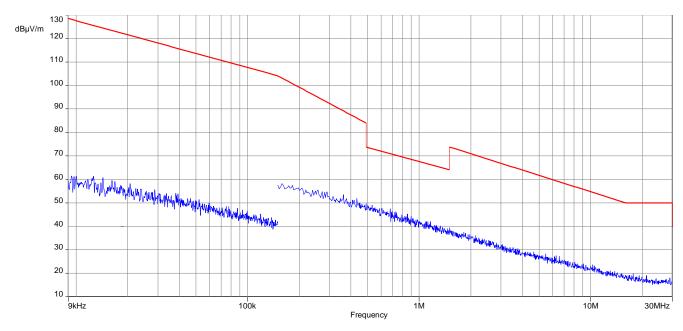

FCC			IC
Frequency / MHz	Field Strength	n / (dBµV / m)	Measurement distance / m
0.009 – 0.490	2400/F	F(kHz)	300
0.490 – 1.705	24000/	F(kHz)	30
1.705 – 30.0	3	0	30

Results:

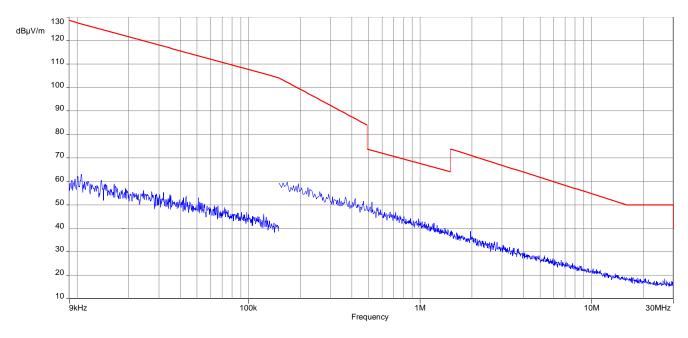
TX spurious emissions radiated < 30 MHz / (dBµV / m) @ 3 m								
Frequency / MHz Detector Level / (dBµV / m)								
All detected peaks are more than 20 dB below the limit.								

