

TEST REPORT No.: 18-1-0010801T01a-C1

According to: **FCC Regulations** Part 15.205, Part 15.209, Part 15.247

for

Robert Bosch Car Multimedia GmbH

1-DIN TCC MID

FCC-ID: YBN-1DINTCCMID0

CETECOM GmbH

Laboratory Radio Communications & Electromagnetic Compatibility Im Teelbruch 116 • 45219 Essen • Germany Registered in Essen, Germany, Reg. No.: HRB Essen 8984 Tel.: + 49 (0) 20 54 / 95 19-954 • Fax: + 49 (0) 20 54 / 95 19-964 E-mail: info@cetecom.com • Internet: www.cetecom.com

Table of contents

1. SUMMARY OF TEST RESULTS	3
1.1. Tests overview of US CFR (FCC) Standards	3
2. ADMINISTRATIVE DATA	5
2.1. Identification of the testing laboratory	5
2.2. Test location	
2.3. Organizational items	5
2.4. Applicant's details	
2.5. Manufacturer's details	
3. EQUIPMENT UNDER TEST (EUT)	
3.1. Technical data of main EUT declared by applicant	6
3.2. EUT: Type, S/N etc. and short descriptions used in this test report	6
3.3. Auxiliary Equipment (AE): Type, S/N etc. and short descriptions	
3.4. EUT set-ups	
3.5. EUT operating modes	
3.6. Test Software	8
4. DESCRIPTION OF TEST SYSTEM SET-UP'S	9
4.1. Test system set-up for conducted RF-measurements at antenna port	9
4.2. Test system set-up for radiated magnetic field measurements below 30 MHz	10
4.3. Test system set-up for radiated electric field measurement 30 MHz to 1 GHz	
4.4. Test system set-up for radiated electric field measurement above 1 GHz	12
5. MEASUREMENTS	13
5.1. RF-Parameter – Output power	
5.2. RF-Parameter – 99% Occupied Bandwidth	
5.3. RF-Parameter - 20 dB Bandwidth	
5.4. RF-Parameter - Channel Carrier Frequency Separation for FHSS-systems	
5.5. RF-Parameter – Number of Hopping Channels for FHSS-systems	
5.6. RF-Parameter – Average Time of Occupancy for FHSS systems	
5.7. RF-Parameter – Out-of-Band 20 dBc Conducted Emissions for FHSS systems	
5.9. General Limit - Radiated field strength emissions. 30 MHz - 1 GHz	
5.10. General Limit - Radiated emissions. above 1 GHz	30
5.11. RF-Parameter - Radiated Band Edge compliance measurements	
5.12. Measurement uncertainties	
6. ABBREVIATIONS USED IN THIS REPORT	35
7. ACCREDITATION DETAILS OF CETECOM'S LABORATORIES AND TEST SITES	35
8. INSTRUMENTS AND ANCILLARY	
8.1. Used equiment "CTC"	
9. VERSIONS OF TEST REPORTS (CHANGE HISTORY)	
	·········· 11

Table of Annex						
Annex No.	Contents	Reference Description	Total Pages			
Annex 1	Test results	CETECOM_TR18-1-0010801T01-A1	77			
Annex 2	Test set-up photographs	CETECOM_TR18-1-0010801T01-A2	7			
Annex 3	External photographs of EUT	CETECOM_TR18-1-0010801T01-A3	9			
Annex 4	Internal photographs of EUT	1-DIN TCC MID Technical Passport Pictures v1.0	10			
	The listed attachments are an integral part of this report.					

1. Summary of test results

The test results apply exclusively to the test samples as presented in this report. The CETECOM GmbH does not assume responsibility for any conclusions and generalizations taken in conjunction with other specimens or samples of the type of the item presented to tests. Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

The presented <u>Equipment Under Test</u> (in this report, hereinafter referred as EUT) integrates a Bluetooth[©] FHSS transmitter. Other implemented wireless technologies are not considered within this test report.

Following test cases have been performed to sow compliance with applicable FCC Part 2 and Part 15 rules of the US CFR Title 47 Rules, Edition 2017.

1.1. Tests overview of US CFR (FCC) Standards

		Referen	EUT	EUT				
Test cases	Port	FCC Standard	Test limit	set-up	op. mode	Result		
	TX-Mode							
20 dB bandwidth	Antenna terminal	§15.247	At least 25 kHz or 2/3 of 20	2	1	passed		
Channel carrier frequency separation	(conducted)	(a)(1)	(a)(1) dB bandwith		2	Passed		
99% occupied bandwidth	Antenna terminal 2.1049(h) 99% Power bandwidth (conducted)		2	1	passed			
Channel use, average channel use, input band- width and synchronization between signals	I	§15.247 (a)(1)	See specification			not performed		
Channel average Occupancy time and number of channels	Antenna terminal (conducted)	§15.247 (a)(1) (iii)	0.4 seconds	2	2	passed		
Transmitter Peak output power	Antenna terminal (conducted)	§15.247 (b)(1)	< 125 mW	2	1	passed		
Transmitter frequency stability	Antenna terminal (conducted)		Operation within designated operational band			Not tested		
Transmitter Peak output power radiated	Enclosure (radiated)	§15.247 (b)(4)	< 125 mW (EIRP) for antenna with directional gain less 6 dBi			passed		

Out-Of-Band RF- emissions Band-Edge emissions	Antenna terminal (conducted)	§15.247 (d)	20 dBc and Emissions in restricted bands must meet the general field strength radiated limits	2	1+2	passed
General field strength emissions + restricted bands	Enclosure + Interconnecting cables (radiated)	§15.247 (d) §15.205 §15.209	Emissions in restricted bands must meet the general field- strength radiated limits	1	1	passed
AC-Power Lines Conducted Emissions	AC-Power lines	§15.207	FCC §15.107 class B limits §15.207 limits			Not applicable

Remark:

The current version of the Test Report CETECOM_TR18-1-0010801T01a-C1 CETECOM_TR18-1-0010801T01a dated 2018-10-24. The replaced test report	
Dial Ing Niels Iof	B.Sc. Mohamed Ahmed
DiplIng. Niels Jeß Persongible for test section	21001111011111100111111100
Responsible for test section	Responsible for test report

2. Administrative Data

2.1. Identification of the testing laboratory

Company name: CETECOM GmbH Address: Im Teelbruch 116

45219 Essen - Kettwig

Germany

Responsible for testing laboratory: Dipl.-Ing. Niels Jeß

2.2. Test location

2.2.1. Test laboratory "CTC"

Company name: see chapter 2.1. Identification of the testing laboratory

2.3. Organizational items

Responsible for test report and

project leader: B.Sc. Mohamed Ahmed

Receipt of EUT: 2018-08-20

Date(s) of test: 2018-08-20, 2018-10-15

Date of report: 2018-12-10

Version of template: 13.02

2.4. Applicant's details

Applicant's name: Robert Bosch Car Multimedia GmbH

Address: Robert-Bosch-Straße 200

31139 Hildesheim

Germany

Contact person: Mr. Thomas Dargel

2.5. Manufacturer's details

Manufacturer's name: please see Applicant's details

Address: please see Applicant's details

3. Equipment under test (EUT)

3.1. Technical data of main EUT declared by applicant

Main function	Radio with Bluetooth					
Type	1-DIN TCC MID					
Frequency range and channels	2402 MHz to 2480) MHz 区 Ch. 0 t	to Ch. 78			
(US/Canada -bands)						
Type of modulation (packet types)	■ BT 1.0 / BT 1.1					
	■ BT 2.0 / BT 2.1					
	■ BT 3.0:	3DH1/3DH3/3				
	□ BT 4.0:	DH1/DH3/DH	5 – GFSK			
Number of channels	■ 0 to 78					
(USA/Canada -bands)	□ 0 to 40					
Module	UGZZ8-7A0B					
Antenna Type	▼ Integrated					
	☐ External, no RF					
	☐ External, separa	te RF-connector				
Antenna Gain	Maximum 1.6 dBi	gain				
MAX Field strength (radiated):	94.985 dBμV/m@3	3m distance on no	minal 2441 MHz			
FCC-ID	YBN-1DINTCCM	IID0				
Installed options	■ Bluetooth©wire	eless technologies				
	■ FM-Radio (Reco					
Power supply	☐ Internal battery	Li-Io, range 3.5V	to 4.1 V			
	□ over AC/DC ada	apter: 110V/60 Hz	Z			
	☑ DC power only: 24 Volt					
Special EMI components						
EUT sample type		Pre-Production	☐ Engineering			
Firmware	☐ for normal use		■ Special version for test execution			
FCC label attached	□ yes 🗷 no					

3.2. EUT: Type, S/N etc. and short descriptions used in this test report

Short descrip- tion*)	EUT	Туре	Sample Nr.	S/N serial number	HW hardware status	SW software status
EUT A	1-DIN TCC MID (radiated sample)	Radio with Bluetooth	S03	078000001648	18/20	0401
EUT B	1-DIN TCC MID (conducted sample)	Radio with Bluetooth	S04	078000001563	18/20	0401

^{*)} EUT short description is used to simplify the identification of the EUT in this test report.

3.3. Auxiliary Equipment (AE): Type, S/N etc. and short descriptions

AE short description *)	Auxiliary Equipment	Туре	S/N serial number	HW hardware status	SW software status
AE 1	Main Cable Harness	-	-	-	-
AE 2	USB to UART cable	-	-	-	-
AE 3	Dell Notebook (ctc522013)	Latitude E6430	GB3WXY1	Intel Core I5	Windows 7 Professional (64bit)

^{*)} AE short description is used to simplify the identification of the auxiliary equipment in this test report.

3.4. EUT set-ups

EUT set-up no.*)	Combination of EUT and AE	Remarks
set. 1	EUT A + AE1 + (AE2 + AE3) AE2 and AE3 only used to set the TX Mode	Radiated measurements
set. 2	EUT B + AE1 + (AE2 + AE3) AE2 and AE3 only used to set the TX Mode	Conducted measurements

^{*)} EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

3.5. EUT operating modes

EUT operating mode no.*)	Description of operating modes	Additional information
op. 1	Bluetooth FHSS Modes* TX-Fixed Channel (Modulated)	For Bluetooth BR & EDR Modes tests are carried out with different Channels Modulation Data Rate Combinations with help of special test software. The EUT was put to Fixed Channel (Modulated) Continuous transmissions mode. (Channel Type Frequency Power Settings) Lowest Channel: 0: 2402 MHz Power: +4 dBm Middle Channel: 39: 2441 MHz Power: +4 dBm Highest Channel: 78: 2480 MHz Power: +4 dBm *Other supported wireless technologies were put in idle mode using special test software Bluetest3
op. 2	Bluetooth FHSS TX- Hopping	With help of special test software, continuous TX traffic mode could be established. - Frequency Hopping: ON -

^{*)} EUT operating mode no. is used to simplify the test report.

3.6. Test Software

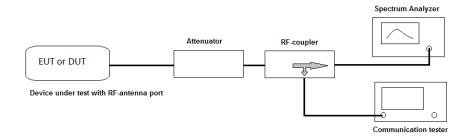
CSR BlueTest3 Software Version 2.5.8 was used. On Test Laptop ctc522013

See below the Modulation and packet types that were set in the Software.

