

RADIO TEST REPORT FCC ID:YB2-A505

 Product:
 MP3

 Trade Mark:
 N/A

 Model No.:
 A505

 Family Model:
 HA09, A505AEP

 Report No.:
 S22040100404001

 Issue Date:
 Apr 24, 2022

Prepared for

HONGTIANTAI(H.K.)CO.,LIMITED

2102Pakpolee Commercial Centre 1A Sai Yeung Choi Street South Monqkok Kowloon Hong Kong Sar, HONGKONG, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

I

TABLE OF CONTENTS

1	1 TEST RESULT CERTIFICATION					
2	2 SUMMARY OF TEST RESULTS					
3	FAC	CILITIES AND ACCREDITATIONS	5			
3	.1	FACILITIES				
-	.2	LABORATORY ACCREDITATIONS AND LISTINGS				
3	.3	MEASUREMENT UNCERTAINTY				
4		NERAL DESCRIPTION OF EUT				
5		SCRIPTION OF TEST MODES				
6	SET	FUP OF EQUIPMENT UNDER TEST	9			
6	5.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	9			
0	5.2	SUPPORT EQUIPMENT	10			
6	5.3	EQUIPMENTS LIST FOR ALL TEST ITEMS				
7	TES	ST REQUIREMENTS	13			
7	.1	CONDUCTED EMISSIONS TEST				
	.2	RADIATED SPURIOUS EMISSION				
	.3	NUMBER OF HOPPING CHANNEL				
	.4	HOPPING CHANNEL SEPARATION MEASUREMENT				
	.5 .6	AVERAGE TIME OF OCCUPANCY (DWELL TIME)				
	.0 .7	PEAK OUTPUT POWER				
	. <i>1</i> .8	CONDUCTED BAND EDGE MEASUREMENT.				
	.0 .9	SPURIOUS RF CONDUCTED EMISSION				
	.10	ANTENNA APPLICATION				
7	.11 FI	REQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	34			
8	TES	ST RESULTS	35			
8	.1	Dwell Time				
8	.2	MAXIMUM CONDUCTED OUTPUT POWER	40			
8	.3	Occupied Channel Bandwidth				
	.4	CARRIER FREQUENCIES SEPARATION				
-	.5	NUMBER OF HOPPING CHANNEL				
	.6	BAND EDGE				
8	.7	CONDUCTED RF SPURIOUS EMISSION	69			

1 TEST RESULT CERTIFICATION

Applicant's name:	HONGTIANTAI(H.K.)CO.,LIMITED		
Address	2102Pakpolee Commercial Centre 1A Sai Yeung Choi Street South Monqkok Kowloon Hong Kong Sar,HONGKONG,China		
Manufacturer's Name:	HONGFUTAI E-TECH (SHENZHEN) CO., LIMITED		
Address	4F, No.17, Xinxing Industrial Park, Xinhe Community, Fuhai Street, Baoan District, Shenzhen 518103, China		
Product description			
Product name:	MP3		
Model and/or type reference:	A505		
Family Model	HA09, A505AEP		

Measurement Procedure Used:

APPLICABLE STANDARDS STANDARD/ TEST PROCEDURE TEST RESULT FCC 47 CFR Part 2, Subpart J Complied FCC 47 CFR Part 15, Subpart C Complied ANSI C63.10-2013 Complied

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test

Testing Engineer

Apr 01. 2022~ Apr 24. 2022 . Hu

(Mary Hu)

Authorized Signatory

(Alex Li)

2 SUMMARY OF TEST RESULTS						
FCC Part15 (15.247), Subpart C						
Standard Section Test Item Verdict Rema						
15.207	Conducted Emission	PASS				
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS				
15.247(a)(1)	Hopping Channel Separation	PASS				
15.247(b)(1)	Peak Output Power	PASS				
15.247(a)(iii)	Number of Hopping Frequency	PASS				
15.247(a)(iii)	Dwell Time	PASS				
15.247(a)(1)	Bandwidth	PASS				
15.247 (d)	15.247 (d) Band Edge Emission					
15.247 (d)	15.247 (d) Spurious RF Conducted Emission					
15.203	Antenna Requirement	PASS				

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

NTEK 北测

R

ACCREDITED Certificate #4298.01

Product Feature and Specification				
Equipment	MP3			
Trade Mark	N/A			
FCC ID	YB2-A505			
Model No.	A505			
Series no.	S220401004002			
Family Model	HA09, A505AEP			
Model Difference	All models are the same circuit and RF module, except the Model name.			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK, π/4-DQPSK, 8-DPSK			
Number of Channels	79 Channels			
Antenna Type	PIFA Antenna			
Antenna Gain	-0.5 dBi			
Power supply	DC 3.7V from Battery or DC 5V form USB Port			
Adapter	N/A			
Battery	DC 3.7V,160mAh,0.58Wh			
HW Version	A505AEP V1.2			
SW Version	XYD27149_A505_ fill continuously - XD2328_20190107_V1. 01. Fw			

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode, the power level is the software default value.

Certificate #4298.01 Revision History						
Report No.	Version	Description	Issued Date			
S22040100404001	Rev.01	Initial issue of report	Apr 24. 2022			

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK ; modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission						
Final Test Mode	Final Test Mode Description					
Mode 1	normal link mode					
Nete: AO a superline Operaturated Franciscience to started under menuiosure outent a super						

Note: AC power line Conducted Emission was tested under maximum output power.

	For Radiated Test Cases
Final Test Mode	Description
Mode 1	normal link mode
Mode 2	CH00(2402MHz)
Mode 3	CH39(2441MHz)
Mode 4	CH78(2480MHz)

Note: For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

	For Conducted Test Cases
Final Test Mode	Description
Mode 2	CH00(2402MHz)
Mode 3	CH39(2441MHz)
Mode 4	CH78(2480MHz)
Mode 5	Hopping mode

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

NTEK	北测®	Hac-MRA Certi	Ificate #4298.01	Repor	t No.: S22040100404001
6 SETUP OF EG	QUIPMENT	UNDER T	EST		
6.1 BLOCK DIAGRA For AC Conducted Em		RATION OF	TEST SYSTEM		
		C-1	AE-1	AC PLUG	
	EUT		Adapter		
For Radiated Test Cas	ses				
	EUT				
For Conducted Test C	ases				
Measurement Instrument	C-2 EL	JT			
Note: 1. The temporar	v antenna cor	nector is sol	dered on the PC	B board in order to	perform conducted tests

and this temporary antenna connector is listed in the equipment list.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	DC Cable	NO	NO	0.8m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2021.04.27	2022.04.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2021.07.01	2022.06.30	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2021.07.01	2022.06.30	1 year
4	Test Receiver	R&S	ESPI7	101318	2021.04.27	2022.04.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.11.07	2022.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2021.11.07	2022.11.06	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07	2022.11.06	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2021.07.01	2022.06.30	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
15	Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2021.04.27	2022.04.26	1 year
2	LISN	R&S	ENV216	101313	2021.04.27	2022.04.26	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2021.04.27	2022.04.26	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

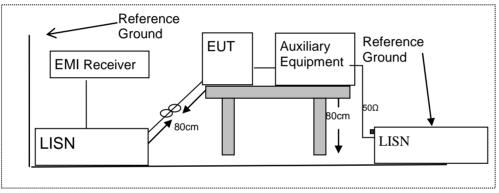
Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

Frequency(MHz)	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

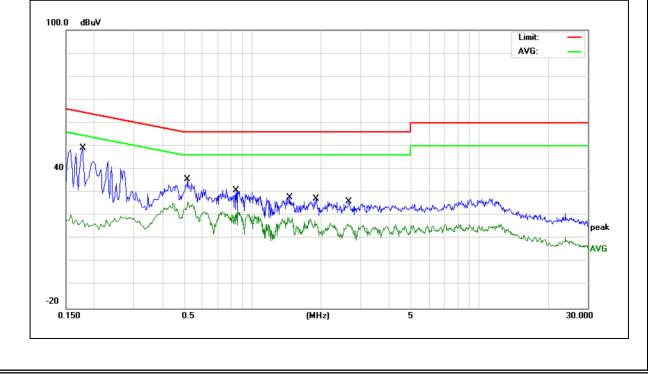
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.5 Test Results