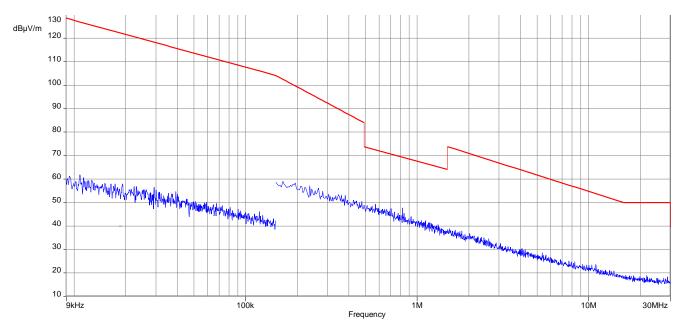

CTC I advanced

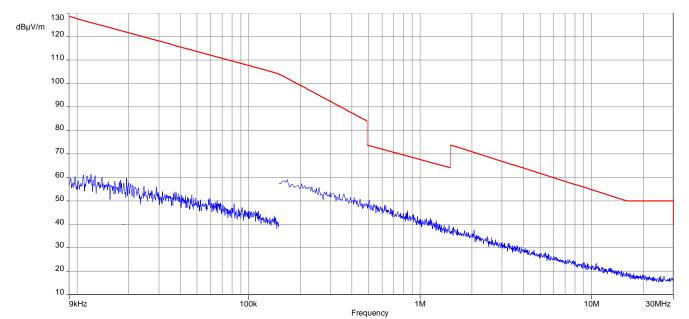

Plots: DSSS


Plot 1: 9 kHz to 30 MHz, lowest channel

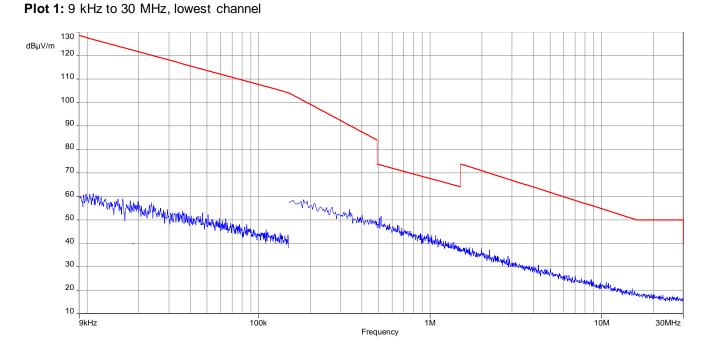
Plot 2: 9 kHz to 30 MHz, middle channel

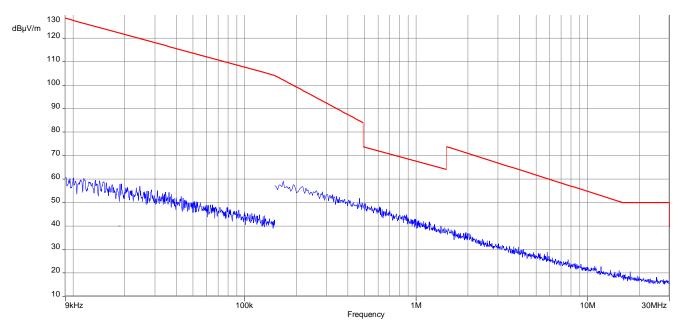


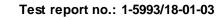

Plot 3: 9 kHz to 30 MHz, highest channel

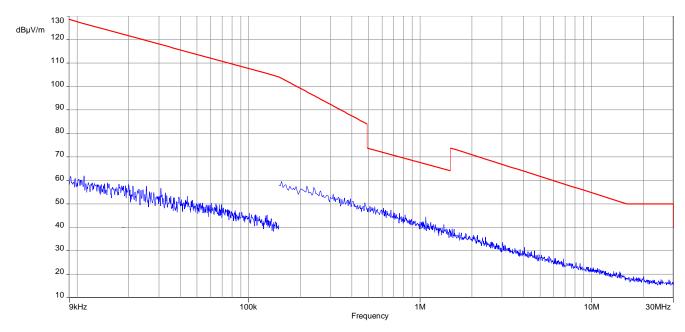

Plot 1: 9 kHz to 30 MHz, lowest channel

Plot 2: 9 kHz to 30 MHz, middle channel




Plot 3: 9 kHz to 30 MHz, highest channel





Plot 2: 9 kHz to 30 MHz, middle channel

Plot 3: 9 kHz to 30 MHz, highest channel

12.12 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions and cabinet radiations below 1 GHz.

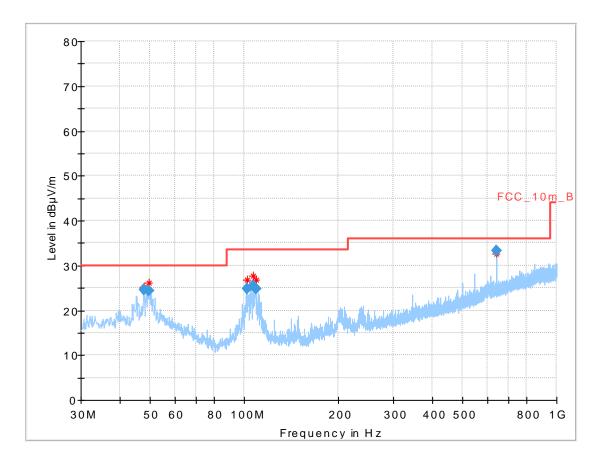
Measurement:

Measurement parameter					
Detector	Peak / Quasi Peak				
Sweep time	Auto				
Resolution bandwidth	120 kHz				
Video bandwidth	3 x RBW				
Span	30 MHz to 1 GHz				
Trace mode	Max Hold				
Measured modulation	 ☑ DSSS b - mode ☑ OFDM g - mode ☑ OFDM n HT20 - mode ☑ OFDM n HT40 - mode ☑ RX / Idle - mode 				
Test setup	See chapter 6.1 - A				
Measurement uncertainty	See chapter 8				

Limits:

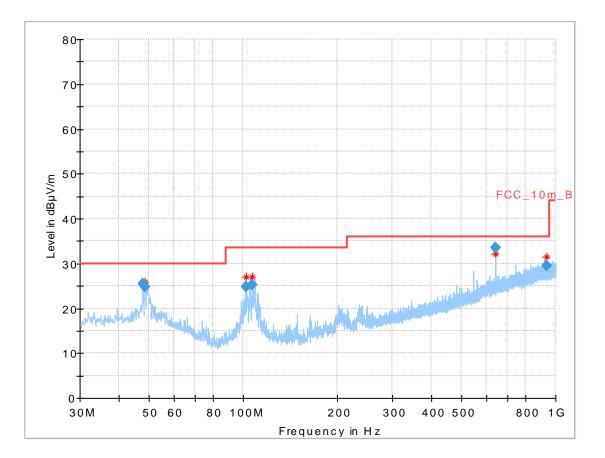
FCC			IC		
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulate intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desir power, based on either an RF conducted or a radiated measurement. Attenuation below the general lim specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted band as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (se §15.205(c)).					
Frequency / MHz	Field Strength	n / (dBµV / m)	Measurement distance / m		
30 – 88	30	0.0 10			
88 – 216	33	.5	10		