Modulation	Packet Type	Remarks				
GFSK	DH1, DH3, DH5	(Basic Data Rate)				
π/4DQPSK	2-DH1, 2-DH3, 2-DH5	(Enhanced Data Rate)				
8DPSK	3-DH1, 3-DH3, 3-DH5	(Enhanced Data Rate)				
Packet type	Setting packet type					
DH1	Packet Type = 4, Size = 27					
2-DH1	Packet Type = 20, Size = 54					
3-DH1	Packet Type =	: 24, Size = 83				
DH3	Packet Type =	11, Size = 183				
2-DH3	Packet Type =	26, Size = 367				
3-DH3	Packet Type = 27, Size = 552					
DH5	Packet Type = 15, Size = 339					
2-DH5	Packet Type = 30, Size = 679					
3-DH5	Packet Type = 3	31, Size = 1021				

4. Description of test system set-up's

4.1. Test system set-up for conducted RF-measurements at antenna port


Specification: ANSI C63.10-2013

General Description: The EUT's RF-signal is first attenuated before it is connected to the input of the

RF-coupler. The direct output branch is connected to the spectrum – analyzer, the coupled branch to the communication tester. The specific attenuation is determined prior to the measurement within a set-up calibration. The value is taken into account by correcting the measurement readings on the spectrum-analyser either by a transducer factor (TDF) or an relative offset to reference

level.

Schematic:

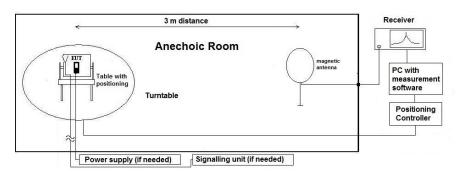
Testing method: According to ANSI 63.10-2013 for each individual test, see more details in each

chapter.

4.2. Test system set-up for radiated magnetic field measurements below 30 MHz

Specification: ANSI C63.4-2014 §5.3, §8.2.1, §8.3.1.1+§8.3.2.1, ANSI C63.10-2013 chapter

6.4 (§6.4.4.2)


General Description: Evaluating the radiated field emissions are done first by an exploratory emission measurement and a final measurement for most critical frequencies determined.

The loop antenna was placed at 1 m height above ground plane and 3 m measurement distance from set-up for investigations. Because of reduced measurement distance, correction data were applied, as stated in chapter "General

Limit - Radiated field strength emissions below 30 MHz". The tests are performed

in the semi anechoic room recognized by the regulatory commission.

Schematic:

Testing method:

Exploratory, preliminary measurement

The EUT and it's associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (step 90°, range 0°to 360°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2orthogonal axis (defined operational position of EUT), the emission spectrum was recorded. The loop antenna was moved at least to 2-perpendicular axes (antenna vector in direction of EUT and parallel to EUT) in order to maximize the emissions. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a data reduction table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A$

 $M = L_T - E_C$

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position).

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

AF = Antenna factor

 $C_L = Cable loss$

D_F= Distance correction factor

 E_C = Electrical field – corrected value

 E_R = Receiver reading

G_A= Gain of pre-amplifier (if used)

 $L_T = Limit$ M = Margin

M = Margin

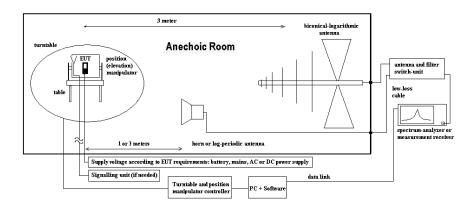
All units are dB-units, positive margin means value is below limit.

Distance correction: Reference for applied correction (extrapolating) factors due to reduced

measurement distance:

ANSI C63.10:2013, §6.4.4.2 - Equations (2) + (3) + (4)

4.3. Test system set-up for radiated electric field measurement 30 MHz to 1 GHz


Specification: ANSI C63.4-2014 chapter 8.2.3, ANSI C63.10-2013 chapter 6.5

General Description: Evaluating the field emissions have to be done first by an exploratory emissions

measurement and a final measurement for most critical frequencies. The tests are performed in a NSA-compliant semi anechoic room (SAR) recognized by the

regulatory commissions.

Schematic:

Testing method:

Formula:

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (range 0° to 360° , step 90°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and it's characteristics was recorded with an EMI-receiver, broadband antenna and software.

Measurement antenna: horizontal and vertical, heights: 1,0 m and 1,82 m as worst-case determined by an exploratory emission measurements. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

 $E_C = E_R + AF + C_L + D_F - G_A$ (1)

 $M = L_T - E_C \tag{2}$

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc. either on 10m OATS or 3m semi-anechoic room.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position). The measurement antenna height between 1 m and 4 m.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

AF = Antenna factor

 $C_L = Cable loss$

 D_F = Distance correction factor (if used)

 $E_C = Electrical field - corrected value$

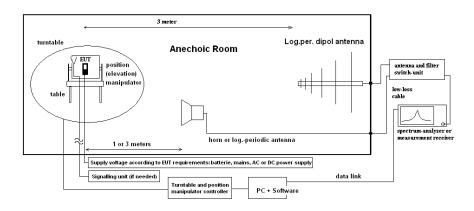
 E_R = Receiver reading

 $G_A = Gain of pre-amplifier (if used)$

 $L_T = Limit \\$

M = Margin

All units are dB-units, positive margin means value is below limit.


4.4. Test system set-up for radiated electric field measurement above 1 GHz

Specification: ANSI C63.4-2014 chapter 8.3, ANSI C63.10-2013 chapter 6.6.3.3 & 6.6.4

General Description:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 16-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360° , step 15°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and it's characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Formula:

$$E_C = E_R + AF + C_L + D_F - G_A$$
 (1)

$$M = L_T - E_C \tag{2}$$

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined. Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3-orthogonal axis and the height for EUT with large dimensions.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out. On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

 E_C = Electrical field – corrected value

 $E_R = Receiver \ reading$

M = Margin

 $L_T = Limit$

AF = Antenna factor

 $C_L = Cable loss$

 D_F = Distance correction factor (if used)

 $G_A = Gain of pre-amplifier (if used)$

All units are dB-units, positive margin means value is below limit.

5. Measurements

5.1. RF-Parameter – Output power

5.1.1.Test location and equipment (for reference numbers please see chapter 'List of test equipment')

test location	■ CETECOM Esser	n (Chapter. 2.2.1)	☐ 443 System CTC-FAR-EMI-			☐ Please see Chapter. 2.2.3			3	
test site	☐ 441 EMI SAR	□ 487 SAR NSA	□ 337	OATS	≥ 347	Radio.lab.				
receiver	□ 377 ESCS30	□ 001 ESS	□ 489	ESU 40	□ 620	ESU 26				
otherwise	□ 600 NRVD	□ 357 NRV-Z1	≥ 693	TS8997						
spectr. analys.	□ 215 FSU	□ 120 FSEM	□ 264	FSEK						
power supply	□ 456 EA 3013A	□ 457 EA 3013A	□ 459	EA 2032-50	□ 268	EA- 3050	□ 49	4 AG6632A	□ 354	NGPE 40
otherwise	□ 613 20 dB Attenuator	□ 248 6 dB Attenuator	11 1520	Power divider	-	cable OTA20	□ 53	0 10dB Atten	□ K5	Cable
Supply voltage	□ 230 V 50 Hz via p	oublic mains	☑ 24 V DC							

5.1.2. Requirements:

FCC	§15.247 (b) (1) for FHSS
ANSI	C63.10-2013 (chapt 6.101) (

5.1.3. Reference: EUT antenna characteristics:

☑ Directional Gain < 6 dBi (measured: difference between measured conducted and radiated eirp. power)

☐ Directional Gain > 6 dBi (measured / applicant's declaration) -> conducted power reduction necessary

5.1.4. EUT settings:

For FHHS-systems hopping mode was switched-off so fixed three different channels could be measured. The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

5.1.5. Measurement method:

The measurement was performed in non-hopping transmission mode with the carrier set to lowest/middle and highest channel. The power was also checked for different data rates, modulation scheme or packet types if applicable.

Set of RBW

RBW > 20 dB bandwith of the emission (for FHSS)

5.1.6. Settings on Spectrum-Analyzer:

Center Frequency	Nominal channel frequency
Span	10 MHz
Resolution Bandwidth (RBW)	3 MHz > 20dB-Bandwidth of the signal
Video Bandwidth (VBW)	3 times the resolution bandwidth = 10MHz
Sweep time	coupled
Detector	Peak, Max hold mode
Sweep Mode	Repetitive mode

5.1.7. Conducted measurement: Max. Peak Power

Maximum declared antenna ANT1 gain: 1.6 dBi

Conducted Max Peak Power Measurements [dBm]						
Set-up no.: 2 Op-Mode: 1	Low channel = 0 (2402 MHz)	Middle channel = 39 (2441 MHz)	High channel = 78 (2480 MHz)			
BR Mode-1Mbps –GFSK	2,56	1,22	-0,13			
BR Mode-1Mbps –GFSK	2,53	1,60	-0,51			
BR Mode-1Mbps –GFSK	2,57	1,22	-0,49			
EDR Mode-2Mbps-π/4DQPSK	3,54	2,84	1,31			
EDR Mode-2Mbps-π/4DQPSK	3,54	2,93	1,24			
EDR Mode-2Mbps-π/4DQPSK	3,61	2,82	1,25			
EDR Mode-3Mbps-8 DPSK	3,70	3,14	1,62			
EDR Mode-3Mbps-8 DPSK	3,75	2,99	1,50			
EDR Mode-3Mbps-8 DPSK	3,76	2,86	1,55			
Maximum Conducted value	3.76 dBi	n	2.377 mW			
Maximum antenna ANT1 gain		1.6 dBi				
Maximum e.i.r.p. value	5.36 dBm 3.436 mW					
FCC 15.247 Limit	20.97 dBm 125 mW					
Remark: Measurements results are	only valid and compli	ant with power setting: +4	dbm			

5.2. RF-Parameter – 99% Occupied Bandwidth

5.2.1.Test location and equipment (for reference numbers please see chapter 'List of test equipment')

test location	■ CETECOM Esser	(Chapter. 2.2.1)	☐ 443 System CTC-	-FAR-EMI-	☐ Please see Chapt	ter. 2.2.3
test site	☐ 441 EMI SAR	□ 487 SAR NSA	□ 337 OATS	■ 347 Radio.lab.		
receiver	□ 377 ESCS30	□ 001 ESS	□ 489 ESU 40	□ 620 ESU 26		
otherwise	□ 600 NRVD	□ 357 NRV-Z1	□ 693 TS8997			
spectr. analys.	≅ 683 FSU	□ 120 FSEM	□ 264 FSEK			
power supply	□ 456 EA 3013A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	☐ 354 NGPE 40
otherwise	≥ 613 20 dB Attenuator	□ 248 6 dB Attenuator	□ 529 Power divider	□ - cable OTA20	□ 530 10dB Atten	☐ K5 Cable
Supply voltage	□ 230 V 50 Hz via p	oublic mains	≥ 24 V DC			

5.2.2. Requirements:

FCC	■ 2.1049(h) ■ FCC 2.202 for information
Damark	The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission
Remark	When the occupied bandwidth limit is not stated in the applicable RSS or reference measurement method, the transmitted signal bandwidth shall be reported as the 99% emission bandwidth, as calculated or measured.

5.2.3. EUT settings

For FHSS-systems hopping mode was switched-off so fixed three different channels could be measured. The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

5.2.4. Measurement method

The measurement was performed with the RBW set to 10kHz. The span was set to cover the complete carrier. Three carrier frequencies (low/middle/high) were used for showing the compliance with this requirement. A 99% OBW measurement function was used to measure the bandwidth compared 99% of the highest In-Band power. The operating modes have been varied (e.g. data rate, modulation scheme, etc.). The hopping-mode is switched off.