Pass

7.1.6 Test Results

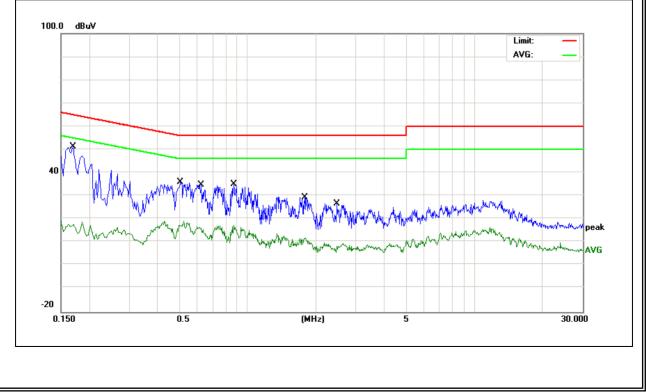

EUT:	MP3	Model Name :	A505
Temperature:	21.6℃	Relative Humidity:	56%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	-Remark
0.1780	39.53	9.67	49.20	64.57	-15.37	QP
0.1780	8.58	9.67	18.25	54.57	-36.32	AVG
0.5180	25.90	9.65	35.55	56.00	-20.45	QP
0.5180	16.22	9.65	25.87	46.00	-20.13	AVG
0.8460	21.01	9.74	30.75	56.00	-25.25	QP
0.8460	12.43	9.74	22.17	46.00	-23.83	AVG
1.4620	18.11	9.75	27.86	56.00	-28.14	QP
1.4620	9.46	9.75	19.21	46.00	-26.79	AVG
1.8980	17.40	9.76	27.16	56.00	-28.84	QP
1.8980	7.79	9.76	17.55	46.00	-28.45	AVG
2.6580	16.45	9.73	26.18	56.00	-29.82	QP
2.6580	6.78	9.73	16.51	46.00	-29.49	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	MP3	Model Name :	A505
Temperature:	21.6 ℃	Relative Humidity:	56%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Peopling Lovel	Corroct Eactor	Measure-ment	Limits	Morgin	
Frequency	Reading Level		Measure-ment	LIIIIIIS	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	
0.1700	41.54	9.63	51.17	64.96	-13.79	QP
0.1700	8.08	9.63	17.71	54.96	-37.25	AVG
0.5060	26.33	9.74	36.07	56.00	-19.93	QP
0.5060	9.26	9.74	19.00	46.00	-27.00	AVG
0.6260	25.14	9.68	34.82	56.00	-21.18	QP
0.6260	7.06	9.68	16.74	46.00	-29.26	AVG
0.8700	25.25	9.70	34.95	56.00	-21.05	AVG
0.8700	6.82	9.70	16.52	46.00	-29.48	QP
1.7900	19.60	9.68	29.28	56.00	-26.72	QP
1.7900	2.18	9.68	11.86	46.00	-34.14	AVG
2.4739	16.93	9.68	26.61	56.00	-29.39	AVG
2.4739	-0.43	9.68	9.25	46.00	-36.75	QP

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

recording to 1 00 1 art10.20					
MHz	MHz	MHz	GHz		
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46		
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75		
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5		
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
6.26775-6.26825	123-138	2200-2300	14.47-14.5		
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4		
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
12.57675-12.57725	322-335.4	3600-4400	(2)		
13.36-13.41					

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

	Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
	0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
	0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
	1.705~30.0	30	29.5	30
Γ	30-88	100	40	3
Γ	88-216	150	43.5	3
Γ	216-960	200	46	3
	Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Froguency(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

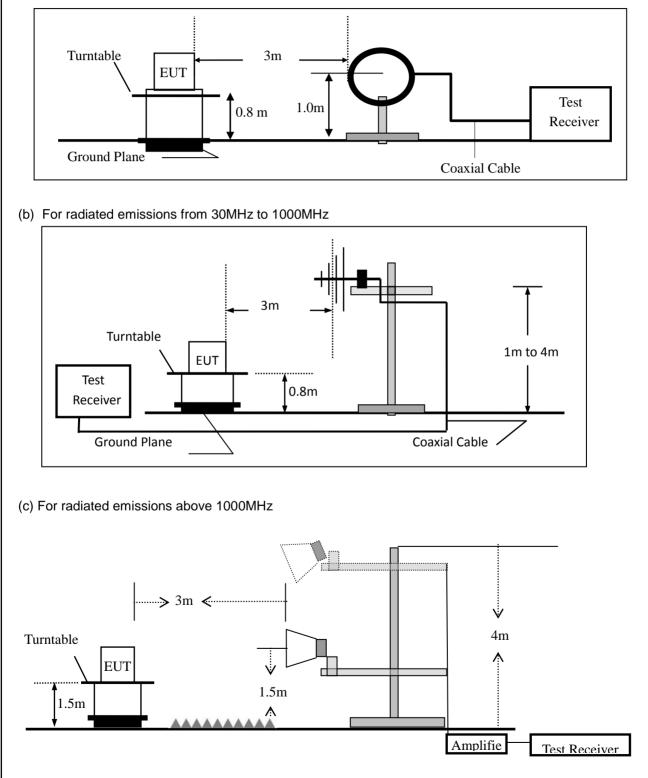
Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

NTEK 北测


7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

ACCREDITED Certificate #4298.01

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission to	During the radiated emission test, the Spectrum Analyzer was set with the following configurations:									
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth							
30 to 1000	QP	120 kHz	300 kHz							
Ah awa 4000	Peak	1 MHz	1 MHz							
Above 1000	Average	1 MHz	1 MHz							

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

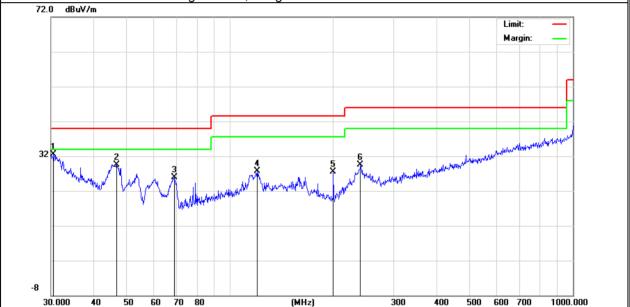
7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	MP3	Model No.:	A505
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Freq.	Ant.Pol.	Emission L	evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	r(dB) AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


 Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:
 EUT: MP3 Model Name : A505

2011			7000				
Temperature:	25.3 ℃	Relative Humidity:	51%				
Pressure:	010hPa Test Mode: Mode 1						
Test Voltage :	DC 5V from adapter AC 120V/60Hz						

Polar	Frequency	FrequencyMeter ReadingFactorEmission LevelLimits		Margin	Remark		
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	30.5306	7.85	24.73	32.58	40.00	-7.42	QP
V	46.6664	13.32	16.21	29.53	40.00	-10.47	QP
V	68.6310	13.38	12.43	25.81	40.00	-14.19	QP
V	119.8556	9.82	17.84	27.66	43.50	-15.84	QP
V	199.9856	12.68	14.76	27.44	43.50	-16.06	QP
V	239.9874	11.65	17.76	29.41	46.00	-16.59	QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	30.0000	6.00	25.31	31.31	40.00	-8.69	QP
Н	89.9047	8.57	15.73	24.30	43.50	-19.20	QP
Н	120.6991	13.70	17.81	31.51	43.50	-11.99	QP
Н	159.7844	15.06	17.70	32.76	43.50	-10.74	QP
Н	239.9874	13.25	17.76	31.01	46.00	-14.99	QP
Н	319.9370	10.65	20.85	31.50	46.00	-14.50	QP
Remark Emission 72.0	n Level= Meter F dBu¥/m	Reading+ Facto	or, Margin=	Emission Leve	I - Limit	Limit:]
						Margin:	
32	Markan Jan La			5	S. Marchand	and a second	errow
	under and the second second second	and the manufacture of		hul hand here has a second sec			
-8							
30.0	000 40 50 0	50 70 80	(Mł	lz)	300 400 500	600 700	1000.000

Spurious	 Spurious Emission Above 1GHz (1GHz to 25GHz) 									
EUT:	MP3			Model	No.:	A50	5			
Temperature	Temperature: 20 °C Rela						elative Humidity: 48%			
Test Mode:	Mod	e2/Mode	3/Mode4	Test B	Sy:	Mar	y Hu			
All the modulation modes have been tested, and the worst result was report as below:										
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Rema	rk Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m	ı) (dB)			
		l	ow Channe	el (2402 Mł	lz) (8-DPSK)Above 1	G			
4804.84	65.03	5.21	35.59	44.30	61.53	74.00	-12.47	Pk	Vertical	
4804.84	43.28	5.21	35.59	44.30	39.78	54.00	-14.22	AV	Vertical	
7206.12	64.05	6.48	36.27	44.60	62.20	74.00	-11.80	Pk	Vertical	
7206.12	43.41	6.48	36.27	44.60	41.56	54.00	-12.44	AV	Vertical	
4804.70	62.62	5.21	35.55	44.30	59.08	74.00	-14.92	Pk	Horizontal	
4804.70	40.04	5.21	35.55	44.30	30 36.50 54.0		-17.50	AV	Horizontal	
7206.75	63.44	6.48	36.27	44.52	61.67 74.00		-12.33	Pk	Horizontal	
7206.75	41.71	6.48	36.27	44.52 39.94 54.0		54.00	-14.06	AV	Horizontal	
		1	Mid Channe	el (2441 MI	lz)(8-DPSK)	Above 1	G			
4882.38	63.15	5.21	35.66	44.20	59.82	74.00	-14.18	Pk	Vertical	
4882.38	43.64	5.21	35.66	44.20	40.31	54.00	-13.69	AV	Vertical	
7323.05	63.78	7.10	36.50	44.43	62.95	74.00	-11.05	Pk	Vertical	
7323.05	43.25	7.10	36.50	44.43	42.42	54.00	-11.58	AV	Vertical	
4882.76	60.83	5.21	35.66	44.20	57.50	74.00	-16.50	Pk	Horizontal	
4882.76	42.91	5.21	35.66	44.20	39.58	54.00	-14.42	AV	Horizontal	
7324.82	60.56	7.10	36.50	44.43	59.73	74.00	-14.27	Pk	Horizontal	
7324.82	41.98	7.10	36.50	44.43	41.15	54.00	-12.85	AV	Horizontal	
		ŀ	ligh Chann	el (2480 MI	Hz) (8-DPSK)Above ´		1		
4959.74	64.95	5.21	35.52	44.21	61.47	74.00	-12.53	Pk	Vertical	
4959.74	43.21	5.21	35.52	44.21	39.73	54.00	-14.27	AV	Vertical	
7439.74	64.76	7.10	36.53	44.60	63.79	74.00	-10.21	Pk	Vertical	
7439.74	43.68	7.10	36.53	44.60	42.71	54.00	-11.29	AV	Vertical	
4960.52	60.78	5.21	35.52	44.21	57.30	74.00	-16.70	Pk	Horizontal	
4960.52	40.86	5.21	35.52	44.21	37.38	54.00	-16.62	AV	Horizontal	
7440.79	61.96	7.10	36.53	44.60	60.99	74.00	-13.01	Pk	Horizontal	
7440.79	42.46	7.10	36.53	44.60	41.49	54.00	-12.51	AV	Horizontal	