36.0

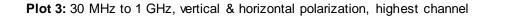

216 – 960

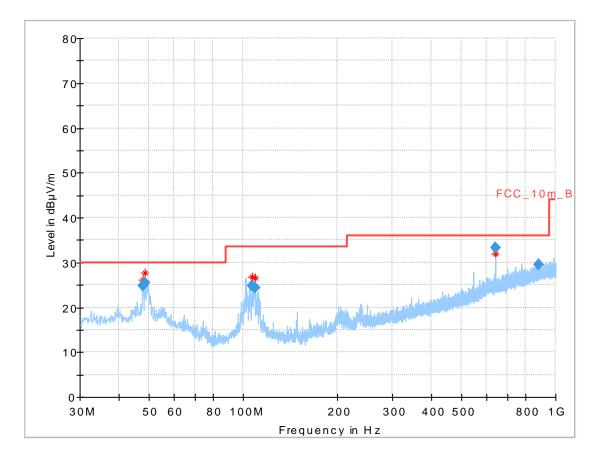
10

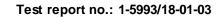
Plot: DSSS

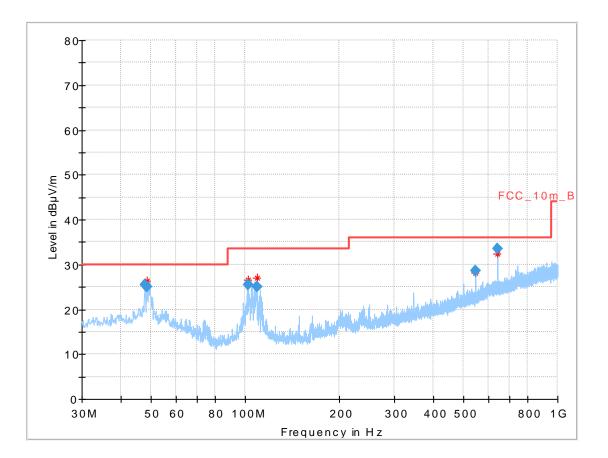

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, lowest channel

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol
47.813	24.68	30.0	5.32	1000	120	101.0	V
49.516	24.27	30.0	5.73	1000	120	101.0	V
101.912	24.77	33.5	8.73	1000	120	98.0	V
106.719	25.39	33.5	8.11	1000	120	170.0	V
108.805	24.83	33.5	8.67	1000	120	101.0	V
643.492	33.39	36.0	2.61	1000	120	101.0	Н




Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization, middle channel

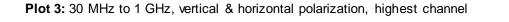

Frequency (MHz)	QuasiPeak (dBµV/m)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol
47.802	25.51		30.0	4.49	1000	120	98.0	V
48.449	24.84		30.0	5.16	1000	120	101.0	V
101.887	24.83		33.5	8.67	1000	120	100.0	V
106.715	25.19		33.5	8.31	1000	120	170.0	V
643.498	33.45		36.0	2.55	1000	120	101.0	Н
932.504	29.41		36.0	6.59	1000	120	170.0	Н

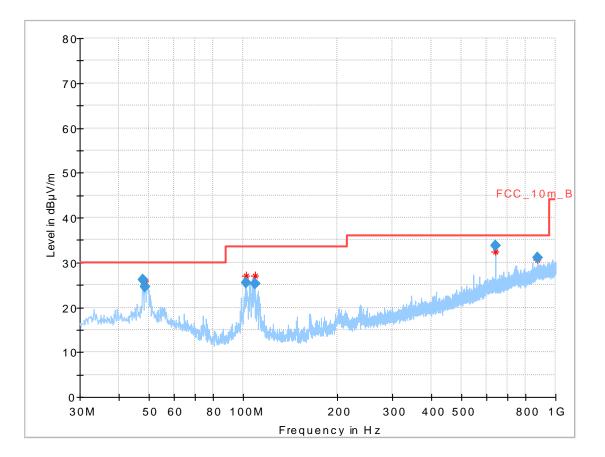

Frequency (MHz)	QuasiPeak (dBµV/m)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol
47.814	24.91		30.0	5.09	1000	120	170.0	V
48.447	25.48		30.0	4.52	1000	120	98.0	V
106.703	24.83		33.5	8.67	1000	120	170.0	V
108.804	24.37		33.5	9.13	1000	120	170.0	V
643.498	33.27		36.0	2.73	1000	120	98.0	Н
884.288	29.55		36.0	6.45	1000	120	98.0	Н

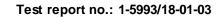
Plot: OFDM (20 MHz nominal channel bandwidth)

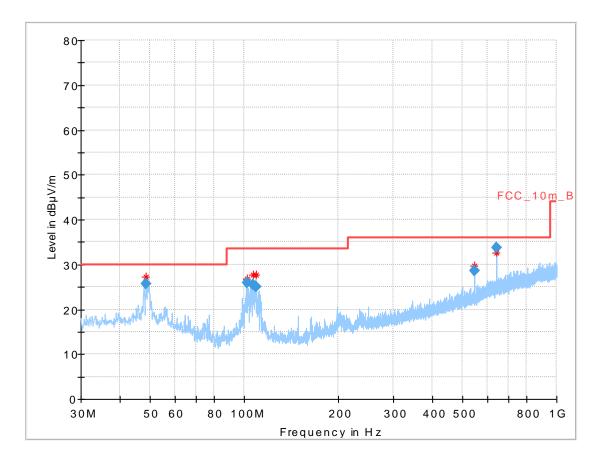
Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, lowest channel

Frequency (MHz)	QuasiPeak (dBµV/m)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol
47.802	25.40		30.0	4.60	1000	120	170.0	V
48.454	24.92		30.0	5.08	1000	120	170.0	V
101.888	25.43		33.5	8.07	1000	120	98.0	V
108.799	25.06		33.5	8.44	1000	120	101.0	V
544.507	28.70		36.0	7.30	1000	120	101.0	Н
643.485	33.44		36.0	2.56	1000	120	170.0	Н