5.2.5. Spectrum-Analyzer Settings

2.2.5. Speeti uiii muuyzei k	octings
Span	Set as to fully display the emissions and approximate 20dB below the PEAK level
Resolution Bandwidth	Set to approx. 1%3% of the emission width
(RBW)	
Video Bandwidth (VBW)	3 times the resolution bandwidth
Sweep time	Coupled and low enough to have no gaps within power envelope
Detector	Sample (if bin width: Span/no. of frequency points SA < 0.5*RBW SA otherwise Peak
	detector)
Sweep mode	Repetitive Mode, Max hold

5.2.6. 99% Occupied Bandwidth Results:

99% Occupied Bandwidth Measurements						
Temperature :+21 °C Volta			pply 24 V DC	Setup: 2	Op. Mode: 1	
	Modulation : MSK			equency Hoppin	ng OFF	
Data Rate	Channel	Frequency	99 % O	ccupied Bandw	idth	
[Kbps]	[Number]	[MHz]	[MHz]			
	1	2402		0.841346		
DH5	40	2441		0.846154		
	79	2480	0.860577			
	1	2402		1.201923		
2DH5	40	2441		1.187500		
	79	2480		1.177885		
	1	2402	2 1.197115			
3DH5	40	2441		1.182692		
	79	2480 1.173077				
Remark 1: For further details please refer → Annex 1: Test results - CETECOM_TR18_1_0010801T01a_A1						

5.2.7. 99% Occupied Bandwidth Verdict: For Information only

5.3. RF-Parameter - 20 dB Bandwidth

5.3.1.Test location and equipment (for reference numbers please see chapter 'List of test equipment')

test location	■ CETECOM Esser	(Chapter. 2.2.1)	☐ 443 System CTC	-FAR-EMI-	☐ Please see Chapt	ter. 2.2.3
test site	☐ 441 EMI SAR	□ 487 SAR NSA	□ 337 OATS	■ 347 Radio.lab.		
receiver	□ 377 ESCS30	□ 001 ESS	□ 489 ESU 40	□ 620 ESU 26		
otherwise	□ 600 NRVD	□ 357 NRV-Z1	区 693 TS8997			
spectr. analys.	■ 584 FSU 26	□ 120 FSEM	□ 264 FSEK			
power supply	□ 456 EA 3013A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	☐ 354 NGPE 40
otherwise	□ 613 20 dB Attenuator	□ 248 6 dB Attenuator	□ 529 Power divider	□ - cable OTA20	□ 530 10dB Atten	☐ K5 Cable
Supply voltage	□ 230 V 50 Hz via p	oublic mains	≥ 24 V DC			

5.3.2. Requirements:

FCC	⊠ §15.247 (a) (1)
Remark	(1) <u>Frequency hopping systems</u> shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

5.3.3. EUT settings

For FHSS-systems hopping mode was switched-off so fixed three different channels could be measured. The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

5.3.4. Measurement method

The measurement was performed with the RBW set to 10kHz. The span was set to cover the complete carrier. Three carrier frequencies (low/middle/high) were used for showing the compliance with this requirement. A DELTA Marker method was set to measure the bandwidth compared to the highest In-Band power. The operating modes have been varied (e.g. data rate, modulation scheme, etc.). The hopping-mode is switched off.

5.3.5. Spectrum-Analyzer Settings

Span	Set as to fully display the emissions and approximate 20dB below the PEAK level
Resolution Bandwidth	Set to approx. 1%3% of the emission width
(RBW)	
Video Bandwidth (VBW)	3 times the resolution bandwidth
Sweep time	Coupled and low enough to have no gaps within power envelope
Detector	Sample (if bin width: Span/no. of frequency points SA < 0.5*RBW SA otherwise Peak
	detector)
Sweep mode	Repetitive Mode, Max hold

5.3.6. Results:

Measurement value was recorded on CH 0, 39 and 78= 2441 MHz for worst case modulation type

DH5 packet type (GFSK-Modulation)

Set-up no.: 2 Op. mode: 1	20 dB Bandwidth [MHz]				
T _{Nom} = 21°C V _{Nom} = 3.7 V	Low channel = 0				
Maximum Value	1.142858	1.142858	1.142858		

Remark: see diagrams in separate annex 1

2DH5 Packet type (Pi/4-QPSK Modulation)

Set-up no.: 2	20 dB Bandwidth				
Op. mode: 1	[MHz]				
$T_{\text{Nom}} = 21^{\circ}\text{C}$	Low channel = 0	Middle channel =39	High channel = 78		
$V_{Nom} = 3.7 \text{ V}$	(2402 MHz) (2441 MHz) (2480 MHz)				
Maximum Value	1.428572	1.415585	1.415585		

Remark: see diagrams in separate annex 1

3DH5 packet type (8DPSK Modulation)

Set-up no.: 2	20 dB Bandwidth									
Op. mode: 1	[MHz]									
$T_{\text{Nom}} = 21^{\circ}\text{C}$	Low channel = 0	Middle channel =39	High channel = 78							
$V_{Nom} = 3.7 \text{ V}$	(2402 MHz)	(2441 MHz)	(2480 MHz)							
Maximum Value	1.415585	1.415585	1.415585							

Remark: see diagrams in separate annex 1

5.3.7. Verdict: pass

5.4. RF-Parameter - Channel Carrier Frequency Separation for FHSS-systems

5.4.1.Test location and equipment (for reference numbers please see chapter 'List of test equipment')

test location	■ CETECOM Esser	(Chapter. 2.2.1)	☐ 443 System CTC	-FAR-EMI-	☐ Please see Chapter. 2.2.3			
test site	☐ 441 EMI SAR	□ 487 SAR NSA	□ 337 OATS	■ 347 Radio.lab.				
receiver	□ 377 ESCS30	□ 001 ESS	□ 489 ESU 40	□ 620 ESU 26				
otherwise	□ 600 NRVD	□ 357 NRV-Z1	□ 693 TS8997					
spectr. analys.	■ 714 FSW 67	□ 120 FSEM	□ 264 FSEK					
power supply	□ 456 EA 3013A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	☐ 494 AG6632A	☐ 354 NGPE 40		
otherwise	□ 613 20 dB Attenuator	□ 248 6 dB Attenuator	□ 529 Power divider	□ - cable OTA20	≥ 530 10dB Atten	■ K5 Cable		
Supply voltage	□ 230 V 50 Hz via p	oublic mains	≥ 24 V DC	•	•			

5.4.2. Requirements:

FCC	⊠ §15.247 (a) (1)
Remark	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals

5.4.3. EUT settings

For FHSS-systems hopping mode was switched-on so that adjacent Frequency Hopping channels could be measured. The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

5.4.4. Measurement method

The measurement to prove this requirement was performed with a low RBW of 100kHz, peak detector and trace Hold-Max function in order to resolve each frequency carrier separately.

The span of the frequency analyzer was set to cover the carrier investigated as well as its neighbour channels. A frequency DELTA Marker method was set to measure the frequency separation between the channels.

5.4.5. Measurement Results

Set-up no.: Op. mode:	2 2	Channel separation Hopping ON						
$T_{Nom} = V_{Nom} =$	21°C 3.7 V	Measured around middle channel Channel Separation (2441 MHz) (MHz)						
DH5		CH38/CH39/CH40	1.003 and 1.003					
2DH5		CH38/CH39/CH40	1.003 and 1.000					
3DH5		CH38/CH39/CH40	1.009 and 0.997					
Applicants de	clared value	1 MHz according BT-core spec.						

Remark: see diagrams enclosed in annex 1 for different modulations

5.5. RF-Parameter – Number of Hopping Channels for FHSS-systems

5.5.1.Test location and equipment (for reference numbers please see chapter 'List of test equipment')

test location	■ CETECOM Esser	(Chapter. 2.2.1)	☐ 443 System CTC	-FAR-EMI-	☐ Please see Chapter. 2.2.3			
test site	☐ 441 EMI SAR	□ 487 SAR NSA	□ 337 OATS	■ 347 Radio.lab.				
receiver	□ 377 ESCS30	□ 001 ESS	□ 489 ESU 40	□ 620 ESU 26				
otherwise	□ 600 NRVD	□ 357 NRV-Z1	№ 693 TS8997					
spectr. analys.	□ 683 FSU	□ 120 FSEM	□ 264 FSEK	≥ 714 FSW				
power supply	□ 456 EA 3013A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	☐ 354 NGPE 40		
otherwise	□ 613 20 dB Attenuator	□ 248 6 dB Attenuator	□ 529 Power divider	□ - cable OTA20	≥ 530 10dB Atten	☑ Cable RTK161		
Supply voltage	□ 230 V 50 Hz via p	oublic mains	≥ 24 V DC					

5.5.2. Requirements:

FCC	⊠ §15.247 (a) (1) (iii)
Remark	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

5.5.3. EUT settings

For FHSS-systems hopping mode was switched-on so that adjacent Frequency Hopping channels could be measured. The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

5.5.4. Measurement method

The measurement to prove this requirement was performed with a low RBW of 100kHz, peak detector and trace Hold-Max function in order to resolve each frequency carrier separately.

The span of the frequency analyzer was set to cover the Hopping channels in two parts namely 2.4 GHz Lower spectrum and 2.4 GHz Upper spectrum. On extreme right & left channels Markers were set to indicate the corresponding channel frequency.

5.5.5. Number of Hopping Channels Results:

Number of Hopping Channels Measurements								
Temperature: +21 °C	Setup: 2	Op. Mode: 2						
Modulation	Frequency Hopping ON							
Data	Rate	Total Channels 2.4 GHz Spectrum						
[KI	ops]	[Number]						
Di	H5	79						
Minimum Number of Hopping	15							
Remark 1: For further details please refer → Annex 1								

5.5.6. Minimum Number of Hopping Channels Verdict: Pass

5.6. RF-Parameter – Average Time of Occupancy for FHSS systems

5.6.1.Test location and equipment (for reference numbers please see chapter 'List of test equipment')

test location	▼ CETECOM Esser	Essen (Chapter. 2.2.1)			☐ 443 System CTC-FAR-EMI-			☐ Please see Chapter. 2.2.3			
test site	☐ 441 EMI SAR	□ 487 SA	AR NSA	□ 337	OATS	≥ 347	Radio.lab.				
receiver	□ 377 ESCS30	□ 001 ES	□ 001 ESS		FSU 26	≥ 714	FSW 67				
spectr. analys.	□ 489 ESU	□ 120 FS	□ 120 FSEM		FSEK						
power supply	☐ 456 EA 3013A	□ 457 E	□ 457 EA 3013A		EA 2032-50	□ 268	EA- 3050	□ 494	AG6632A	≥ 354	NGPE 40
otherwise	≤ 530 10dB Attenua	tor 🗷 cable K		[4		☐ Dire	ctional Couple	er 1539R-	-10		
Supply voltage	≥ 24 V DC										

5.6.2. Requirements:

FCC	⊠ §15.247 (a) (1) (iii)
Remark	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

5.6.3. EUT settings

For FHSS-systems hopping mode was switched-on so that occupancy time of Frequency Hopping channels could be measured. The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

5.6.4. Measurement method:

The measurement was performed with a spectrum analyzer set to ZERO span. The device was set to work within the defined specification with frequency Hopping Mode ON. The spectrum-analyzer was set the MAX-Hold positive peak detector mode. The sweep time set as long as necessary to capture the full signal burst per hopping channel. The burst on-period is captured by setting appropriate markers in the rising and falling edges.

5.6.5. Average occupancy time calculations:

Formula for calculating the dwell time (pseudo-hopping sequence over all channels assumed):

Average Dwell Time =
$$Timeslot\ length \cdot \frac{Hop\ rate}{number\ of\ hopping\ channels} \cdot time\ period$$

The EUT employs Proprietary 2.4 GHz RF Transceiver Frequency Hopping system with total 79 channels. The maximum staying time of 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. = 0.4 seconds X 79 = 31.6 Seconds.

That means the average time of occupancy on any channel shall not be greater than 0.4 seconds within 31.6 seconds.