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

EUT:	MP3			Mode	Model No.:			A505		
Temperature	: 20 ℃			Relati	ve Humidity	/:	48%			
Test Mode:	Test Mode: Mode2/ Mode4 Test By: Mary Hu									
All the modu	ulation mode	s have b	peen teste	d, and the	e worst resu	ılt wa	is repo	ort as belo	ow:	1
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Liı	mits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBj	uV/m)	(dB)	Туре	
			3M	bps(GFSK)- Non-hop	ping				
2310.00	52.30	2.97	27.80	43.80	39.27	7	74	-34.73	Pk	Horizontal
2310.00	41.66	2.97	27.80	43.80	28.63	5	54	-25.37	AV	Horizontal
2310.00	53.33	2.97	27.80	43.80	40.30	7	74	-33.70	Pk	Vertical
2310.00	43.74	2.97	27.80	43.80	30.71	Ę	54	-23.29	AV	Vertical
2390.00	51.22	3.14	27.21	43.80	37.77	7	74	-36.23	Pk	Vertical
2390.00	42.16	3.14	27.21	43.80	28.71	5	54	-25.29	AV	Vertical
2390.00	53.47	3.14	27.21	43.80	40.02		74	-33.98	Pk	Horizontal
2390.00	43.95	3.14	27.21	43.80	30.50		54	-23.50	AV	Horizontal
2483.50	54.00	3.58	27.70	44.00	41.28	7	74	-32.72	Pk	Vertical
2483.50	40.56	3.58	27.70	44.00	27.84	Ę	54	-26.16	AV	Vertical
2483.50	54.86	3.58	27.70	44.00	42.14	7	74	-31.86	Pk	Horizontal
2483.50	41.70	3.58	27.70	44.00	28.98	Ę	54	-25.02	AV	Horizontal
				3Mbps	hopping					
2310.00	52.74	2.97	27.80	43.80	39.71		1.00	-34.29	Pk	Vertical
2310.00	41.08	2.97	27.80	43.80	28.05		1.00	-25.95	AV	Vertical
2310.00	52.60	2.97	27.80	43.80	39.57	74	1.00	-34.43	Pk	Horizontal
2310.00	44.83	2.97	27.80	43.80	31.80		1.00	-22.20	AV	Horizontal
2390.00	54.02	3.14	27.21	43.80	40.57	74	1.00	-33.43	Pk	Vertical
2390.00	40.36	3.14	27.21	43.80	26.91		1.00	-27.09	AV	Vertical
2390.00	53.08	3.14	27.21	43.80	39.63		.00	-34.37	Pk	Horizontal
2390.00	41.94	3.14	27.21	43.80	28.49		.00	-25.51	AV	Horizontal
2483.50	50.63	3.58	27.70	44.00	37.91	74	1.00	-36.09	Pk	Vertical
2483.50	42.38	3.58	27.70	44.00	29.66	54	1.00	-24.34	AV	Vertical
2483.50	52.55	3.58	27.70	44.00	39.83	74	.00	-34.17	Pk	Horizontal
2483.50	41.72	3.58	27.70	44.00	29.00	54	1.00	-25.00	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

EUT:	N	1P3			Mo	odel	No.:		A505			
Temperature:		0 °C		Relative Humidity:			48%					
est Mode: Mode2/ Mode4 Test By: Mary Hu												
All the modu	lation m	nodes ha	ave k	been teste	d, and	the	worst resu	lt wa	s repo	rt as belo	ow:	
Frequency	Readi Leve	3	able oss	Antenna Factor	Prear Fact		Emission Level	Lir	nits	Margin	Detector	Comment
(MHz)	(dBµ\	/) (d	lΒ)	dB/m	(dB)	(dBµV/m)	(dBµV/m)		(dB)	Туре	
3260	62.1	9 4.	.04	29.57	44.7	0	51.10	0 74		-22.90	Pk	Vertical
3260	46.20	6 4.	.04	29.57	44.7	70 35.17 54		54	-18.83	AV	Vertical	
3260	54.28	8 4.	.04	29.57	44.7	0	43.19	7	74	-30.81	Pk	Horizonta
3260	46.2	5 4.	.04	29.57	44.7	0	35.16	Ę	54	-18.84	AV	Horizonta
3332	62.0 ⁻	1 4.	.26	29.87	44.4	-0	51.74	7	74	-22.26	Pk	Vertical
3332	45.79	9 4.	.26	29.87	44.4	-0	35.52	Ę	54	-18.48	AV	Vertical
3332	61.6	3 4.	.26	29.87	44.4	-0	51.36	7	74	-22.64	Pk	Horizonta
3332	47.58	8 4.	.26	29.87	44.4	-0	37.31	Ę	54	-16.69	AV	Horizonta
17797	48.5	2 10	.99	43.95	43.5	0	59.96	59.96 74		-14.04	Pk	Vertical
17797	36.3	3 10	.99	43.95	43.5	0	47.77 54		54	-6.23	AV	Vertical
17788	52.3	9 11	.81	43.69	44.6	0	63.29	7	74	-10.71	Pk	Horizonta
17788	38.5	5 11	.81	43.69	44.6	0	49.45	Ę	54	-4.55	AV	Horizonta

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

7.3.6 Test Results

EUT:	MP3	Model No.:	A505
Temperature:	20 (Relative Humidity:	A505 48% Mary Hu
Test Mode:	Mode 5(1Mbps)	Test By:	Mary Hu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 3% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	MP3	Model No.:	A505 48% Mary Hu
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	MP3	Model No.:	A505
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	MP3	Model No.:	A505
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.7 **PEAK OUTPUT POWER**

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW \geq the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	MP3	Model No.:	A505
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	MP3	Model No.:	A505
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Mary Hu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PIFA Antenna (Gain: -0.5dBi). It comply with the standard requirement.

NTEK ILW®

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

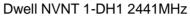
7.11.2 Frequency Hopping System

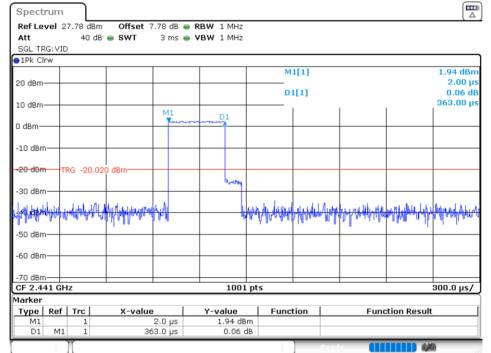
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

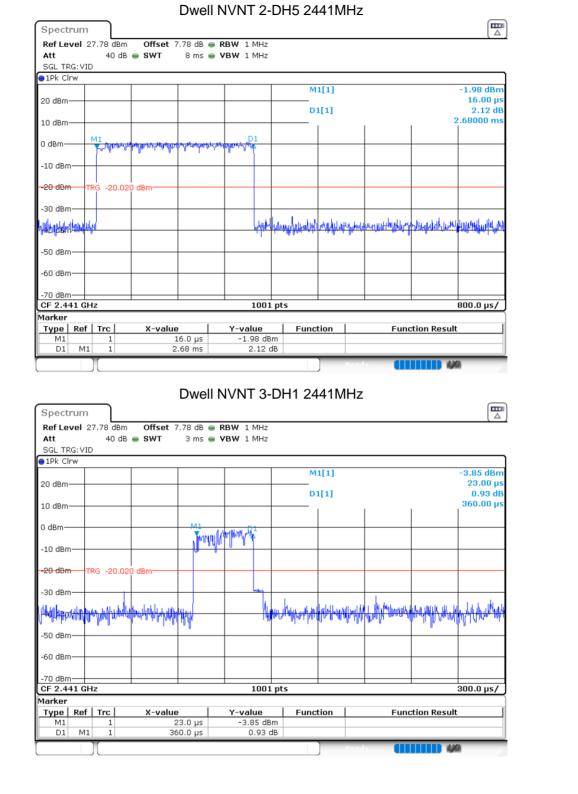

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.