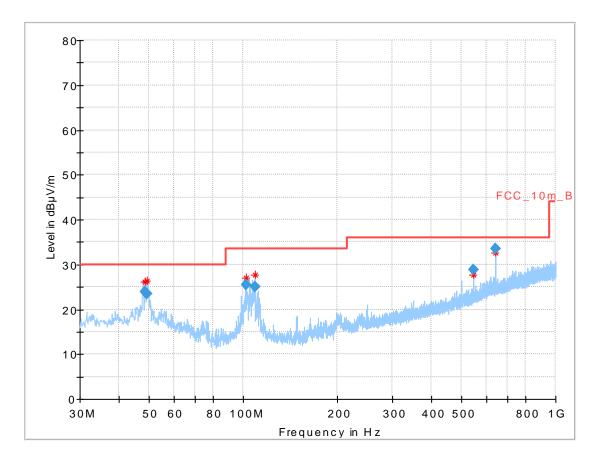



Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization, middle channel

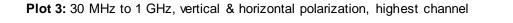

Frequency (MHz)	QuasiPeak (dBµV/m)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol
48.452	25.01		30.0	4.99	1000	120	170.0	V
101.884	25.65		33.5	7.85	1000	120	98.0	V
106.710	24.38		33.5	9.12	1000	120	101.0	V
108.805	24.59		33.5	8.91	1000	120	100.0	V
643.492	33.47		36.0	2.53	1000	120	170.0	Н
874.951	30.58		36.0	5.42	1000	120	98.0	V

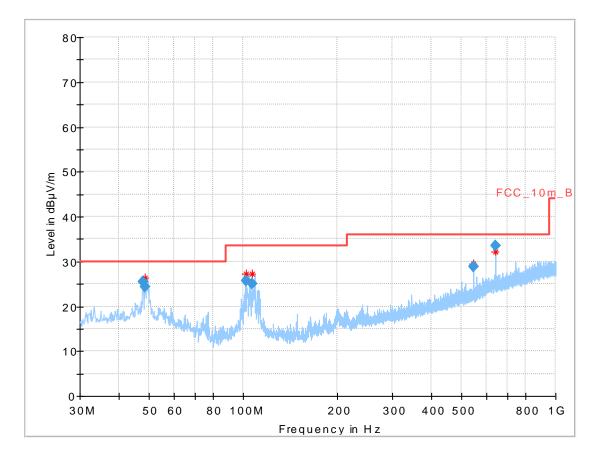

Frequency (MHz)	QuasiPeak (dBµV/m)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol
47.812	26.09		30.0	3.91	1000	120	100.0	V
48.450	24.65		30.0	5.35	1000	120	170.0	V
101.890	25.40		33.5	8.10	1000	120	100.0	V
108.799	25.16		33.5	8.34	1000	120	98.0	V
643.493	33.70		36.0	2.30	1000	120	101.0	Н
874.984	30.96		36.0	5.04	1000	120	170.0	V

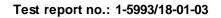
Plot: OFDM (40 MHz nominal channel bandwidth)

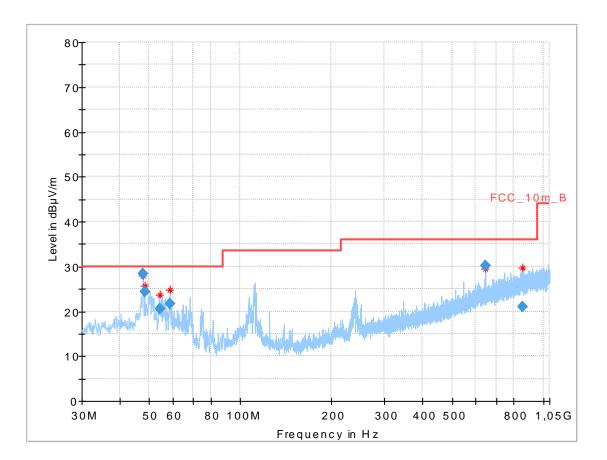

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, lowest channel

Frequency (MHz)	QuasiPeak (dBµV/m)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol
48.444	25.62		30.0	4.38	1000	120	98.0	V
101.880	25.94		33.5	7.56	1000	120	98.0	V
106.716	25.43		33.5	8.07	1000	120	170.0	V
108.806	24.99		33.5	8.51	1000	120	101.0	V
544.513	28.58		36.0	7.42	1000	120	101.0	Н
643.491	33.68		36.0	2.32	1000	120	101.0	Н




Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization, middle channel


Frequency (MHz)	QuasiPeak (dBµV/m)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol
48.396	24.01		30.0	5.99	1000	120	98.0	V
49.093	23.47		30.0	6.53	1000	120	98.0	V
101.867	25.55		33.5	7.95	1000	120	98.0	V
108.802	25.07		33.5	8.43	1000	120	98.0	V
544.494	28.90		36.0	7.10	1000	120	101.0	Н
643.498	33.57		36.0	2.43	1000	120	101.0	Н


Frequency (MHz)	QuasiPeak (dBµV/m)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol
47.805	25.53		30.0	4.47	1000	120	170.0	V
48.439	24.25		30.0	5.75	1000	120	170.0	V
101.876	25.71		33.5	7.79	1000	120	101.0	V
106.703	24.98		33.5	8.52	1000	120	170.0	V
544.486	28.92		36.0	7.08	1000	120	101.0	Н
643.492	33.58		36.0	2.42	1000	120	101.0	Н

Plot: RX / Idle mode

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
47.794	28.32	30.0	1.68	1000	120	98.0	V	0.0	13.7
48.442	24.43	30.0	5.57	1000	120	101.0	V	90.0	13.7
54.171	20.64	30.0	9.36	1000	120	170.0	V	180.0	13.2
58.735	21.71	30.0	8.29	1000	120	98.0	V	90.0	12.2
643.503	30.23	36.0	5.77	1000	120	101.0	Н	90.0	21.1
855.276	21.03	36.0	14.97	1000	120	170.0	Н	90.0	23.6

12.13 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions above 1 GHz in transmit mode and receiver / idle mode.