5.6.6. Average occupancy time Results:

Average Occupancy Time Measurements									
Temperature :+21 °C Volta					ipply 24 V DC	Op. Mode: 2			
Modulation :						Fre	equency Hoppin	g ON	
Data Rate	Channel		Transmission Time		Number of Transmissions n 31.6 Seconds	Average Occupancy Time in 31.6 Seconds			
[Kbps]	[Number]	[mil	liseconds]		[Number]	[milliseconds]			
DH5		0	.41410		640	265.024			
2-DH5	39		1.6681		213		355.305		
3-DH5		,	2.9160		128		373.248		
Average Occupancy Time Limits- FCC 15.247						≤ 400 milliseconds			
	For further details please refer → Annex 1:								

5.6.7. Average Occupancy Time Verdict: Pass

5.7. RF-Parameter – Out-of-Band 20 dBc Conducted Emissions for FHSS systems

5.7.1.Test location and equipment (for reference numbers please see chapter 'List of test equipment')

test location	☑ CETECOM Essen (Chapter. 2.2.1)			☐ 443 System CTC-FAR-EMI-				☐ Please see Chapter. 2.2.3			
test site	☐ 441 EMI SAR	□ 487 SAR NSA		□ 337	OATS	≥ 347	Radio.lab.				
receiver	□ 377 ESCS30	□ 001 ESS		□ 683	FSU 26	≥ 714 FSW67					
spectr. analys.	□ 489 ESU	□ 120 FS	□ 120 FSEM		FSEK						
power supply	□ 456 EA 3013A	□ 457 E	□ 457 EA 3013A		EA 2032-50	□ 268	EA- 3050	□ 494	AG6632A	≥ 354	NGPE 40
otherwise	■ 530 10dB Attenua	OdB Attenuator 🗵 RTK16		61		☐ Directional Coupler 1539R-10					
Supply voltage	≥ 24 V DC		•							·	

5.7.2. Requirements:

FCC	⊠ §15.247 (d)
Remark	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating. the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. based on either an RF conducted or a radiated measurement. provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval. as permitted under FCC15.247 paragraph (b)(3) / RSS-247section 5.4(d). the attenuation required shall be 30 dB instead of 20 dB

5.7.3. EUT settings

Fixed Channel Mode:

For FHSS-systems Hopping mode was switched-off so fixed three different channels could be measured. The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked. e.g. data rates which EUT can operate.

Hopping Mode:

For FHSS-systems Hopping mode was switched- ON so emissions from hopping channels could be measured. The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked. e.g. data rates which EUT can operate.

5.7.4. Measurement Method:

The measurements were performed with the RBW set to 100kHz & maximum carrier level was indicated with MAX-Hold positive peak detector using markers. Then a frequency line was set 20 dB below this measured maximum carrier level.

Then using RBW 100 kHz & spectrum analyzer span from 150 kHz to 25 GHz in three steps spurious emissions were measured with MAX-Hold positive peak detector.

The sweep time set as long as necessary to capture the full signal burst per hopping channel. The burst on-period is captured by setting appropriate markers in the rising and falling edges.

5.7.5. Results: Hopping mode off

Set-up no.: 2 Op-Mode: 1	RF-Conducted test: 20 dBc spurious emissions					
	Modulation 8-DPSK Low channel =0 (2402 MHz) Level Reference (In-Band) = 2.02 dBm Limit = -17.98 dBm		Modulation Pi/4-QPSK Middle channel = 39 (2441 MHz)		Modulation GFSK High channel = 78 (2480 MHz)	
Frequency Range			Level Reference (In-Band) = 1.90 dBm Limit= -18.1 dBm		Level Reference (In-Band)= 0.03 dBm Limit= -19.97 dBm	
	Frequency [MHz]	Value [dBc]	Frequency [MHz]	Value [dBc]	Frequency [MHz]	Value [dBc]
150kHz to 30 MHz	0.129326	> 40	1.788765	> 40	1.266390	> 40
30MHz to 2.8 GHz	308.9390	> 40	1 967.920	> 40	94.81800	> 40
2.8 to 25 GHz	24 613.72	> 40	22 331.56	> 40	24 582.64	> 40
Band-Edge (no hopping)		> 40		-		> 40

Remark: see diagrams in separate document A1

The limit on the diagrams is 20dB under the reference level measured In-Band for each channel

5.7.6. Results: Hopping mode on

Set-up no.: 2 Op-Mode: 2	RF-Conducted test: 20 dBc spurious emissions						
	Modulation	GFSK	Modulation	Pi/4-QPSK	Modulation 8-DPSK		
	Level Refe	erence	Level Re	eference	Level Re	eference	
Frequency	(In-Band) = 1	.36 dBm	(In-Band) =	= 2.34 dBm	(In-Band)=	2.26 dBm	
Range	Limit = -18.6	40 dBm	Limit= -17.66 dBm		Limit= -17.74 dBm		
	Frequency	Value	Frequency	Value	Frequency	Value	
	[MHz]	[dBc]	[MHz]	[dBc]	[MHz]	[dBc]	
150kHz to 30 MHz	0.105	> 40	4.4890	> 40	2.8490	> 40	
30MHz to 2.8	1849.50	> 40	2236.90	> 40	1849.50	> 40	
GHz	10.7.00	, .0	22000	, .0	10.7.00	, .0	
2.8 to 25 GHz	4829.0	> 40	4851.0	> 40	24612.0	> 40	
Band-Edge (hopping)		> 40		> 40		> 40	

Remark: see diagrams in separate document A1

The limit on the diagrams is 20dB under the reference level measured In-Band for each channel

5.7.7. Out-of-Band 20 dBc Conducted Emissions Verdict: Pass

5.8. General Limit - Radiated field strength emissions below 30 MHz

5.8.1. Test location and equipment

test location	☑ CETECOM Esser	n (Chapter. 2.2.1)	☐ Please see Chapte	er. 2.2.2	☐ Please see Chapt	ter. 2.2.3
test site	■ 441 EMI SAR	□ 487 SAR NSA	☐ 347 Radio.lab.			
receiver	□ 377 ESCS30	■ 001 ESS				
spectr. analys.	□ 584 FSU	□ 120 FSEM	□ 264 FSEK			
antenna	□ 574 BTA-L	☐ 133 EMCO3115	□ 302 BBHA9170	□ 289 CBL 6141	■ 030 HFH-Z2	□ 477 GPS
signaling	□ 392 MT8820A	□ 371 CBT32	□ 547 CMU	□ 594 CMW		
otherwise	☐ 400 FTC40x15E	□ 401 FTC40x15E	□ 110 USB LWL	☐ 482 Filter Matrix	☐ 378 RadiSense	
DC power	☐ 671 EA-3013S	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	☐ 498 NGPE 40
Supply voltage	□ 230 V 50 Hz via j	oublic mains	≥ 24 V DC			•

5.8.2. Requirements

FCC	■ Part 15. Subpart C. §15.205 & §15.209			■ Part 15.247 (d)
ANSI	C63.10-2013			
Frequency [MHz]	Field strength limit [μV/m] [dBμV/m]		Distance [m]	Remarks
0.009 - 0.490	2400/f (kHz)	67.6 – 20Log(f) (kHz)	300	Correction factor used due to measurement distance of 3 m
0.490 – 1.705	24000/f (kHz)	87.6 – 20Log(f) (kHz)	30	Correction factor used due to measurement distance of 3 m
1.705 – 30	30	29.5	30	Correction factor used due to measurement distance of 3 m

5.8.3. Test condition and test set-up

cioici rest coma	mon and test set-t	·P			
Signal link to test s	ystem (if used):	□ air link □ cable connection □ none			
EUT-grounding		■ none □ with power supply □ additional connection			
Equipment set up		■ table top □ floor standing			
Climatic conditions	3	Temperature: (22±3°C) Rel. humidity: (40±20)%			
		$\blacksquare 9 - 150 \text{ kHz}$ RBW/VBW = 200 Hz Scan step = 80 Hz			
	Scan data	\blacksquare 150 kHz - 30 MHz RBW/VBW = 9 kHz Scan step = 4 kHz			
		□ other:			
EMI-Receiver or	Scan-Mode	☑ 6 dB EMI-Receiver Mode □ 3dB Spectrum analyser Mode			
Analyzer Settings	Detector	Peak (pre-measurement) and Quasi-PK/Average (final if applicable)			
	Mode:	Repetitive-Scan. max-hold			
	Sweep-Time	Coupled – calibrated display if continuous signal otherwise adapted to EUT's individual			
		transmission duty-cycle			
General measureme	nt procedures	Please see chapter "Test system set-up radiated magnetic field measurements below 30 MHz"			

5.8.4. Radiated Field Strength Emissions – 9 kHz to 30 MHz Results

Radiated Field Strength Emissions – 9 kHz to 30 MHz								
Temperat	Temperature :+21 °C Technology: Bluetooth FHSS Modes TX-Fixed Channel (Modulate					ulated)		
Diagram No.		Test Settings FHSS Mode Modulation Data Rate Test Channel		OP- mode	Used detector			Verdict
(Remark 1)	FHSS N			no.	PK	AV	QP	Verdict
2.01	BR Mode GFSK 1 Mbps Highest Channel 78: 2480 MHz			1	×			Pass
2.02	EDR Mode π/4DQPSK 2 Mbps Lowest Channel 0: 2402 MHz			1	×			Pass
2.03	EDR Mode	8DPSK 3 Mbps Middle Channel 39: 2441 MHz	1	1	×			Pass

Remark 1: For further details please refer → Annex 1: Test results - CETECOM_TR18_1_0080101T01a_A1

Remark 2: Measurements results are only valid and compliant with power setting: +4 dbm

5.8.5. Correction factors due to reduced meas. distance (f< 30 MHz)

The used correction factors when the measurement distance is reduced compared to regulatory measurement distance, are calculated according Extrapolation formulas valid for EUT's with maximum dimension of 0.625xLambda. Formula 2+3+4 as presented in ANSI C63.10. Chapter 6.4.4 are used for the calculations of proper extrapolation factors.

Frequency -Range	f [kHz/MHz]	Lambda [m]	Far-Field Point [m]	Distance Limit accord. 15.209 [m]	
	9,00E+03	33333,33	5305,17		
	1,00E+04	30000,00	4774,65		
	2.00E+04	15000,00	2387,33		
	3,00E+04	10000,00	1591,55		
	4.00E+04	7500.00	1193,66		
	5.00E+04	6000.00	954,93		
	6,00E+04	5000,00	795,78		
	7,00E+04	4285,71	682,09	300	
	8,00E+04	3750,00	596,83	300	
	9,00E+04	3333,33	530, 52		
kHz	1,00E+05	3000,00	477, 47		
	1,25E+05	2400,00	381,97		
	2,00E+05	1500,00	238,73		
	3,00E+05	1000,00	159, 16		
	4,00E+05	750,00	119,37		
	4,90E+05 5,00E+05	612,24 600,00	97,44		
	5,00E+05 6,00E+05	500,00	95,49 79.58		
	7.00E+05	428.57	68,21		
	8,00E+05	375,00	59.68		
		53,05			
	1,00	300,00	47,75		
	1,59	188,50	30,00		
	2,00	150,00	23,87		
	3,00	100,00	15,92		
	4,00	75,00	11,94		
	5,00	60,00	9,55		
	6,00	50,00	7,96		
	7,00 8,00	42,86 37.50	6,82 5,97		
	9.00	33.33	5,31		
	10.00	30.00	4.77	30	
	10,60	28.30	4,50		
	11,00	27,27	4.34		
MHz	12,00	25,00	3,98		
	13,56	22, 12	3,52		
	15,00	20,00	3, 18		
	15, 92	18,85	3,00		
	17,00	17,65	2,81		
	18,00	16,67	2,65		
	20,00	15,00	2,39		
	21,00	14, 29	2,27		
	23,00	13,04	2,08		
	25,00 27,00	12,00 11,11	1,91		
		11.11	1,77	1	
	29,00	10,34	1,65		