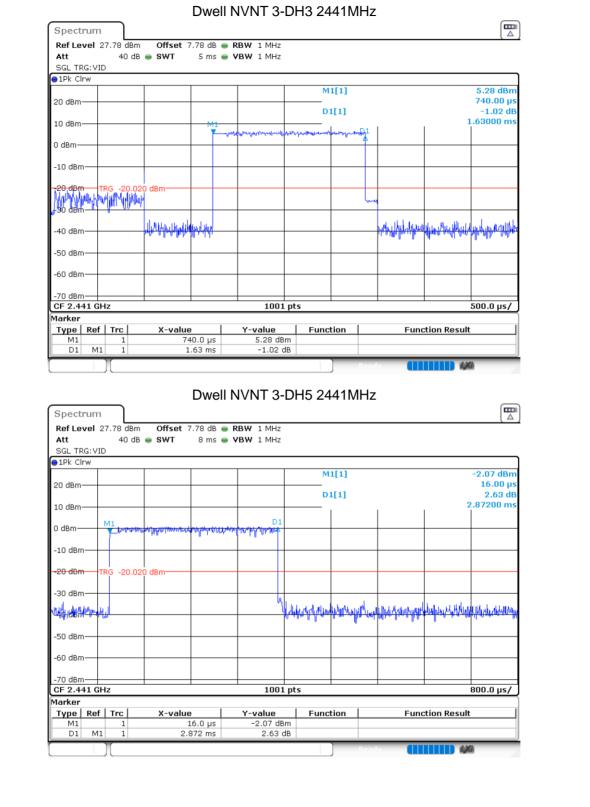
8 TEST RESULTS

8.1 **DWELL TIME**

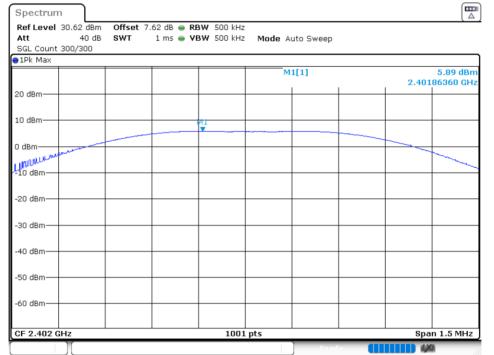
Period Time (ms) 31600 31600	Limit (ms) 400	Verdict Pass
31600	· · ·	
	400	Pass
21600		1 433
31000	400	Pass
31600	400	Pass
	31600 31600 31600 31600 31600 31600	31600 400 31600 400 31600 400 31600 400 31600 400 31600 400 31600 400 31600 400

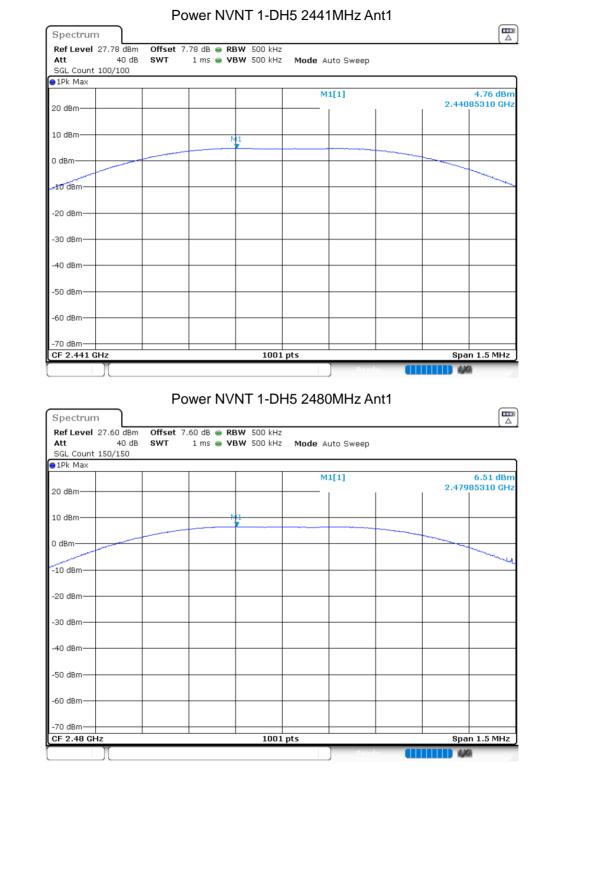


10 dBm	500.0 μs/
0 dBm 0 dBm 0 dBm 0 dBm -10 dBm Nielphanenenenenenenenenenenenenenenenenenene	τ ^γ λήθει _{αφ} ιλαγηλ _α 500.0 μs/
-10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -70 dBm -7	500.0 μs/
-20 dBm TRG -20.020 dBm -20 dBm <	500.0 μs/
-20 dBm TRG -20.020 dBm Image: Constraint of the second of the seco	500.0 μs/
μια μει μαριαριμική μια μαριαριμική μια μαριαριμική μια μαριαριμική μια μαριαρική μια μαριαριαρική μια μαριαριαρική	500.0 μs/
-50 dBm -60 dBm -70 dBm -7	500.0 μs/
-50 dBm -60 dBm -70 dBm -7	
-60 dBm -70 dBm -70 dBm CF 2.441 GHz 1001 pts 500.0 Marker Type Ref Trc X-value Y-value Function Function Result M1 1 5.0 μs -18.16 dBm	
-70 dBm	
CF 2.441 GHz 1001 pts 500.0 Marker Type Ref Trc X-value Y-value Function Function Result M1 1 5.0 μs -18.16 dBm	
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 5.0 μs -18.16 dBm	
M1 1 5.0 μs -18.16 dBm	ult
SGL TRG:VID	
M1[1] -16.70	
	-16.70 dBm
D1[1] 2.3	8.00 μs 2.39 dB
D1[1] 2.3	8.00 µs
D1[1] 2.3	8.00 μs 2.39 dB
0 dBm 0 dBm0 dBm0 dBm0 dBm0 dBm	8.00 μs 2.39 dB
0 dBm 0 dBm0 dBm0 dBm0 dBm0	8.00 μs 2.39 dB
10 dBm D1[1] 2.3 0 dBm 2.8960 -10 dBm -10 dBm	8.00 μs 2.39 dB
10 dBm D1[1] 2.3 0 dBm 2.8960 -10 dBm 10 -10 dBm 10 -20 dBm TRG	8.00 µs 2.39 dB 2.89600 ms
10 dBm D1[1] 2.3 0 dBm 0 0 0 -10 dBm 10 dBm 0 0 -30 dBm -30 dBm 0 0	8.00 µs 2.39 dB 2.89600 ms
D1[1] 2.8960 0 dBm 2.8960 0 dBm 10 dBm -10 dBm 10 dBm -20 dBm 10 dBm -30 dBm 10 dBm	8.00 µs 2.39 dB 2.89600 ms
10 dBm D1[1] 2.3 10 dBm 2.8960 0 dBm 10 dBm -10 dBm 10 dBm -20 dBm 10 dBm -30 dBm 10 dBm -30 dBm 10 dBm -30 dBm 10 dBm -20 dBm 10 dBm -30 dBm 10 dBm -	8.00 µs 2.39 dB 2.89600 ms
10 dBm D1[1] 2.8960 0 dBm 2.8960 0 dBm 10 dBm -10 dBm 10 dBm -20 dBm 10 dBm -30 dBm 10 dBm -30 dBm 10 dBm -30 dBm 10 dBm -20 dBm 10 dBm -20 dBm 10 dBm -20 dBm 10 dBm -30 dBm 10 dBm -30 dBm 10 dBm -50 dBm 100 pts 60 dBm 100 pts	8.00 µs 2.39 dB 2.89600 ms
10 dBm 01[1] 2.3 0 dBm 2.8960 0 dBm 10 dBm -10 dBm 10 dBm -20 dBm 10 dBm -30 dBm 10 dBm -50 dBm 1001 pts -70 dBm 1001 pts Marker 1001 pts	8.00 µs 2.39 dB 2.89600 ms
10 dBm D1[1] 2.3 0 dBm 2.8960 0 dBm 10 dBm -10 dBm 10 dBm -20 dBm 10 dBm -30 dBm 10 dBm -30 dBm 10 dBm -50 dBm 10 dBm -60 dBm 1001 pts B00.0	8.00 µs 2.39 dB 2.89600 ms