Measurement:

Measurement parameter					
Detector	Peak / RMS				
Sweep time	Auto				
Resolution bandwidth	1 MHz				
Video bandwidth	3 x RBW				
Span	1 GHz to 26 GHz				
Trace mode	Max Hold				
Measured modulation	 ☑ DSSS b – mode ☑ OFDM g – mode ☑ OFDM n HT20 – mode ☑ OFDM n HT40 – mode ☑ RX / Idle – mode 				
Test setup	See chapter 6.2 C (1 GHz to 18 GHz) See chapter 6.3 (18 GHz to 26 GHz)				
Measurement uncertainty	See chapter 8				

Limits:

FCC			IC
In any 100 kHz bandwidth outside to intentional radiator is operating, the at least 30 dB below that in the 100 k power, based on either an RF cond specified in Section 15.209(a) is not as defined in §15.205(a), must also §15.205(c)).	radio frequency po Hz bandwidth withi ducted or a radiate required. In additio	wer that is produce n the band that cor d measurement. A n, radiated emissio	d by the intentional radiator shall be ntains the highest level of the desired Attenuation below the general limits ons which fall in the restricted bands,
Frequency / MHz	Field Strength	n / (dBµV / m)	Measurement distance / m

Frequency / MHz	Field Strength / (dBµV / m)	Measurement distance / m		
Above 960	54.0 (AVG)	2		
Above 900	74.0 (peak)	3		

Results: DSSS

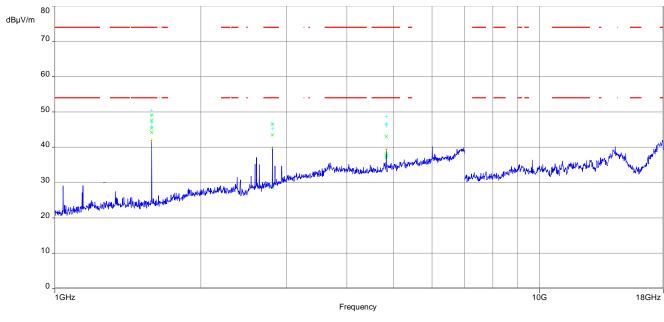
	TX spurious emissions radiated / dBμV/m @ 3 m													
lo	owest channe	el	n	niddle chann	el	h	ighest chann	el						
f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m						
1584	Peak	50.5	1584	Peak	50.5	1584	Peak	50.5						
1304	AVG	49.1	1304	AVG	49.1	1304	AVG	49.1						
0014	Peak	49.2	2011	Peak	49.2	4024	Peak	53.7						
2811	AVG	46.6	2811	AVG	46.6	4924	AVG	49.7						
4842	Peak	48.7	4874	Peak	51.1	-/-	Peak	-/-						
4042	AVG	43.0	4074	AVG	46.0	-/-	AVG	-/-						

Results: OFDM (20 MHz nominal channel bandwidth)

	TX spurious emissions radiated / dBµV/m @ 3 m													
lo	owest channe	el	n	niddle chann	el	h	highest channel							
f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m						
1584	Peak	50.5	1584	Peak	50.5	1584	Peak	50.5						
1304	AVG	49.1	1004	AVG	49.1	1004	AVG	49.1						
2811	Peak	49.2	2811	Peak	49.2	2011	Peak	49.2						
2011	AVG	46.6	2011	AVG	46.6	2811	AVG	46.6						
1	Peak	-/-	-/-	Peak	-/-	/-	Peak	-/-						
-/-	AVG	-/-	-/-	AVG	-/-		AVG	-/-						

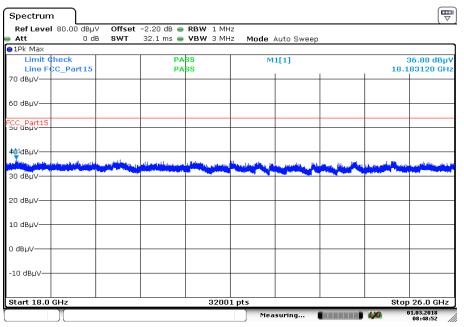
Results: OFDM (40 MHz nominal channel bandwidth)