1st Condition	2'te Condition	Distance Correction
(dmeas<	(Limit distance	accord. Formula
D _{near-field})	bigger d _{near-field})	
fullfilled	not fullfilled	-80.00
fullfilled	not fullfilled	-80,00
fullfilled	fullfilled	-78,02
fullfilled	fullfilled	-74, 49
fullfilled	fullfilled	-72,00
fullfilled	fullfilled	-70,23
fullfilled	not fullfilled	-40,00
fullfilled	fullfilled	-38,02
fullfilled	fullfilled	-34, 49
fullfilled	fullfilled	-32,00
fullfilled	fullfilled	-30,06
fullfilled	fullfilled	-28, 47
fullfilled	fullfilled	-27, 13
fullfilled	fullfilled	-25, 97
fullfilled	fullfilled	-24, 95
fullfilled	fullfilled	-24,04
fullfilled	fullfilled	-23,53
fullfilled	fullfilled	-23,21
fullfilled	fullfilled	-22, 45
fullfilled	fullfilled	-21,39
fullfilled	fullfilled	-20,51
fullfilled	fullfilled	-20,00
not fullfilled	fullfilled	-20,00
not fullfilled	fullfilled	-20,00
not fullfilled	fullfilled	-20,00
not fullfilled	fullfilled	-20,00
not fullfilled	fullfilled	-20,00
not fullfilled	fullfilled	-20,00
not fullfilled	fullfilled	-20,00
not fullfilled	fullfilled	-20,00
not fullfilled	fullfilled	-20,00

5.9. General Limit - Radiated field strength emissions. 30 MHz - 1 GHz

5.9.1. Test location and equipment

test location	■ CETECOM Esser	n (Chapter. 2.2.1)	☐ Please see Chapte	er. 2.2.2	☐ Please see Chapt	er. 2.2.3
test site		¥ 487 SAR NSA				
receiver	□ 377 ESCS30	≥ 001 ESS	□ 489 ESU 40	□ 620 ESU 26		
spectr. analys.	□ 584 FSU	□ 120 FSEM	□ 264 FSEK			
antenna	区 574 BTA-L	☐ 133 EMCO3115	□ 302 BBHA9170	□ 289 CBL 6141	□ 030 HFH-Z2	□ 477 GPS
signaling	□ 392 MT8820A	□ 371 CBT32	□ 547 CMU	□ 594 CMW		
otherwise	☐ 400 FTC40x15E	□ 401 FTC40x15E	□ 110 USB LWL	■ 482 Filter Matrix		
DC power	☐ 671 EA-3013S	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	☐ 498 NGPE
Supply voltage ☐ 230 V 50 Hz via public mains			≥ 24 V DC)	•	•	

5.9.2. Requirements/Limits

3.2. Requirements/Ellints						
	FCC	☐ Part 15 Subpart B. §15.109. class B ☐ Part 15 Subpart C. §15.209 @ frequencies defined in §15.205 ☐ Part 15.247 (d)				
	ANSI	☐ C63.4-2014 ☑ C63.10-2013				
	Frequency [MHz]	Radiated emissions limits. 3 meters				
	rrequency [WHZ]	QUASI Peak [μV/m]	QUASI-Peak [dBµV/m]			
Limit	30 - 88	100	40.0			
Lillit	88 - 216	150	43.5			
	216 - 960	200	46.0			
	above 960	500	54.0			

5.9.3. Restricted bands of operation (FCC §15.205)

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.20725-4.20775	37.5-38.25	1645.5-1646.5	9.3-9.5
6.215-6.218	73-74.6	1660-1710	10.6-12.7
6.26775-6.26825	74.8-75.2	1718.8-1722.2	13.25-13.4
6.31175-6.31225	108-121.94	2200-2300	14.47-14.5
8.291-8.294	123-138	2310-2390	15.35-16.2
8.362-8.366	149.9-150.05	2483.5-2500	17.7-21.4
8.37625-8.38675	156.52475-156.52525	2690-2900	22.01-23.12
8.41425-8.41475	156.7-156.9	3260-3267	23.6-24.0
12.29-12.293	162.0125-167.17	3332-3339	31.2-31.8
12.51975-12.52025	167.72-173.2	3345.8-3358	36.43-36.5
12.57675-12.57725	240-285	3600-4400	
13.36-13.41	322-335.4		

5.9.4. Test condition and measurement test set-up

	is it lest condition and measurement test set up					
Signal link to test sy	stem (if used):	☐ air link	☐ cable connection	none		
EUT-grounding		□ none	☐ with power supply	☐ additional connection		
Equipment set up		table top 0.8 ✓	3m height	☐ floor standing		
Climatic conditions		Temperature: ((22±3°C)	Rel. humidity: (40±20)%		
EMI-Receiver	Scan frequency range:	≥ 30 − 1000 M	IHz □ other:			
(Analyzer) Settings	Scan-Mode	🗷 6 dB EMI-R	eceiver Mode 🗆 3 dB sp	pectrum analyser mode		
	Detector	Peak / Quasi-pe	eak			
	RBW/VBW	100 kHz/300 kl	Hz			
	Mode:	Repetitive-Sca	n. max-hold			
	Scan step	80 kHz				
	Sweep-Time	Coupled – cali	brated display if continuo	ous tx-signal otherwise adapted to EUT's individual		
		duty-cycle				
General measureme	ent procedures	Please see chapter "Test system set-up for electric field measurement in the range 30 MHz				
		to 1 GHz"				

5.9.5. Radiated Field Strength Emissions – 30 MHz to 1 GHz Results

Radiated Field Strength Emissions – 30 MHz to 1 GHz										
Temperat	ure: +21 °C	Technology: Bluetooth FHSS Modes		TX-Fix	ed Cha	nnel (Mod	ulated)		
Diagram No.		Test Settings	Set- up	OP- mode	Used detector			Verdict		
(Remark 1)	FHSS N	Mode Modulation Data Rate Test Channel	no.	no.	PK	AV	QP	Veralet		
3.01	BR Mode 0	GFSK 1 Mbps Highest Channel 78: 2480 MHz	1	1	×		X	Pass		
3.02	EDR Mode π	/4DQPSK 2 Mbps Lowest Channel 0: 2402 MHz	1	1	×		×	Pass		
3.03	EDR Mode	8DPSK 3 Mbps Middle Channel 39: 2441 MHz	1	1	×		×	Pass		

Remark 1: For further details please refer \rightarrow Annex 1: Test results - CETECOM_TR18_1_0080101T01a_A1

Remark 2: Measurements results are only valid and compliant with power setting: +4 dbm

5.10. General Limit - Radiated emissions. above 1 GHz

5.10.1. Test location and equipment FAR

		1				
test site	□441 EMI SAR	□ 348 EMI cond.	■ 443 EMI FAR	☐ 347 Radio.lab.	☐ 337 OATS	
spectr. analys.	□584 FSU	□ 120 FSEM	□ 264 FSEK	■ 489 ESU 40	≥ 714 FSW67	
antenna meas	□574 BTA-L	□ 289 CBL 6141	□ 608 HL 562	■ 549 HL025	■ 302 BBHA9170	□ 477 GPS
antenna meas	□123 HUF-Z2	□ 132 HUF-Z3	□ 030 HFH-Z2	区 376 BBHA912	0E	
antenna subst	□071 HUF-Z2	□ 020 EMCO3115	□ 063 LP 3146	□ 303 BBHA917		
multimeter	□341 Fluke 112					
signaling	□392 MT8820A	□ 371 CBT32	□ 547 CMU	□ 594 CMW		
DCpower	□611 E3632A	□ 087 EA3013	□ 354 NGPE 40	□ 349 car battery	□ 350 Car battery	
Supply voltage	□ 230 V 50 Hz via	public mains	■ 24 V DC)			

5.10.2. Requirements/Limits (CLASS B equipment)

10.2. Requirements/Ellints (CEASS B equipment)										
FCC	☐ Part 15 Subpart B. §15.10 ☑ Part 15 Subpart C. §15.20 ☑ Part 15.247 (d)	9 class B 9 for frequencies defined in §1:	5.205							
ANSI	☐ C63.4-2014 ☑ C63.10-2013									
		Limits	S							
Frequency [MHz]	AV [μV/m]	AV [dBμV/m]	Peak [μV/m]	Peak [dBμV/m] or [dBm/MHz]						
RSS-Gen Issue 4. §8.10 - Table 6	500	54.0	5000	74.0 dBµV/m						

5.10.3. Test condition and measurement test set-up

C.10.C. 1 C.	10.5. Test condition and measurement test set-up									
Signal link	Signal link to test system (if used):		☐ cable connection	□ none						
EUT-groun	ding	≥ none	☐ with power supply	☐ additional connection						
Equipment	set up	■ table top 1.5	5m height	☐ floor standing						
Climatic co	nditions	Temperature: ((22±3°C)	Rel. humidity: (40±20)%						
Spectrum-	– 40 GHz □ other:									
Analyzer	Scan-Mode	■ 6 dB EMI-R	Receiver Mode 🗆 3 dB S	Spectrum analyser Mode						
settings	Detector	Peak and Average								
	RBW/VBW	1 MHz / 3 MHz								
	Mode:	Repetitive-Scan. max-hold								
	Scan step	400 kHz								
	Sweep-Time	Coupled – calibrated display if CW signal otherwise adapted to EUT's individual duty-cycle								
General mea	asurement procedures	Please see chapter "Test system set-up for radiated electric field measurements above 1 GHz"								

5.10.4. Radiated Field Strength Emissions – 1 GHz to 18 GHz Results

	Radiated Field Strength Emissions – 1 GHz to 18 GHz										
Temperature :+21 °C Technology: Bluetooth FHSS Modes TX-Fixed Channel											
Diagram No.		Test Settings	Set- up	OP- mode	Used	detec	tor	Verdict			
(Remark 1)	EUCC Model Modulation Data Data Test Channel					AV	QP	, craice			
4.01a	BR Mode 0	GFSK 1 Mbps Highest Channel 78: 2480 MHz	1	1	×	×		Pass			
4.02a	EDR Mode π	/4DQPSK 2 Mbps Lowest Channel 0: 2402 MHz	1	1	×	×		Pass			
4.03a	EDR Mode 8DPSK 3 Mbps Middle Channel 39: 2441 MHz										
		ails please refer → Annex 1: Test results - CET results are only valid and compliant with power				101T	01a_ <i>A</i>	A 1			

5.10.5. Radiated Field Strength Emissions – 18 GHz to 25 GHz Results

Radiated Field Strength Emissions – 18 GHz to 25 GHz												
Temperat	ure :+21 °C	Technology: Bluetooth FHSS Modes		TX-Fix	ked Cha	nnel (Mod	Verdict				
Diagram No.		Test Settings	Set- up	OP- mode	detect	tor	Verdict					
(Remark 1)	FHSS N	Mode Modulation Data Rate Test Channel	no.	no.	PK	AV	QP					
4.01b	BR Mode 0	GFSK 1 Mbps Highest Channel 78: 2480 MHz	1	1	×	×		Pass				
4.02b	EDR Mode π	/4DQPSK 2 Mbps Lowest Channel 0: 2402 MHz	1	1	×	×		Pass				
4.03b	EDR Mode	8DPSK 3 Mbps Middle Channel 39: 2441 MHz	1	1	×	×		Pass				

Remark 1: For further details please refer → Annex 1: Test results - CETECOM_TR18-1-0010801T01a-A1

Remark 2: Measurements results are only valid and compliant with power setting: +4 dbm