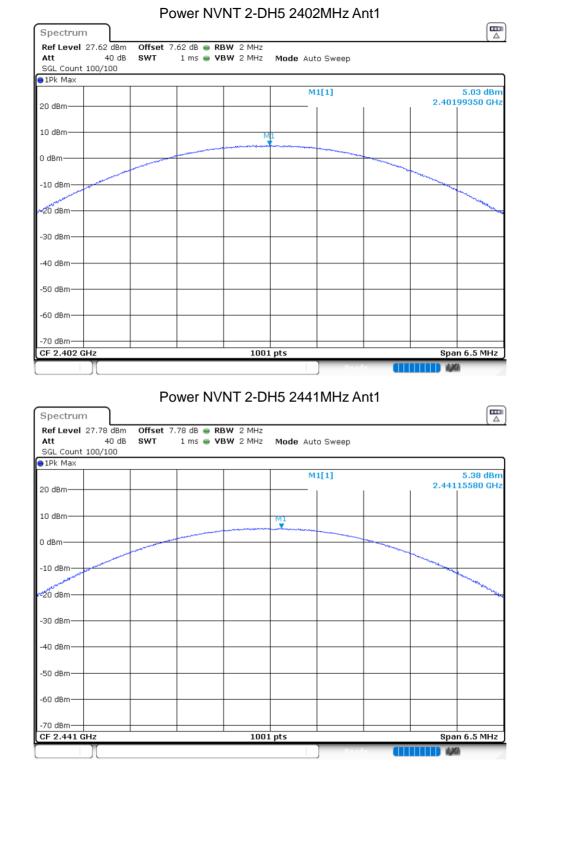


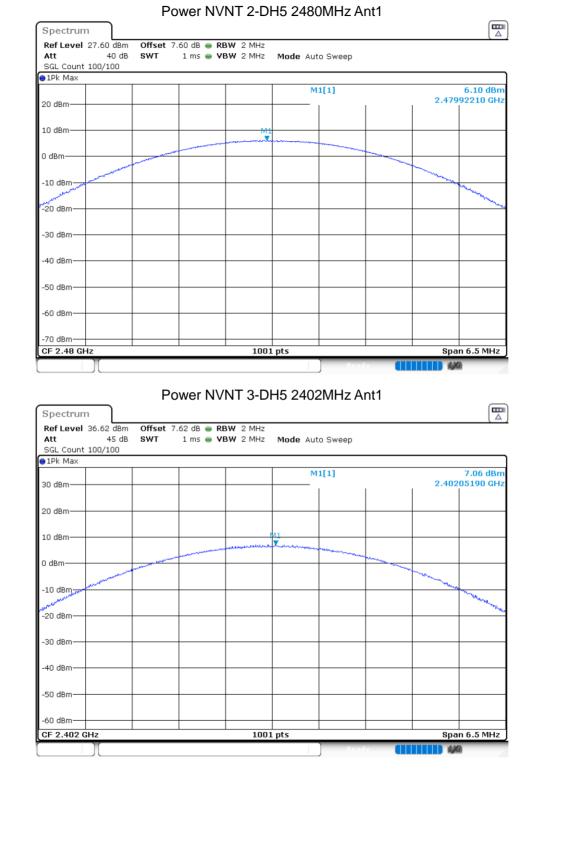
Ref Level 27.78 dBm Offse Att 40 dB SWT SGL TRG: VID	t 7.78 dB 👄 RBW 1 M 3 ms 👄 VBW 1 M					
IPk Clrw						
20 dBm		M	1[1]			-2.43 dBm 11.00 μs
		D	1[1]			1.22 dB
10 dBm						372.00 µs
0 dBm						
-10 dBm	, 100 dies .	_				
-20 dBm TRG -20.020 dBm						
		hills the star	on all.		Localda (
walan <mark>delananananananananananananananananananan</mark>	und the second s	hill have blighted	the second s	<u> Avlan In Alth</u> an	MULAUNAN	heraldylight
-50 dBm						
-60 dBm						
-70 dBm						
CF 2.441 GHz	10	001 pts	1			300.0 µs/
Marker Type Ref Trc X-va	lue Y-valu	e Func	tion	Fund	tion Result	
M1 1	11.0 µs -2.43					
	372 D LIC 1 2]
Spectrum Ref Level 27.78 dBm Offse Att 40 dB • SWT	372.0 µs 1.2 Dwell NVNT t 7.78 dB ● RBW 1 M 5 ms ● VBW 1 M	Hz] 700 141MHz			
Spectrum Ref Level 27.78 dBm Offse	Dwell NVNT	2-DH3 24] Peer	iy () (
D1 M1 1 Spectrum Ref Level 27.78 dBm Offse Att 40 dB SWT SGL TRG: VID IPk Clrw	Dwell NVNT	2-DH3 24	141MHz	IY ()		(△) 5.28 dBm
D1 M1 1 Spectrum Offse Att 40 dB SWT SGL TRG: VID 1Pk Clrw 20 dBm	Dwell NVNT	2-DH3 24		IV ()		5.28 dBm 10.00 μs -0.36 dB
D1 M1 1 Spectrum Ref Level 27.78 dBm Offse Att 40 dB SWT SGL TRG: VID IPk Clrw	Dwell NVNT	2-DH3 24	1[1]			(Δ) 5.28 dBm 10.00 μs
D1 M1 1 Spectrum Offse Att 40 dB SWT SGL TRG: VID 1Pk Clrw 20 dBm	Dwell NVNT	2-DH3 24	1[1]			5.28 dBm 10.00 μs -0.36 dB
D1 M1 1 Spectrum Offse Ref Level 27.78 dBm Offse Att 40 dB SWT SGL TRG: VID 91Pk Clrw 20 dBm 10 dBm 11	Dwell NVNT	2-DH3 24	1[1]			5.28 dBm 10.00 μs -0.36 dB
D1 M1 1 Spectrum Ref Level 27.78 dBm Offse Att 40 dB SWT SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 0 dBm	Dwell NVNT	2-DH3 24	1[1]			5.28 dBm 10.00 μs -0.36 dB
D1 M1 1 Spectrum Ref Level 27.78 dBm Offse Att 40 dB SWT SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm -10 dBm -10 dBm -10 dBm -20 dBm TRG -20.020 dBm	Dwell NVNT	2-DH3 24	1[1]			5.28 dBm 10.00 μs -0.36 dB
D1 M1 1 Ref Level 27.78 dBm Offse Att 40 dB SWT SGL TRG: VID 9 IPk Clrw 20 dBm 10 dBm 11 12 -10 dBm 70 70 -20 dBm TRG -20.020 dBm	Dwell NVNT	2-DH3 24	1[1]			5.28 dBm 10.00 μs -0.36 dB .62000 ms
D1 M1 1 Ref Level 27.78 dBm Offse Att Att 40 dB SWT SGL TRG: VID 9 IPk Clrw 20 dBm 10 dBm n 1	Dwell NVNT	2-DH3 24	1[1]			5.28 dBm 10.00 μs -0.36 dB .62000 ms
D1 M1 1 Ref Level 27.78 dBm Offse Att 40 dB SWT SGL TRG: VID 9 IPk Clrw 20 dBm 10 dBm 11 12 -10 dBm 70 70 -20 dBm TRG -20.020 dBm	Dwell NVNT	2-DH3 24	1[1]			5.28 dBm 10.00 μs -0.36 dB .62000 ms
D1 M1 1 Spectrum Ref Level 27.78 dBm Offse Att 40 dB SWT SGL TRG: VID • 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm TRG -20.020 dBm -30 dBm	Dwell NVNT	2-DH3 24	1[1]			5.28 dBm 10.00 μs -0.36 dB .62000 ms
D1 M1 1 Spectrum Ref Level 27.78 dBm Offse Att 40 dB SWT SGL TRG: VID 10 dBm 9 10 dBm 11 11 0 dBm 11 11 -10 dBm 11 11 -20 dBm TRG -20.020 dBm -30 dBm -50 dBm -50 dBm	Dwell NVNT	2-DH3 24	1[1]			5.28 dBm 10.00 μs -0.36 dB .62000 ms
D1 M1 1 Spectrum Ref Level 27.78 dBm Offse Att 40 dB SWT SGL TRG: VID 10 dBm 11 10 dBm 11 11 11 10 dBm 11 11 11 20 dBm 11 11 11 -20 dBm 11 11 11 -30 dBm -30 dBm -30 11 -50 dBm -50 dBm -50 11 11 -70 dBm -70 12 12 12 -70 dBm -74 GF 2.441 14 14	Dwell NVNT	2-DH3 24	1[1]		ործգյի\իուհչուն,յ	5.28 dBm 10.00 μs -0.36 dB .62000 ms
D1 M1 1 Spectrum Ref Level 27.78 dBm Offse Att 40 dB SWT SGL TRG: VID 1Pk Clrw SWT 20 dBm 10 dBm 1 10 dBm 1 1 -10 dBm 1 1 -20 dBm TRG -20.020 dBm -30 dBm -30 dBm -30 dBm -60 dBm -70 dBm -70 dBm	Dwell NVNT t 7.78 dB • RBw 1 M 5 ms • VBW 1 M	2-DH3 24			ործգյի\իուհչուն,յ	5.28 dBm 10.00 μs -0.36 dB .62000 ms
D1 M1 1 Spectrum Ref Level 27.78 dBm Offse Att 40 dB • SWT SGL TRG: VID •10 dBm •1Pk Clrw - 20 dBm - 10 dBm - -10 dBm - -20 dBm TRG -20 dBm - -50 dBm - -50 dBm - -70 dBm - -70 dBm - -70 dBm - -70 dBm -	Dwell NVNT	2-DH3 24			ogitegit/dat/orty	5.28 dBm 10.00 μs -0.36 dB .62000 ms

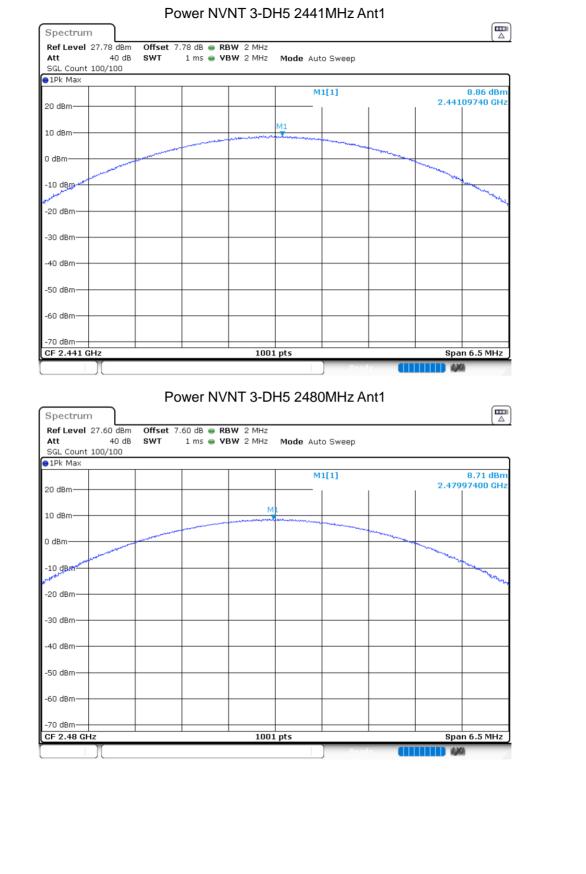


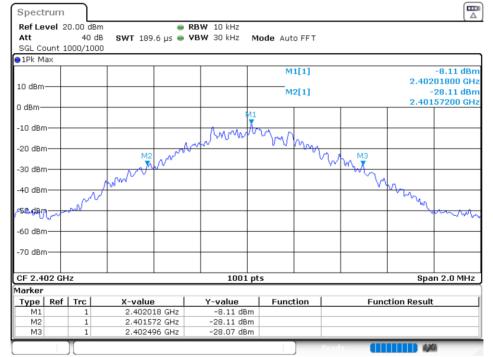

8.2 MAXIMUM CONDUCTED OUTPUT POWER

 		••				
Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	5.89	30	Pass
NVNT	1-DH5	2441	Ant 1	4.76	30	Pass
NVNT	1-DH5	2480	Ant 1	6.51	30	Pass
NVNT	2-DH5	2402	Ant 1	5.03	20.97	Pass
NVNT	2-DH5	2441	Ant 1	5.38	20.97	Pass
NVNT	2-DH5	2480	Ant 1	6.10	20.97	Pass
NVNT	3-DH5	2402	Ant 1	7.06	20.97	Pass
NVNT	3-DH5	2441	Ant 1	8.86	20.97	Pass
NVNT	3-DH5	2480	Ant 1	8.71	20.97	Pass