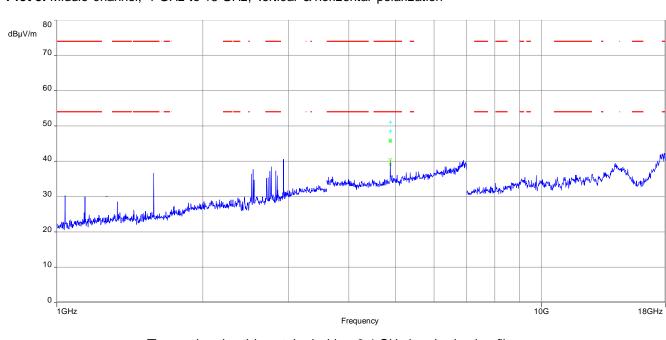
	TX spurious emissions radiated / dBµV/m @ 3 m													
lo	owest channe	el	n	hiddle chann	el	h	ighest chann	el						
f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m	f / MHz	Detector	Level / dBµV/m						
1584	Peak	50.5	1584	Peak	50.5	1584	Peak	50.5						
1304	AVG	49.1	1304	AVG	49.1	1304	AVG	49.1						
2811	Peak	49.2	2811	Peak	49.2	2811	Peak	49.2						
2011	AVG	46.6	2011	AVG	46.6	2011	AVG	46.6						
-/-	Peak	-/-	-/-	Peak	-/-	-/-	Peak	-/-						
-/-	AVG	-/-	-/-	AVG	-/-		AVG	-/-						



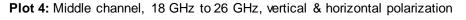
Results: RX / idle - mode

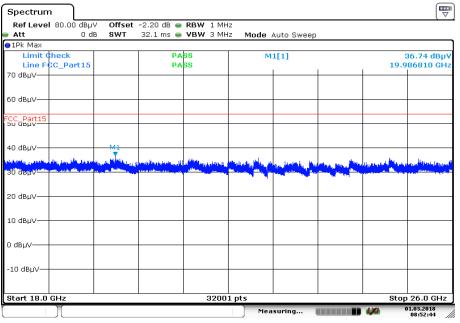
TX spurious emissions radiated / dBµV/m @ 3 m								
f / MHz	Detector	Level / dBµV/m						
1584	Peak	50.5						
1564	AVG	49.1						
2308	Peak	51.5						
2306	AVG	49.8						
2799	Peak	51.5						
2799	AVG	50.1						

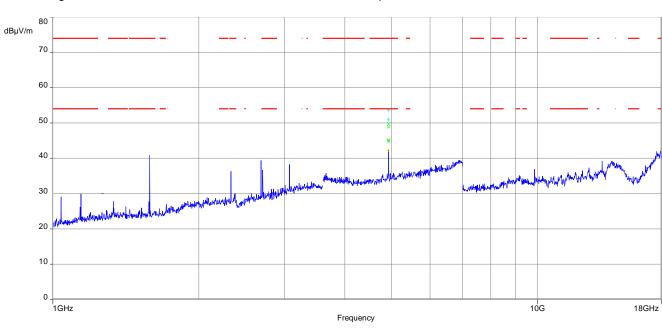

Plots: DSSS

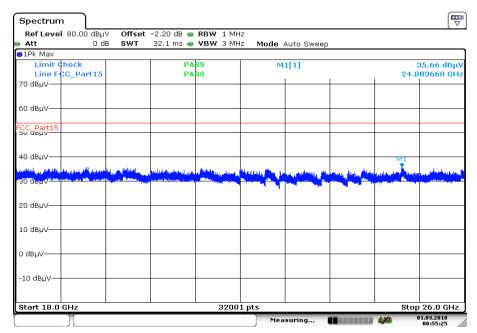

Plot 1: Lowest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

Plot 2: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

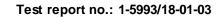



Date: 1.MAR.2018 08:48:51


Plot 3: Middle channel, 1 GHz to 18 GHz, vertical & horizontal polarization

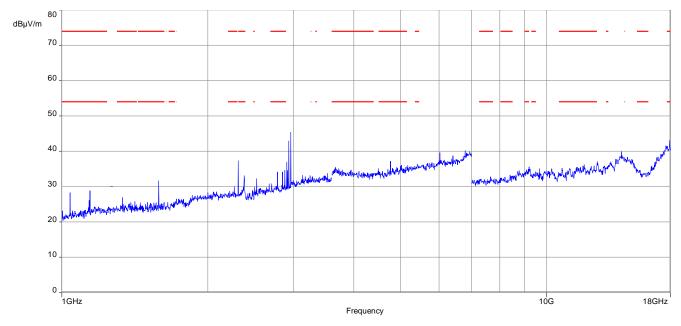


Date: 1.MAR.2018 08:52:44


Plot 5: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

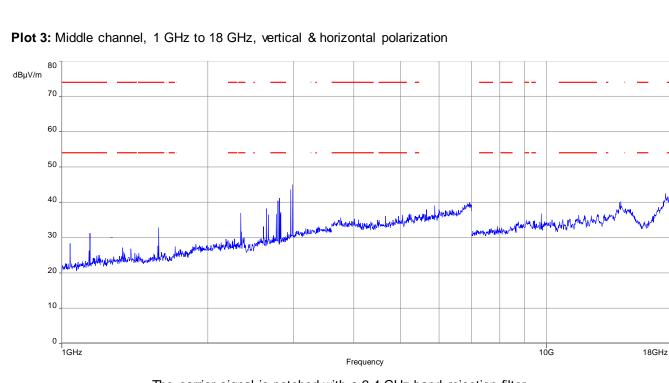
The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 6: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