5.11. RF-Parameter - Radiated Band Edge compliance measurements

5.11.1. Test location and equipment FAR

test site	□441 EMI SAR	□ 348 EMI cond.	■ 443 EMI FAR	□ 347 Radio.lab. □ 337 OATS					
spectr. analys.	□584 FSU	□ 120 FSEM	□ 264 FSEK	■ 489 ESU 40 □					
antenna meas	□574 BTA-L	□ 289 CBL 6141	□ 608 HL 562	■ 549 HL025 ■ 302 BBHA9170	□ 477 GPS				
antenna meas	□123 HUF-Z2	□ 132 HUF-Z3	□ 030 HFH-Z2	■ 376 BBHA9120E					
antenna subst	□071 HUF-Z2	□ 020 EMCO3115	□ 063 LP 3146	□ 303 BBHA9170					
multimeter	□341 Fluke 112								
signaling	□392 MT8820A	□ 371 CBT32	□ 547 CMU	□ 594 CMW					
DCpower	□611 E3632A	□ 087 EA3013	□ 354 NGPE 40	□ 349 carbattery □ 350 Car battery					
sSupply voltage	□ 230 V 50 Hz via	public mains	ĭ 24 V DC						

5.11.2. Requirements/Limits

FCC	☐ Part 15 Subpart B. §15.109 class B ☑ Part 15 subpart C. §15.209 @ frequencies defined in §15.205 ☑ Part 15.247 (d)
ANSI	□ C63.4-2009 □ C63.4-2014 □ C63.10-2009 🗷 C63.10-2013. Chapter 6.10.6

5.11.3. Test condition and measurement test set-up

	The Test condition and measurement test set up									
Signal ink t	to test system (if used):	☐ air link	☐ cable connection	☑ none						
EUT-groun	ding	⋈ none	☐ with power supply	☐ additional connection						
Equipment	set up	table top 1.5	5m height	☐ floor standing						
Climatic co	onditions	Temperature: ((22±3°C)	Rel. humidity: (40±20)%						
Spectrum-	Scan frequency range:	□ 1 – 18 GHz	□ 18 – 25 GHz □ 18 -	- 40 GHz						
Analyzer	Scan-Mode	☐ 6 dB EMI-Receiver Mode 🗷 3 dB Spectrum analyser Mode								
settings	Detector	Peak and Average								
	RBW/VBW	Left band-edge: 100kHz/300kHz								
		Right band-edge: 1 MHz / 3 MHz								
	Mode:	Repetitive-Scan. max-hold								
	Scan step	40kHz or 400	kHz							
	Sweep-Time			nal otherwise adapted to EUT's individual duty-cycle						
General mea	asurement procedures	Please see chapter "Test system set-up for radiated electric field measurements above 1 GHz"								
		for general measurements procedures in anechoic chamber.								

5.11.4. Measurement Method

For <u>uncritical results</u> where a measurement resolution bandwidth of 1MHz can clearly show the compliance without influencing the results. a field strength measurement was performed to show compliance.

For <u>critical results</u> a Marker-Delta marker method was used for showing compliance to restricted bands. The method is according ANSI C63.10:2013. Chapter 6.10.6 "Marker-Delta method".. The method consists of three independent steps:

- **1. Step:** Prior to the measurement the fundamental radiated In-Band field strength was performed. The determined value is used as reference value.
- **2. Step**: Second step consist of finding the relative attenuation between the fundamental emission and the maximum local out-of-band emission (within 2 MHz range around the band edge either on the band-edge directly or some modulation product if the level is greater than that on the band-edge) when measured with lower resolution bandwidth.
- **3. Step:** The delta value recorded in step 2 will be subtracted from value recorded in step 1. thus giving the required field strength at the band-edge. This value must fulfil the requirements for radiated spurious emissions in restricted bands in FCC §15.205 with the general limits of FCC §15.209.

5.11.5. EUT settings

The EUT was set in Hopping OFF mode with maximum power (if adjustable) according to applicants instructions.

5.11.6. Results: for non-restricted bands near-by

5.11.6.1. Non-restricted bands near-by - limits according FCC §15.247

Set-up No.:	1
Op. Mode:	1

	Channel	Restricted		ental Value uV/m]	Peak-Value at Band-	Difference	Limit	Margin		Remark:
Diagram No	No.	band ?	Peak-Value	Average-Value	Edge [dBuV/m]	[dB]	[dBc]	[dB]	Verdict	Data Rate Hopping ?
9.01a	0	NO	95,82	90,13	52,28	43,54	20,00	23,54	PASS	BR Mode GFSK 1 Mbps Hopping OFF
9.02a	0	NO	96,96	86,98	54,60	42,36	20,00	22,36	PASS	EDR Mode π/4-DQPSK 2 Mbps Hopping OFF
9.03a	0	NO	96,52	85,73	55,03	41,49	20,00	21,49	PASS	EDR Mode 8DPSK 3 Mbps Hopping OFF
9.04a	0	NO	93,47	83,32	49,65	43,83	20,00	23,83	PASS	Hopping ON

Remark 1: For further details please refer → Annex 1: Test results - CETECOM_TR18_1_0080101T01a_A1 Remark 2: Measurements results are only valid and compliant with power setting: +4 dbm

5.11.6.2. Restricted bands near-by §15.205 with limits accord. FCC §15.209

Diagram No	Channel			ental Value uV/m]	Value at B [dBu			nits ıV/m]		argin [dB]	Verdict	Remark:
	no.	band?	Peak-Value	Average-Value	Peak -Value	Average -Value	Peak -Value	Average -Value	Peak	Average		Data Rate Hopping ?
9.01b	78	YES	91,973	91,197	57,41	46,08	74,00	54,00	16,59	7,92	PASS	BR Mode GFSK 1 Mbps Hopping OFF
9.02b	78	YES	93,264	90,174	58,51	48,28	74,00	54,00	15,49	5,72	PASS	EDR Mode π /4-DQPSK 2 Mbps Hopping OFF
9.03b	78	YES	91,704	88,593	57,23	47,48	74,00	54,00	16,77	6,52	PASS	EDR Mode 8DPSK 3 Mbps Hopping OFF
9.04b	78	YES	90,873	83,352	58,50	45,83	74,00	54,00	15,50	8,17	PASS	Hopping ON

Set-up No.:	1
Op. Mode:	1 + 2

Remark 1: For further details please refer → Annex 1: Test results - CETECOM_TR18_1_0080101T01a_A1 Remark 2: Measurements results are only valid and compliant with power setting: +4 dbm

5.12. Measurement uncertainties

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor \mathbf{k} , such that a confidence level of approximately 95% is achieved.

For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it's contribution to the overall uncertainty according it's statistical distribution calculated.

Following table shows expectable uncertainties for each measurement type performed.

RF-Measurement	Reference	Frequency range	Calculated uncertainty based on a confidence level of 95%		Remarks				
Conducted emissions (U CISPR)	CISPR 16-2-1	9 kHz - 150 kHz 150 kHz - 30 MHz	4.0 dB 3.6 dB		-				
Radiated emissions Enclosure	CISPR 16-2-3	30 MHz - 1 GHz 1 GHz - 18 GHz	4.2 dB 5.1 dB					E-Field	
Disturbance power	CISPR 16-2-2	30 MHz - 300 MHz	-						-
Power Output radiated	-	30 MHz - 4 GHz	3.17 d	lB					Substitution method
De la Contraction de la		Set-up No.	Cel- C1	Cel- C2	BT1	W1	W2		
Power Output conducted	_	9 kHz - 12.75 GHz	N/A	0.60	0.7	0.25	N/A		_
		12.75 - 26.5GHz	N/A	0.82		N/A	N/A		
Conducted emissions	-	9 kHz - 2.8 GHz	0.70	N/A	0.70	N/A	0.69		N/A - not
on RF-port		2.8 GHz - 12.75GHz	1.48	N/A	1.51	N/A	1.43		applicable
		12.75 GHz - 18GHz	1.81	N/A	1.83	N/A	1.77		
		18 GHz - 26.5GHz	1.83	N/A	1.85	N/A	1.79		
Power density	-	1 – 2.8GHz	1.40 d	lB					
Occupied bandwidth	-	9 kHz - 4 GHz	0.1272 ppm (Delta Marker) 1.0 dB			Frequency error Power			
Emission bandwidth	-	9 kHz - 4 GHz	0.1272 ppm (Delta Marker) See above: 0.70 dB			Frequency error Power			
Frequency stability	-	9 kHz - 20 GHz	0.0636 ppm		-				
Radiated emissions Enclosure	-	150 kHz - 30 MHz 30 MHz - 1 GHz 1 GHz - 20 GHz	5.0 dE 4.2 dE 3.17 d	3					Magnetic field E-field Substitution

Table: measurement uncertainties, valid for conducted/radiated measurements

6. Abbreviations used in this report

The abbreviation	The abbreviations					
ANSI	American National Standards Institute					
AV , AVG, CAV	Average detector					
EIRP	Equivalent isotropically radiated power, determined within a separate measurement					
EGPRS	Enhanced General Packet Radio Service					
EUT	Equipment Under Test					
FCC	Federal Communications Commission, USA					
IC	Industry Canada					
n.a.	not applicable					
Op-Mode	Operating mode of the equipment					
PK	Peak					
RBW	resolution bandwidth					
RF	Radio frequency					
RSS	Radio Standards Specification, Dokuments from Industry Canada					
Rx	Receiver					
TCH	Traffic channel					
Tx	Transmitter					
QP	Quasi peak detector					
VBW	Video bandwidth					
ERP	Effective radiated power					

7. Accreditation details of CETECOM's laboratories and test sites

Ref No.	Accreditation Certificate	Valid for laboratory area or test site	Accreditation Body
-	D-PL- 12047-01-01	All laboratories and test sites of CETECOM GmbH, Essen	DAkkS, Deutsche Akkreditierungsstelle GmbH
337 487 558 348 348	(MRA US-EU 0003)	Radiated Measurements 30 MHz to 1 GHz, 3 m / 10 m (OATS) Radiated Measurements 30 MHz to 1 GHz, 3 m (SAR) Radiated Measurements above 1 GHz, 3 m (FAR) Mains Ports Conducted Interference Measurements Telecommunication Ports Conducted Interference Measurem.	FCC, Federal Communications Commission Laboratory Division, USA
337 487 550 558	3462D-2 3462D-2 3462D-3	Radiated Measurements 30 MHz to 1 GHz, 3 m / 10 m (OATS) Radiated Measurements 30 MHz to 1 GHz, 3 m (SAR) Radiated Measurements 1 GHz to 6 GHz, 3 m (SAR) Radiated Measurements above 1 GHz, 3 m (FAR)	ISED, Industry Canada Certification and Engineering Bureau
487 550 348 348	R- 4452 G- 20013 C- 20009 T- 20006	Radiated Measurements 30 MHz to 1 GHz, 3 m (SAR) Radiated Measurements 1 GHz to 6 GHz, 3 m (SAR) Mains Ports Conducted Interference Measurements Telecommunication Ports Conducted Interference Measurem.	VCCI, Voluntary Control Council for Interference by Information Technology Equipment, Japan
OATS	S = Open Area Te	est Site, SAR = Semi Anechoic Room, FAR = Fully Anechoic Room	

8. Instruments and Ancillary

8.1. Used equiment "CTC"

The "Ref.-No" in the left column of the following tables allows the clear identification of the laboratory equipment.