Power NVNT 1-DH5 2402MHz Ant1

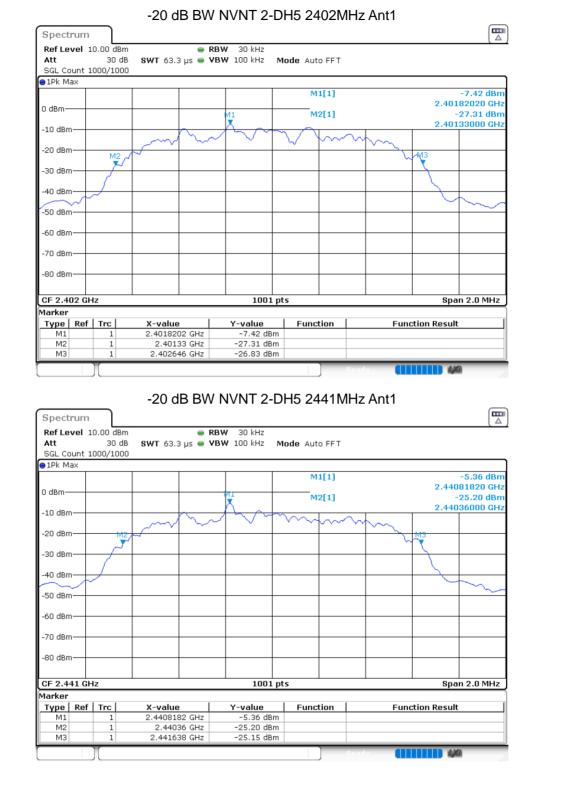


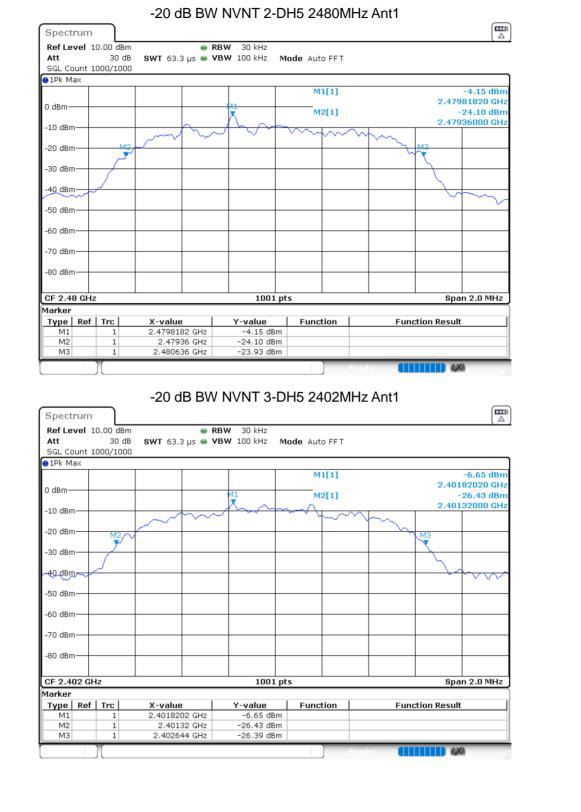


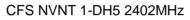


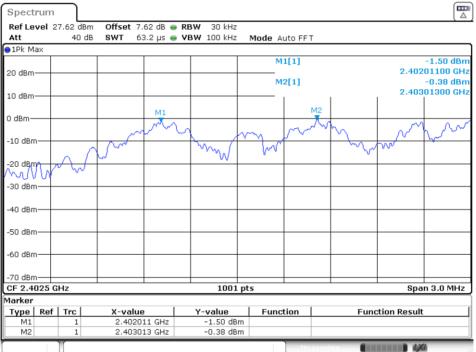
8.3 OCCUPIED CHANNEL BANDWIDTH

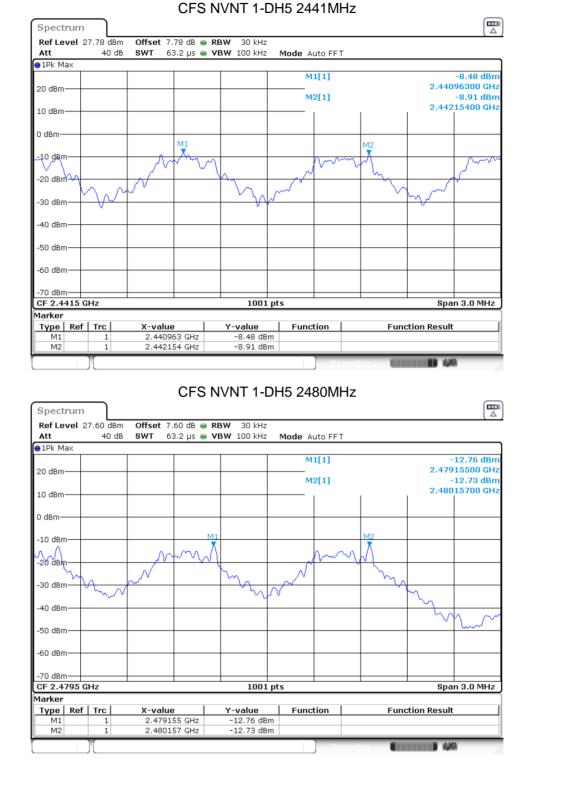
Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant 1	0.924	Pass
NVNT	1-DH5	2441	Ant 1	0.996	Pass
NVNT	1-DH5	2480	Ant 1	0.982	Pass
NVNT	2-DH5	2402	Ant 1	1.316	Pass
NVNT	2-DH5	2441	Ant 1	1.278	Pass
NVNT	2-DH5	2480	Ant 1	1.276	Pass
NVNT	3-DH5	2402	Ant 1	1.324	Pass
NVNT	3-DH5	2441	Ant 1	1.328	Pass
NVNT	3-DH5	2480	Ant 1	1.262	Pass