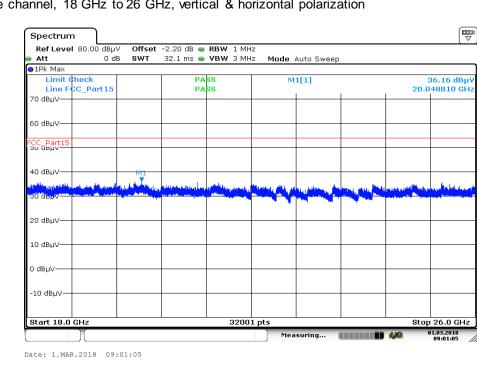

Date: 1.MAR.2018 08:55:24

Plots: OFDM (20 MHz bandwidth)

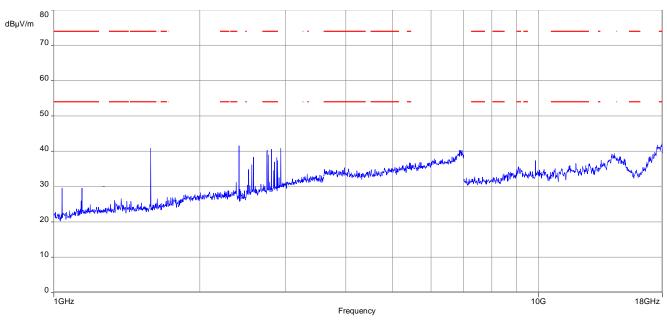
Plot 1: Lowest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

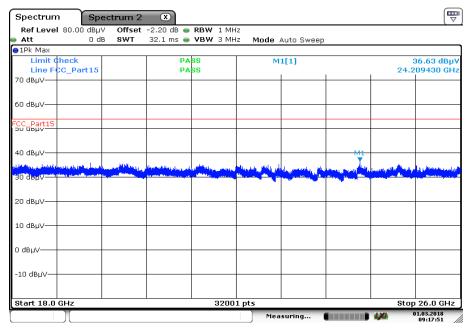


The carrier signal is notched with a 2.4 GHz band rejection filter.

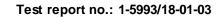

Spectrum
 Offset
 -2.20 dB
 ■
 RBW
 1 MHz

 SWT
 32.1 ms
 ■
 VBW
 3 MHz
 Ref Level 80.00 dBµ∀ Att 0 dB Mode Auto Sweep ⊖1Pk Ma> Limit Check Line FCC_Part15 PASS PASS 36.63 dBµ 24.903410 GH M1[1] 70 dBµV-60 dBµV-CC_Part: 40 dBuV 30 dee 20 dBuV 10 dBµV 0 dBµV -10 dBµV-Stop 26.0 GHz Start 18.0 GHz 32001 pts Measuring... 01.03.2018 08:57:34 ••••• Date: 1.MAR.2018 08:57:33

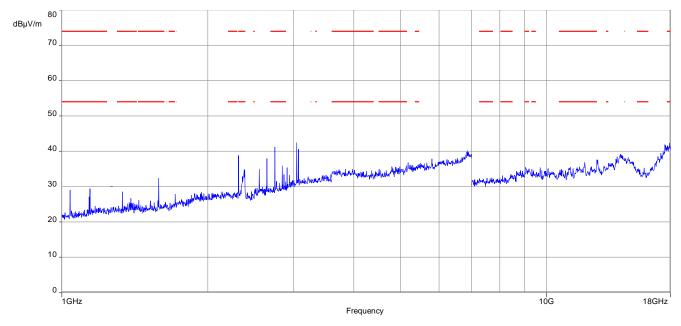

Plot 2: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

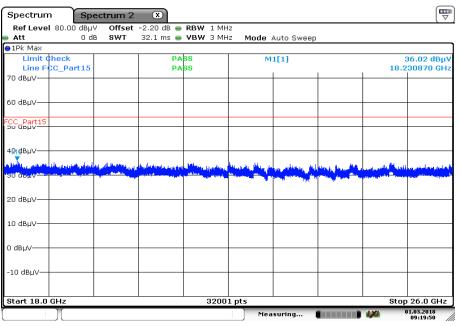


Plot 4: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization

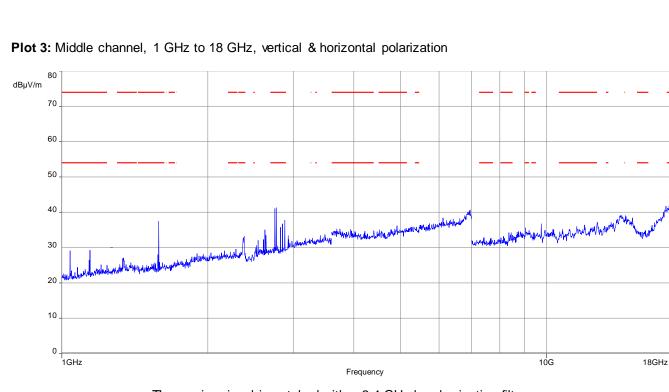

Plot 5: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

Plot 6: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization


Date: 1.MAR.2018 09:17:51

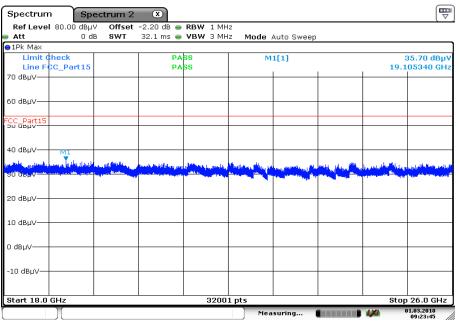

Plots: OFDM (40 MHz bandwidth)