8.1.1. Test software and firmware of equipment

RefNo.	Equipment	Туре	Serial-No.	Version of Firmware or Software during the test
001	EMI Test Receiver	ESS	825132/017	Firm.= 1.21 , OTP=2.0, GRA=2.0
012	Signal Generator (EMS-cond.)	SMY 01	839069/027	Firm.= V 2.02
013	Power Meter (EMS cond.)	NRVD	839111/003	Firm.= V 1.51
017	Digital Radiocommunication Tester	CMD 60 M	844365/014	Firmware = V 3.52 .22.01.99, DECT = D2.87 13.01.99
119	RT Harmonics Analyzer dig. Flickermeter	B10	G60547	Firm.= V 3.1DHG
261	Thermal Power Sensor	NRV-Z55	825083/0008	EPROM-Datum 02.12.04, SE EE 1 B
262	Power Meter	NRV-S	825770/0010	Firm.= 2.6
263	Signal Generator	SMP 04	826190/0007	Firm.=3.21
295	Racal Digital Radio Test Set	6103	1572	UNIT Firmware= 4.04, SW-Main=4.04, SW-BBP=1.04, SW-DSP=1.02, Hardboot=1.02, Softboot=2.02
298	Univ. Radio Communication Tester	CMU 200	832221/091	R&S Test Firmware =3.53 /3.54 (current Testsoftw. f. all band used
323	Digital Radiocommunication Tester	CMD 55	825878/0034	Firm.= 3.52 .22.01.99
335	CTC-EMS-Conducted	System EMS Conducted	-	EMC 32 V 8.52
340	Digital Radiocommunication Tester	CMD 55	849709/037	Firm.= 3.52 .22.01.99
366	Ultra Compact Simulator	UCS 500 M4	V0531100594	Firm. UCS 500=001925/3.06a02, rc=ISMIEC 4.10
371	Bluetooth Tester	CBT32	100153	CBT V5,30+ SW-Option K55, K57
377	EMI Test Receiver	ESCS 30	100160	Firm.= 2.30, OTP= 02.01, GRA= 02.36
378	Broadband RF Field Monitor	RadiSense III	03D00013SNO-08	Firm.= V.03D13
389	Digital Multimeter	Keithley 2000	0583926	Firm. = A13 (Mainboard) A02 (Display)
392	Radio Communication Tester	MT8820A	6K00000788	Firm.= 4.50 #005, IPL=4.01#001,OS=4.02#001, GSM=4.41#013, W-CDMA= 4.54#004, scenario=
436	Univ. Radio Communication Tester	CMU 200	103083	R&S Test Firmware Base=5.14, Mess-Software= GSM:5.14 WCDMA:5.14 (current Testsoftw. F. all band
441	CTC-SAR-EMI Cable Loss	System EMI field (SAR)	-	EMC 32 Version 8.52
442	CTC-SAR-EMS	System EMS field (SAR)	-	EMC 32 Version 8.40
443	CTC-FAR-EMI-RSE	System CTC-FAR-EMI- RSE	-	Spuri 7.2.5 or EMC 32 Ver. 9.15.00
444	CTC-FAR-EMS field	System-EMS-Field (FAR)	-	EMC 32 Version 9.15.00
460	Univ. Radio Communication Tester	CMU 200	108901	R&S Test Firmware Base=5.14, GSM=5.14 WCDMA=5.14 (current Testsoftw.,f. all band to be used,
489	EMI Test Receiver	ESU40	1000-30	Firmware=4.43 SP3, Bios=V5.1-16-3, Spec. =01.00
491	ESD Simulator dito	ESD dito	dito307022	V 2.30
524	Voltage Drop Simulator	VDS 200	0196-16	Software Nr: 000037 Version V4.20a01
526	Burst Generator	EFT 200 A	0496-06	Software Nr. 000034 Version V2.32
527	Micro Pulse Generator	MPG 200 B	0496-05	Software-Nr. 000030 Version V2.43
528	Load Dump Simulator	LD 200B	0496-06	Software-Nr. 000031 Version V2.35a01
546	Univ. Radio Communication Tester	CMU 200	106436	R&S Test Firmware Base=5.14, GSM=5.14 WCDMA=5.14 (current Testsoftw.,f. all band to be used
547	Univ. Radio Communication Tester	CMU 200	835390/014	R&S Test Firmware Base=V5.1403 (current Testsoftw., f. all band used, GSM = 5.14 WCDMA: = 5.14
584	Spectrum Analyzer	FSU 8	100248	2.82 SP3
597	Univ. Radio Communication Tester	CMU 200	100347	R&S Test Firmware Base=5.01, GSM=5.02 WCDMA= not installed, Mainboard= μP1=V.850
607	Signal Generator	SMR 20	832033/011	V1.25
620	EMI Test Receiver	ESU 26	100362	4.43_SP3
642	Wideband Radio Communication Tester	CMW 500	126089	Setup V03.26, Test programm component V03.02.20
670	Univ. Radio Communication Tester	CMU 200	106833	μP1 =V8.50, Firmware = V.20
689	Vector Signal Generator	SMU200	100833	02.20.360.142
692	Bluetooth Tester	CBT 32	100236	CBT V 5.40, FW: V.2.41 (FPGA Digital, V. 3.09 FPGA RF)
699	Audio Analyzer	UPL16	833494/005	3.06
0/7	7 Iddio 7 Iddiy201	CILIO	033T/T/003	5.00
		1	1	1

8.1.2. Single instruments and test systems

RefNo.	Equipment	Туре	Serial-No.	Manufacturer	Interval of calibration	Remark	Cal due
001	EMI Test Receiver	ESS	825132/017	Rohde & Schwarz	12 M	-	16.05.2019
005	AC - LISN (50 Ohm/50μH, test site 1)	ESH2-Z5	861741/005	Rohde & Schwarz	12 M	-	16.05.2019
007	Single-Line V-Network (50 Ohm/5μH)	ESH3-Z6	892563/002	Rohde & Schwarz	12 M	-	16.05.2019
009	Power Meter (EMS-radiated)	NRV	863056/017	Rohde & Schwarz	24 M	-	15.05.2019
016	Line Impedance Simulating Network	Op. 24-D	B6366	Spitzenberger+Spies	36 M	-	30.05.2019
020	Horn Antenna 18 GHz (Subst 1)	3115	9107-3699	EMCO	36/12 M	-	31.07.2021
021	Loop Antenna (H-Field)	6502	9206-2770	EMCO	36 M	-	30.05.2021
030	Loop Antenna (H-field)	HFH-Z2	879604/026	Rohde & Schwarz	36 M	-	30.04.2018
033	RF-current probe (100kHz-30MHz)	ESH2-Z1	879581/18	Rohde & Schwarz	24 M	-	15.05.2019
057	relay-switch-unit (EMS system)	RSU	494440/002	Rohde & Schwarz	pre- m	1a	
060	power amplifier (DC-2kHz)	PAS 5000	B6363	Spitzenberger+Spies	-	3	
086	DC - power supply, 0 -10 A	LNG 50-10	-	Heinzinger Electronic	pre- m	2	
087	DC - power supply, 0 -5 A	EA-3013 S	-	Elektro Automatik	pre- m	2	
091	USB-LWL-Converter	OLS-1	007/2006	Ing. Büro Scheiba	-	4	
099	passive voltage probe	ESH2-Z3	299.7810.52	Rohde & Schwarz	36 M	-	30.05.2021
100	passive voltage probe	Probe TK 9416	without	Schwarzbeck	36 M	-	30.05.2021
110	USB-LWL-Converter	OLS-1	-	Ing. Büro Scheiba	-	4	
119	RT Harmonics Analyzer dig. Flickermeter	B10	G60547	BOCONSULT	36 M	-	30.05.2019
133	horn antenna 18 GHz (Meas 1)	3115	9012-3629	EMCO	36 M	1c	10.03.2020
134	horn antenna 18 GHz (Subst 2)	3115	9005-3414	EMCO	36 M	-	10.03.2020
248	attenuator	SMA 6dB 2W	-	Radiall	pre- m	2	
249	attenuator	SMA 10dB 10W	-	Radiall	pre- m	2	
252	attenuator	N 6dB 12W	-	Radiall	pre- m	2	
256	attenuator	SMA 3dB 2W	-	Radiall	pre- m	2	
257	hybrid	4031C	04491	Narda	pre- m	2	
260	hybrid coupler	4032C	11342	Narda	pre- m	2	20.05.2020
261	Thermal Power Sensor Power Meter	NRV-Z55	825083/0008	Rohde & Schwarz	24 M	-	30.05.2020
262	Power Meter Signal Generator	NRV-S SMP 04	825770/0010 826190/0007	Rohde & Schwarz Rohde & Schwarz	24 M 36 M	-	30.05.2019 30.05.2019
265	peak power sensor	NRV-Z33, Model 04	840414/009	Rohde & Schwarz	24 M	-	30.05.2019
266	Peak Power Sensor	NRV-Z31, Model 04	843383/016	Rohde & Schwarz	24 M	-	30.05.2020
267	notch filter GSM 850	WRCA 800/960- 6EEK	9	Wainwright GmbH	pre- m	2	30.03.2020
270	termination	1418 N	BB6935	Weinschel	pre- m	2	
271	termination	1418 N	BE6384	Weinschel	pre- m	2	
272	attenuator (20 dB) 50 W	Model 47	BF6239	Weinschel	pre- m	2	
273	attenuator (10 dB) 100 W	Model 48	BF9229	Weinschel	pre- m	2	
274	attenuator (10 dB) 50 W	Model 47 (10 dB) 50 W	BG0321	Weinschel	pre- m	2	
275	DC-Block	Model 7003 (N)	C5129	Weinschel	pre- m	2	
276	DC-Block	Model 7006 (SMA)	C7061	Weinschel	pre- m	2	
279	power divider	1515 (SMA)	LH855	Weinschel	pre- m	2	
298	Univ. Radio Communication Tester	CMU 200	832221/091	Rohde & Schwarz	pre- m	3	4= 6= -
300	AC LISN (50 Ohm/50µH, 1-phase)	ESH3-Z5	892 239/020	Rohde & Schwarz	12 M	-	17.05.2019
301	attenuator (20 dB) 50W, 18GHz	47-20-33	AW0272	Lucas Weinschel	pre- m	2	
302	horn antenna 40 GHz (Meas 1)	BBHA9170	155	Schwarzbeck	36 M	-	14.03.2020
303	horn antenna 40 GHz (Subst 1)	BBHA9170	156	Schwarzbeck	36 M	-	20.03.2020
331	Climatic Test Chamber -40/+180 Grad	HC 4055	43146	Heraeus Vötsch	24 M	-	30.10.2018
341	Digital Multimeter	Fluke 112	81650455	Fluke	24 M	-	30.05.2020
342	Digital Multimeter	Voltcraft M-4660A	IB 255466	Voltcraft	24 M	-	17.05.2019
347	laboratory site	radio lab.	-	-	-	5	
348	laboratory site	EMI conducted	-	-	-	5	<u> </u>