-20 dB BW NVNT 1-DH5 2402MHz Ant1

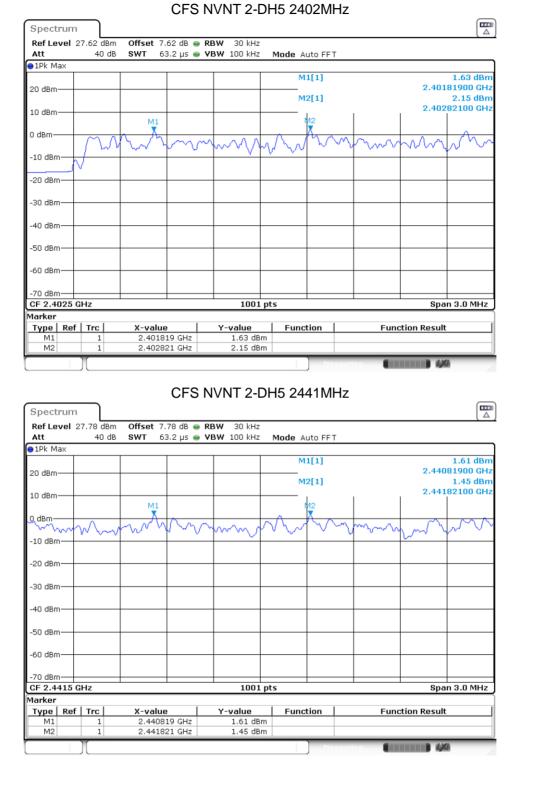


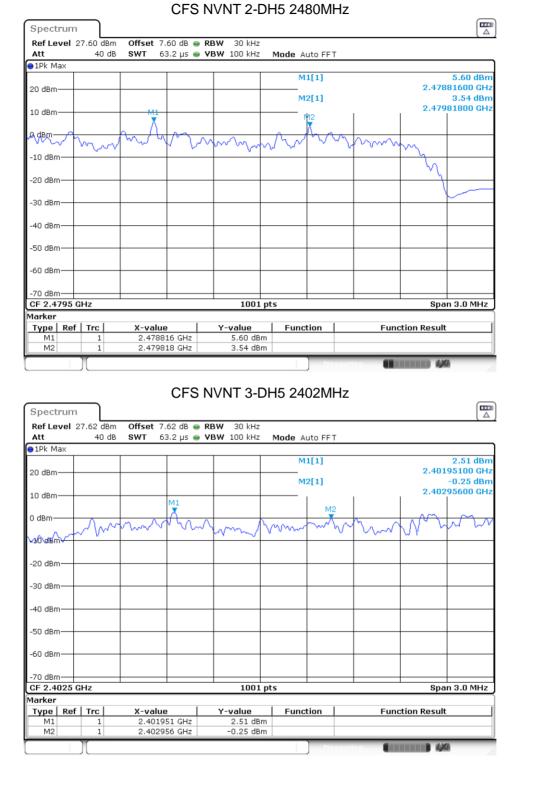


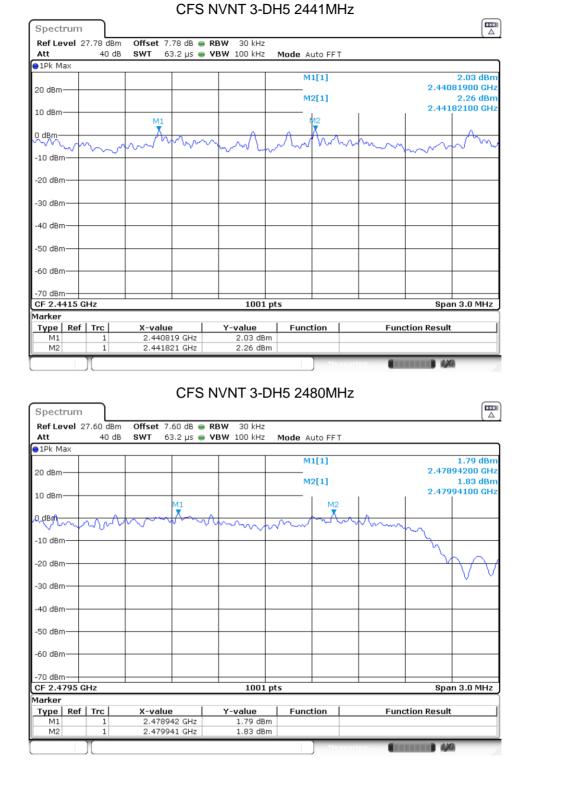


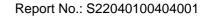

8.4 CARRIER FREQUENCIES SEPARATION

Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2	HFS	Limit	Verdict
Condition	Mode	Hopping Freq (MHZ)	(MHz)	(MHz)	(MHz)	verdict
NVNT	1-DH5	2402.011	2403.013	1.002	0.982	Pass
NVNT	1-DH5	2440.963	2442.154	1.191	0.982	Pass
NVNT	1-DH5	2479.155	2480.157	1.002	0.982	Pass
NVNT	2-DH5	2401.819	2402.821	1.002	0.841	Pass
NVNT	2-DH5	2440.819	2441.821	1.002	0.841	Pass
NVNT	2-DH5	2478.816	2479.818	1.002	0.885	Pass
NVNT	3-DH5	2401.951	2402.956	1.005	0.883	Pass
NVNT	3-DH5	2440.819	2441.821	1.002	0.841	Pass
NVNT	3-DH5	2478.942	2479.941	0.999	0.885	Pass









8.5 NUMBER OF HOPPING CHANNEL

Condition	Mode	Hopping Number	Limit	Verdict
NVNT	1-DH5	79	15	Pass

	40 dB 3000/8000	SWT 1 ms 👄	RBW 100 kHz VBW 300 kHz	Mode Auto Swe	ер		
∋1Pk Max		1					
20 dBm				M1[1]		2 40	-2.15 dBm 03340 GHz
20 uBili				M2[1]		2.40	2.82 dBm
10 dBm						2.48	02435 GHz
1					NA OTHER WARDER	allin Aldus Albudu	M2
P NRM IN TH	MAANNA	newer nations	<u>n na arang na baba</u>	<i>THY DAY AND</i>			MANA
10 dBm	י אין ד		<u>, Matha a tha Ann</u>	<u> </u>	· ////····///	I	
1		и, I,	N N		1		
-20 dBm							
-30 dBm							
-50 0.0111							1
-40 dBm							<u> </u>
-50 dBm							
-60 dBm							
CO GDIII							
-70 dBm							
Start 2.4 GH	łz		1001 pt	5		Stop 2	.4835 GHz
Marker	1	X	N				
Type Ref M1	1 Trc	2.400334 GHz	Y-value -2.15 dBm	Function	Func	tion Result	
M2	1	2.4802435 GHz	2.82 dBm				

8.6 BAND EDGE

0.0 DAND							
Condition	Mode	Frequency	Antenna	Hopping Mode	Max Value	Limit (dBc)	Verdict
		(MHz)			(dBc)		
NVNT	1-DH5	2402	Ant 1	No-Hopping	-43.13	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-39.25	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-48.38	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-30.42	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-43.61	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-41.37	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-45.58	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-42.17	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-44.51	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-41.11	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-49.01	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-39.64	-20	Pass

Spectrum									
Ref Level 27.62 dB			RBW 100 kH						
Att 40 a	18 SWT 22	27.5 µs 👄	VBW 300 kH	z Mode /	Auto FFT				
SGL Count 100/100									
IPK Max	-				1[1]			5.32 d	Direct
20 dBm					1[1]		2,402	05000 (
				м	2[1]			45.74 d	
.0 dBm							2.400	000001	SHz
) dBm									
, abiii									
10 dBm									
D1 -14.2	32 dBm								
20 dBm									
30 dBm				M4					
				T				l í	
40 dBm	A subscribe	In the Part States	Sec. Mrridiano				M3 ⊾h¥uabht	Ma	hin
ማሪያ የመጠረ የሚያስት የስት የስት የስት የስት የስት የስት የስት የስት የስት የ	a-manageral and a state of the	A.Man Al.	and constrained as	mannan was	MMMMMMMMM	www.yukpash	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mhilles.	- or you
60 dBm			+						
70 dBm									
Start 2.306 GHz			1001	pts			Stop 2	2.406 G	Hz
arker									_
Type Ref Trc	X-value		Y-value	Func	tion 📋	Func	tion Result		
M1 1		05 GHz	5.32 dB						
M2 1 M3 1		.4 GHz	-45.74 dB						_
M3 1 M4 1		39 GHz 62 GHz	-45.30 dB -37.37 dB						_
	dge(Hopp	oing) N'	VNT 1-D	0H5 240) – teod 2MHz A	Ant1 Hop	oping R	ef	
Spectrum Ref Level 27.62 dB	m Offset 7.	62 dB 🖷 R	BW 100 kHz) Pow 2MHz A	Ant1 Hop	oping Re	ef	
Spectrum Ref Level 27.62 dB Att 40 d	m Offset 7. JB SWT 18	62 dB 🖷 R				Ant1 Hop	oping R	ef	
Spectrum Ref Level 27.62 dB Att 40 c SGL Count 2000/200	m Offset 7. JB SWT 18	62 dB 🖷 R	BW 100 kHz			Ant1 Hop	oping Re	ef	
Spectrum Ref Level 27.62 dB Att 40 d	m Offset 7. JB SWT 18	62 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop	oping Re	(
Spectrum Ref Level 27.62 dB Att 40 d SGL Count 2000/200 1Pk Max	m Offset 7. JB SWT 18	62 dB 🖷 R	BW 100 kHz	Mode A		Ant1 Hop		1.17 d	Bm
Spectrum Ref Level 27.62 dB Att 40 c SGL Count 2000/200	m Offset 7. JB SWT 18	62 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		(Bm
Spectrum Ref Level 27.62 dB Att 40 d SGL Count 2000/200 1Pk Max 20 dBm	m Offset 7. JB SWT 18	62 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.17 d	Bm
Spectrum Ref Level 27.62 dB Att 40 d SGL Count 2000/200 1Pk Max	m Offset 7. JB SWT 18	62 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.17 d	Bm
Ref Level 27.62 dB Att 40 d GGL Count 2000/200 1Pk Max 0 dBm	m Offset 7. JB SWT 18	62 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.17 d 85210 (Bm
Spectrum Ref Level 27.62 dB Att 40 d SGL Count 2000/200 1Pk Max 10 dBm 0 dBm	m Offset 7. JB SWT 18	62 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.17 d 85210 (∆ Bm GHz
Spectrum Ref Level 27.62 dB Att 40 d SGL Count 2000/200 OPK Max 20 dBm .0 dBm	m Offset 7. JB SWT 18	62 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.17 d 85210 (∆ Bm GHz
Spectrum Ref Level 27.62 dB Att 40 d SGL Count 2000/200 1Pk Max 20 dBm .0 dBm	m Offset 7. JB SWT 18	62 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.17 d 85210 (∆ Bm GHz
Spectrum Ref Level 27.62 dB Att 40 d SGL Count 2000/200 1Pk Max 20 dBm .0 dBm	m Offset 7. JB SWT 18	62 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.17 d 85210 (∆ Bm GHz
Spectrum Ref Level 27.62 dB Att 40 d SGL Count 2000/200 1Pk Max 20 dBm .0 dBm 10 dBm	m Offset 7. JB SWT 18	62 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.17 d 85210 (∆ Bm GHz
Spectrum Ref Level 27.62 dB Att 40 d SGL Count 2000/200 1Pk Max 20 dBm	m Offset 7. JB SWT 18	62 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.17 d 85210 (∆ Bm GHz
By Dectrum Ref Level 27.62 dB Att 40 d 5GL Count 2000/200 1Pk Max 0 dBm 0 dBm 10 dBm 20 dBm 20 dBm	m Offset 7. JB SWT 18	62 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.17 d 85210 (∆ Bm GHz
By Dectrum Ref Level 27.62 dB Att 40 d 5GL Count 2000/200 1Pk Max 0 dBm 0 dBm 10 dBm 20 dBm 20 dBm	m Offset 7. JB SWT 18	62 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.17 d 85210 (∆ Bm GHz
Spectrum Ref Level 27.62 dB Att 40 d SGL Count 2000/200 1PK Max 00 dBm 0 dBm 10 dBm 20 dBm 20 dBm 30 dBm	m Offset 7. JB SWT 18	62 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.17 d 85210 (∆ Bm GHz
Spectrum Ref Level 27.62 dB Att 40 d SGL Count 2000/200 11Pk Max 20 dBm 0 dBm 10 dBm 20 dBm 30 dBm	m Offset 7. JB SWT 18	62 dB 🖷 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.17 d 85210 (∆ Bm GHz
Spectrum Ref Level 27.62 dB Att 40 d SGL Count 2000/200 11Pk Max 20 dBm 10 dBm 20 dBm 20 dBm 30 dBm 40 dBm	m Offset 7. JB SWT 18	62 dB ● R 3.9 μs ● V	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.17 d 85210 (∆ Bm GHz
Spectrum Ref Level 27.62 dB Att 40 d SGL Count 2000/200 1Pk Max 20 dBm .0 dBm 10 dBm	m Offset 7. JB SWT 18	62 dB ● R 3.9 μs ● V	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.17 d 85210 (∆ Bm GHz
Spectrum Ref Level 27.62 dB Att 40 d SGL Count 2000/200 11Pk Max 20 20 dBm 20 10 dBm 20 20 dBm 20 30 dBm 40 dBm 50 dBm 50 dBm	m Offset 7. JB SWT 18	62 dB ● R 3.9 μs ● V	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.17 d 85210 (∆ Bm GHz
Spectrum Ref Level 27.62 dB Att 40 d SGL Count 2000/200 1PK Max 10 dBm 10 dBm 20 dBm 20 dBm 30 dBm 40 dBm	m Offset 7. JB SWT 18	62 dB ● R 3.9 μs ● V	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.17 d 85210 (∆ Bm GHz
Spectrum Ref Level 27.62 dB SGL Count 2000/200 IPK Max 0 dBm 0 dBm 0 dBm 20 dBm 30 dBm 30 dBm 50 dBm 50 dBm	m Offset 7. JB SWT 18	62 dB ● R 3.9 μs ● V	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		1.17 d 85210 (∆ Bm GHz
Spectrum Ref Level 27.62 dB Att 40 d SGL Count 2000/200 1Pk Max 0 dBm 0 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm	m Offset 7. JB SWT 18	62 dB ● R 3.9 μs ● V	BW 100 kHz	Mode A	uto FFT	Ant1 Hop	2.405	1.17 d 85210 (Bm 3Hz