Plot 1: Lowest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

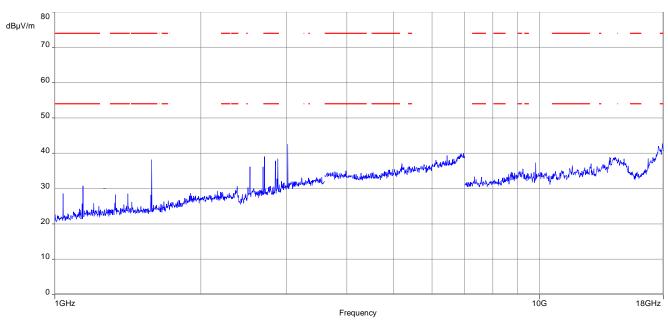


The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: Lowest channel, 18 GHz to 26 GHz, vertical & horizontal polarization

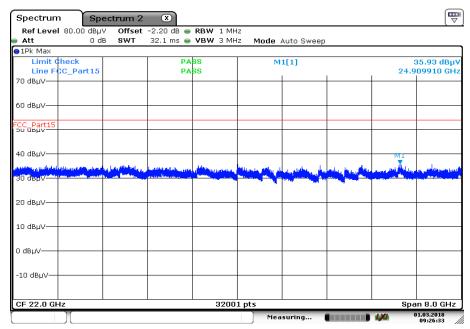


Date: 1.MAR.2018 09:19:50

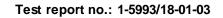


The carrier signal is notched with a 2.4 GHz band rejection filter.

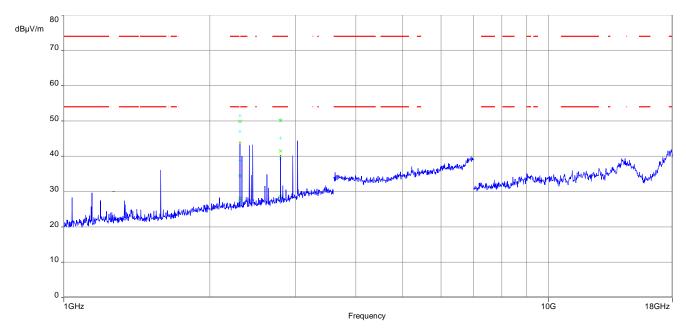
Plot 4: Middle channel, 18 GHz to 26 GHz, vertical & horizontal polarization

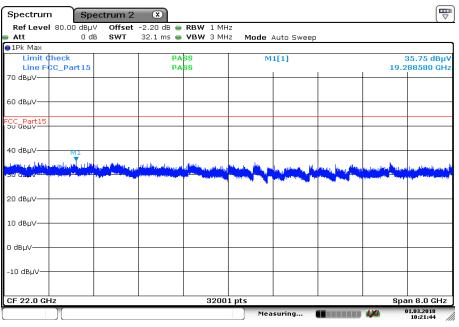


Date: 1.MAR.2018 09:23:45


Plot 5: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization


Plot 6: Highest channel, 18 GHz to 26 GHz, vertical & horizontal polarization


Date: 1.MAR.2018 09:26:33



Plots: RX / idle mode

Plot 2: 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 1.MAR.2018 10:21:44

13 **Observations**

No observations except those reported with the single test cases have been made.

Annex A Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
00	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN PLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2018-03-12

Annex C Accreditation Certificate

first page	lastpage
Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 Section 2 Section	Deutsche Akkreditierungsstelle GmbH Office Berlin Spitzeinant 10 10117 Berlin G3227 Frankfurt am Main G3227 Frankfurt am Main G3237 Frankfurt am Main
Telecommunication The accorditation certificate shall only apply in connection with the notice of accreditation of 02.05.2017 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 43 pages. Registration number of the certificate: D-PL-12076-01-03 Frankfurt, 02.06.2017 Frankfurt, 02.06.2017 Surverse wide	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle Gmbir (DAKS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAKS. The accreditation also extends to fields beyond the scope of accreditation attested by DAKS. May a separate distribution of the transmitter of the cover sheet by the requirements for accreditation and an arket surveillance relating to the material or product of (Field Sci2) and the Regulation (E(1A) of Sci2) OB of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the material or products (Official Journal of The European Charlos), and an arket surveillance relating to cover and accreditation and cover lation and market surveillance relating of coolesci. (Dificial Journal Formation L28 of 9 July 2008, p. 30). DAKAS is a signatory to the Multilateral Agreements for finationary accorditation accorditation accorditation for Accreditation (E(1A), International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: E(2), www.ist.corg LAC; www.ist.corg LAC; www.ist.corg

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

http://www.dakks.de/as/ast/d/D-PL-12076-01-03.pdf