RefNo.	Equipment	Туре	Serial-No.	Manufacturer	Interval of calibration	Remark	Cal due
354	DC - Power Supply 40A	NGPE 40/40	448	Rohde & Schwarz	pre- m	2	
357	power sensor	NRV-Z1	861761/002	Rohde & Schwarz	24 M	-	24.05.2019
371	Bluetooth Tester Single-Line V-Network (50	CBT32	100153	R&S	36 M	-	30.05.2019
373	Ohm/5µH)	ESH3-Z6	100535	Rohde & Schwarz	12 M	-	17.05.2019
377	EMI Test Receiver	ESCS 30	100160	Rohde & Schwarz	12 M pre-	-	30.05.2019
389	Digital Multimeter	Keithley 2000	0583926	Keithley	m	-	
392	Radio Communication Tester	MT8820A	6K00000788	Anritsu LUFFT Mess u.	12 M	-	30.06.2019
405	Thermo-/Hygrometer	OPUS 10 THI	126.0604.0003.3.3.3.22	Regeltechnik GmbH	24 M	-	30.03.2019
431	Model 7405	Near-Field Probe Set	9305-2457	EMCO	-	4	
436	Univ. Radio Communication Tester UltraLog-Antenna	CMU 200 HL 562	103083 100248	Rohde & Schwarz Rohde & Schwarz	12 M 36 M	-	06.03.2019 10.03.2020
454	Oscilloscope	HM 205-3	9210 P 29661	Hameg	-	4	10.03.2020
456	DC-Power supply 0-5 A	EA 3013 S	207810	Elektro Automatik	pre- m	2	
459	DC -Power supply 0-5 A, 0-32 V	EA-PS 2032-50	910722	Elektro Automatik	pre- m	2	
460	Univ. Radio Communication Tester	CMU 200	108901	Rohde & Schwarz	12 M	-	30.05.2019
463	Universal source Digital Multimeter	HP3245A Fluke 112	2831A03472 89210157	Agilent Fluke USA	- 24 M	4	30.05.2020
467	Digital Multimeter Digital Multimeter	Fluke 112 Fluke 112	89680306	Fluke USA	36 M	-	30.05.2020
468	Digital Multimeter	Fluke 112	90090455	Fluke USA	36 M	-	30.04.2021
477	ReRadiating GPS-System	AS-47	-	Automotive Cons. Fink	-	3	
480	power meter (Fula)	NRVS	838392/031	Rohde & Schwarz	24 M	-	16.05.2019
482	filter matrix	Filter matrix SAR 1	-	CETECOM (Brl)	-	1d	
487	System CTC NSA-Verification SAR-EMI	System EMI field (SAR) NSA	-	ETS Lindgren / CETECOM	24 M	-	31.03.2019
489	EMI Test Receiver	ESU40	1000-30	Rohde & Schwarz	12 M	-	30.06.2019
502	band reject filter	WRCG 1709/1786- 1699/1796-	SN 9	Wainwright	pre- m	2	
503	band reject filter	WRCG 824/849- 814/859-60/10SS	SN 5	Wainwright	pre- m	2	
517	relais switch matrix	HF Relais Box Keithley System	SE 04	Keithley	pre- m	2	
523	Digital Multimeter	L4411A	MY46000154	Agilent	24 M	-	18.05.2019
529	6 dB Broadband resistive power divider	Model 1515	LH 855	Weinschel	pre- m	2	
530	10 dB Broadband resistive power divider	R 416110000	LOT 9828	-	pre- m	2	
546 547	Univ. Radio Communication Tester Univ. Radio Communication Tester	CMU 200 CMU 200	106436 835390/014	R&S Rohde & Schwarz	12 M 12 M	-	30.07.2019 30.07.2019
549	Log.Per-Antenna	HL025	1000060	Rohde & Schwarz	36/12 M	-	31.07.2021
550	System CTC S-VSWR Verification SAR-EMI	System EMI Field SAR S-VSWR	-	ETS Lindgren/CETECOM	24 M	-	30.03.2019
558	System CTC FAR S-VSWR	System CTC FAR S- VSWR	-	CTC	24 M	-	08.08.2019
574	Biconilog Hybrid Antenna	BTA-L	980026L	Frankonia	36/12 M	-	31.03.2019
584	Spectrum Analyzer	FSU 8	100248	Rohde & Schwarz	pre- m	-	
594	Wideband Radio Communication Tester	CMW 500	101757	Rohde & Schwarz	12 M	-	30.05.2019
597	Univ. Radio Communication Tester	CMU 200	100347	Rohde & Schwarz	pre- m	-	
600	power meter	NRVD (Reserve)	834501/018	Rohde & Schwarz	24 M	-	17.05.2019
601	medium-sensitivity diode sensor peak power sensor	NRV-Z5 (Reserve) NRV-Z32 (Reserve)	8435323/003 835080	Rohde & Schwarz Rohde & Schwarz	24 M 24 M	-	15.05.2019
611	DC power supply	E3632A	KR 75305854	Agilent	pre-	2	
612	DC power supply	E3632A	MY 40001321	Agilent	m pre- m	2	
613	Attenuator	R416120000 20dB 10W	Lot. 9828	Radiall	pre- m	2	
616	Digitalmultimeter	Fluke 177	88900339	Fluke	24 M	-	30.05.2020
617	Power Splitter/Combiner	ZFSC-2-2-S+	S F987001108	Mini Circuits	-	2	
618	Power Splitter/Combiner	50PD-634	600994	JFW Industries USA	-	2	
619 620	Power Splitter/Combiner EMI Test Receiver	50PD-634 ESU 26	600995 100362	JFW Industries, USA Rohde-Schwarz	- 12 M	3	30.05.2019
621	Step Attenuator 0-139 dB	RSP	100017	Rohde & Schwarz	pre- m	2	20.00.2017
625	Generic Test Load USB	Generic Test Load USB	-	CETECOM	-	2	

RefNo.	Equipment	Туре	Serial-No.	Manufacturer	Interval of calibration	Remark	Cal due
627	data logger	OPUS 1	201.0999.9302.6.4.1.43	G. Lufft GmbH	24 M	-	30.03.2019
634	Spectrum Analyzer	FSM (HF-Unit)	826188/010	Rohde & Schwarz	pre- m	2	
637	High Speed HDMI with Ethernet 1m	HDMI cable with Ethernet 1m	-	KogiLink	-	2	
638	HDMI Kabel with Ethernet 1,5 m flach	HDMI cable with Ethernet 1,5m	-	Reichelt	-	2	
640	HDMI cable 2m rund	HDMI cable 2m rund	-	Reichelt	-	2	
641	HDMI cable with Ethernet	Certified HDMI cable with	-	PureLink	-	2	
642	Wideband Radio Communication Tester	CMW 500	126089	Rohde&Schwarz	24 M	-	24.05.2019
644	Amplifierer	ZX60-2534M+	SN865701299	Mini-Circuits	-	-	20.05.2020
670	Univ. Radio Communication Tester	CMU 200	106833	Rohde & Schwarz	24 M	-	30.05.2020
671	DC-power supply 0-5 A	EA-3013S	-	Elektro Automatik	pre- m pre-	2	
678	Power Meter	NRP	101638	Rohde&Schwarz	m	-	20.05.2010
683	Spectrum Analyzer	FSU 26	200571	Rohde & Schwarz Narda Safety Test	12 M	-	30.05.2019
686	Field Analyzer	EHP-200A	160WX30702	Solutions Solutions	24 M	-	29.03.2019
687	Signal Generator	SMF 100A	102073	Rohde&Schwarz	12 M	-	30.05.2019
688	Pre Amp	JS-18004000-40-8P	1750117	Miteq	pre- m	-	
690	Spectrum Analyzer	FSU	100302/026	Rohde&Schwarz	24 M	-	16.05.2019
691 692	OSP120 Base Unit Bluetooth Tester	OSP120 CBT 32	106833 100236	Rohde & Schwarz Rohde & Schwarz	12 M 36 M	-	30.05.2019 29.05.2020
693	TS8997	CTC-Radio Lab 1_TS8997	-	Rohde & Schwarz Rohde & Schwarz	12 M	5	30.05.2019
697	Power Splitter	ZN4PD-642W-S+	165001445	Mini-Circuits	_	2	
701	CMW500 wide. Radio Comm.	CMW500	158150	Rohde & Schwarz	12 M	-	30.07.2019
703	INNCO Antennen Mast	MA 4010-KT080- XPET-ZSS3	MA4170-KT100-XPET- ZSS3	INNCO	pre- m	-	
704	INNCON Controller	CO 3000-4port	CO3000/933/38410516/L	INNCO Systems GmBh	pre- m	-	
711	Harmonic Mixer 90 GHz - 140GHz	RPG FS-Z140	101004	RPG	36 M	-	22.02.2020
712	Harmonic Mixer 75 GHz - 110GHz	FS-Z110	101468	Rohde & Schwarz	36 M	-	22.02.2020
713 714	Harmonic Mixer, 50 GHz - 75GHz Signal Analyzer 67GHz	FS-Z75 FSW67	101022 104023	Rohde & Schwarz Rohde & Schwarz	36 M 24 M	-	22.05.2020 28.02.2020
715	Harmonic Mixer, 140 GHz - 220GHz	FS-Z220	101009	RPG Radiometer Physics	36 M	-	03.08.2020
716	Harmonic Mixer 220 GHz to 325 GHZ	FS-Z325	101005	RPG Radiometer Physics	36 M	-	13.02.2020
747	Spectrum Analyzer	FSU 26	200152	Rohde & Schwarz	12 M	-	30.05.2019
748	Pickett-Potter Horn Antenna	FH-PP 4060	010001	Radiometer Physiscs	36 M	-	
749	Pickett-potter Horn Antenna	FH-PP 60-90	010003	Radiometer Physics	-	-	
750	Pickett-Potter Horn Antenna	FH-PP 140-220	010011	Radiometer Physics	-	-	
751	Digital Optical System	optoCAN-FD Transceiver	17-010416	mk-messtechnik GmbH	-	-	
752	Digital Optical System	optoCAN-FD Transceiver	17-010083	mk-messtechnik GmbH	-	-	
753	Digital Optical System	optoCAN-FD Transceiver	17-010084	mk-messtechnik GmbH	-	-	
754	Digital Optical System	optoCAN-FD Transceiver	17-010415	mk-messtechnik GmbH	-	-	
755	Digital Optical System	optoLAN-100-MAX Transceiver	17-010795	mk-messtechnik GmbH	-	-	
757	WIDEBAND RADIO COMMUNICATION	CMW500	163673	Rohde&Schwarz	12 M	-	20.07.2018
758	Signal Generator	SMU 200A	100754	Rohde & Schwarz	24 M	-	11.10.2019
780 781	Spectrum Analyzer Power Supply	FSH3 PS 2042-10 B	101726 2815450369	Rohde & Schwarz Elektro-Automatik	24 M	-	19.07.2019
782	Power Supply	PS 2042-10 B	2815450348	GmbH &Co.KG lektro-Automatik GmbH &Co.KG	-	-	
783	Spectrum Analyzer	FSU 26	100414	GmbH &Co.KG Rohde & Schwarz	12 M	-	30.05.2019
784	Power Supply	NGSM 32/10	00196	Rohde & Schwarz	12 M	-	23.00.2017
785	RSP	RF Step Attenuator 0139.9dB	860712/012	Rohde & Schwarz	12 M	-	14.02.2021
786 787	SAR Probe OSP	ES3DV3 OSP B157WX	3340 101264	Speag Rohde & Schwarz	36 M 12 M	-	14.02.2021 30.05.2019
788	Precision Omnidirectional Dipole	POD 618	6182558/Q	Seibersdorf Labaratories	36 M	-	30.05.2019
789	Precision Omnidirectional Dipole	POD 16	162496/Q	Seibersdorf Laboratories	36 M	-	30.06.2021
				Zacoratorios			

Note / remarks		Calibrated during system calibration:
	1a	System CTC-SAR-EMS (RefNo. 442)
	1b	System-CTC-EMS-Conducted (RefNo. 335)
	1c	System CTC-FAR-EMI-RSE (RefNo . 443)
	1d	System CTC-SAR-EMI (RefNo . 441)
	1e	System CTC-OATS (EMI radiated) (RefNo. 337)
	1 f	System CTC-CTIA-OTA (RefNo . 420)
	1 g	System CTC-FAR-EMS (RefNo . 444)
	2	Calibration or equipment check immediately before measurement
	3	Regulatory maintained equipment for functional check or support purpose
	4	Ancillary equipment without calibration e.g. mechanical equipment or monitoring equipment
	5	Test System

Interval of calibration	12 M	12 month
	24 M	24 month
	36 M	36 month
	24/12 M	Calibration every 24 months, between this every 12 months internal validation
	36/12 M	Calibration every 36 months, between this every 12 months internal validation
	Pre-m	Check before starting the measurement
	-	Without calibration

9. Versions of test reports (change history)

Version	Applied changes	Date of release
	Initial release	2018-10-24
C1	FCC ID corrected	2018-11-12

End of Test Report