20 dBm	2.406 GHz
20 dBm 2.4059500 10 dBm 2.4059500 0 dBm 2.4000000 0 dBm 2.4000000 0 dBm 2.4000000 -10 dBm 2.4000000 -27.0 2.4000000 0 dBm 2.4000000 -27.0 2.4000000 -10 dBm -0 -20 dBm -0 -40 dBm -0 -50 dBm -0 -60 dBm -0 -70 dBm -0 M1 1 2.40595 GHz -2.40 dBm -0 M3 1 2.387 GHz	-27.03 dBm 000000 GHz M2 M2 M2 0 2.406 GHz
10 dBm 2.4000000 0 dBm -0 dBm -10 dBm -10 dBm -20 dBm -10 dBm -30 dBm -10 dBm -30 dBm -10 dBm -30 dBm -10 dBm -40 dBm -10 dBm -50 dBm -10 dBm -60 dBm -10 dBm -70 dBm -10 dBm M1 1 2.40595 GHz 2.40 dBm M2 1 2.40595 GHz -38.09 dBm M4 1	000000 GHz
-10 dBm -2U dBm -2U dBm -30 dBm -40 dBm -40 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -60 dBm -70 dBm -60 dBm -70 dBm -70 dBm -60 dBm -70	2.406 GHz
-20 dBm 01 -18.834 dBm 0	2.406 GHz
-30 dBm	2.406 GHz
-40 dBm	2.406 GHz
-50 dBm -60 dBm -70 dBm -70 dBm -60 dBm -60 dBm -70 dBm	2.406 GHz
-60 dBm -70 dBm Image: constraint of the second se	
To dBm Stop 2.406 Start 2.306 GHz 1001 pts Stop 2.406 Marker Trc X-value Y-value Function Function Result M1 1 2.40595 GHz 2.40 dBm 6<	
Start 2.306 GHz 1001 pts Stop 2.406 Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.40595 GHz 2.40 dBm 6 6 6 6 6 6 6 6 7 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 7 6 7	
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.40595 GHz 2.40 dBm Function Function Result <t< td=""><td></td></t<>	
M1 1 2.40595 GHz 2.40 dBm M2 1 2.4 GHz -27.03 dBm M3 1 2.387 GHz -38.09 dBm M4 1 2.387 GHz -38.09 dBm Port Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Spectrum	
M3 1 2.387 GHz -38.09 dBm M4 1 2.387 GHz -38.09 dBm Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref Spectrum	×4
Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Ref	XII
Spectrum	
SGL Count 100/100	5.89 dBm
	998400 GHz
10 dBm	
0 dBm	
-10 dBm	
-20 dBm	+
20 dBm	
-30 dBm	
-40 dBm	
-40 dBm	······
-40 dBm	
-40 dBm	
-40 dBm -50 dBm -60 dBm -70 dBm	

Att SGL Count 1Pk Max	40 dB 100/100	SWT 22		VBW 300 k⊢		Auto FFT			6 50 d0m
20 dBm				_		1[1]		2.48	6.52 dBm 015000 GHz
10 10 m				_	M	2[1]		2.48	-45.07 dBm 350000 GHz
o dem —				_					
-10 dBm				_					
	D1 -14.109	dBm							
11 1									
-30 dBm	M4							1	
		when when when	how they	mon lunger	Manuetal	welgeling we	halanamahah	althing when	Mynamerul
-50 dBm									
-60 dBm				-					+
-70 dBm	5 0 4 7			1001	nte			Stor	2.576 GHz
				1001	, pra			atop	2.370 GHZ
larker									
Type Ref		X-value 2,480		Y-value 6.52 dE	Func	tion	Fund	tion Resu	lt 🔤
Type Ref M1 M2	1	2.480 2.483	15 GHz 35 GHz	6.52 dE -45.07 dE	im im	tion	Fund	tion Resu	lt
Type Ref M1	1	2.480 2.48 2	15 GHz	6.52 dE	im im	tion	Fund	tion Resu	
Type Ref M1 M2 M3 M4 B2 Spectrum Ref Level Att	1 1 1 27.60 dBm 40 dB	2.480 2.483 2.483 2.489 0e(Hopp Offset 7.	15 GHz 35 GHz 5 GHz 96 GHz Ding) N	6.52 dE -45.07 dE -44.27 dE	m m m 0H5 248) Period	· (1		
Type Ref M1 M2 M3 M4 M4 Spectrum Ref Level Att SGL Count	1 1 1 27.60 dBm 40 dB	2.480 2.483 2.483 2.489 0e(Hopp Offset 7.	15 GHz 35 GHz 5 GHz 96 GHz Ding) N	6.52 de -45.07 de -44.27 de -42.49 de	m m m 0H5 248) Period	· (1		Ref
M2 M3 M4 Ba Spectrum Ref Level Att SGL Count IPk Max	1 1 1 27.60 dBm 40 dB	2.480 2.483 2.483 2.489 0e(Hopp Offset 7.	15 GHz 35 GHz 5 GHz 96 GHz Ding) N	6.52 de -45.07 de -44.27 de -42.49 de	m m DH5 248 Mode A) Period	· (1	pping F	Ref
Type Ref M1 M2 M3 M4 B2 Spectrum Ref Level Att SGL Count D1Pk Max	1 1 1 27.60 dBm 40 dB	2.480 2.483 2.483 2.489 0e(Hopp Offset 7.	15 GHz 35 GHz 5 GHz 96 GHz Ding) N	6.52 de -45.07 de -44.27 de -42.49 de	m m DH5 248 Mode A) Room OMHz A	· (1	pping F	Ref
Type Ref M1 M2 M3 M4 Ba Spectrum Ref Level Att SGL Count PIPk Max 20 dBm	1 1 1 27.60 dBm 40 dB	2.480 2.483 2.483 2.489 0e(Hopp Offset 7.	15 GHz 35 GHz 5 GHz 96 GHz Ding) N	6.52 de -45.07 de -44.27 de -42.49 de	m m DH5 248 Mode A) Room OMHz A	· (1	pping F	Ref
Type Ref M1 M2 M4 Ba Spectrum Ref Level Att SGL Count DPk Max 20 dBm 10 dBm	1 1 1 27.60 dBm 40 dB	2.480 2.483 2.483 2.489 0e(Hopp Offset 7.	15 GHz 35 GHz 5 GHz 96 GHz Ding) N	6.52 de -45.07 de -44.27 de -42.49 de	m m DH5 248 Mode A) Room OMHz A	· (1	pping F	Ref
Type Ref M1 M2 M3 M4 Ba Spectrum Ref Level Att SGL Count PIPk Max 20 dBm	1 1 1 27.60 dBm 40 dB 2000/2000	2.480 2.483 2.483 2.489 0e(Hopp Offset 7.	15 GHz 35 GHz 5 GHz 96 GHz Ding) N	6.52 de -45.07 de -44.27 de -42.49 de	m m DH5 248 Mode A) Room OMHz A	· (1	pping F	Ref
Type Ref M1 M2 M4 Ba Spectrum Ref Level Att SGL Count DPk Max 20 dBm 10 dBm	1 1 1 27.60 dBm 40 dB	2.480 2.48 2 2.48 ge(Hopp Offset 7. SWT 18	15 GHz 35 GHz .5 GHz 96 GHz bing) Ν 60 dB 3.9 μs	6.52 de -45.07 de -44.27 de -42.49 de JVNT 1-C RBW 100 kHz YBW 300 kHz	Mode A) Room OMHz A	· (1	pping F	Ref
Type Ref M1 M2 M3 M4 B2 Spectrum Ref Level Att SGL Count 10 dBm 0 dBm 10 dBm	1 1 1 27.60 dBm 40 dB 2000/2000	2.480 2.483 2.483 2.489 0e(Hopp Offset 7.	15 GHz 35 GHz 5 GHz 96 GHz Ding) N	6.52 de -45.07 de -44.27 de -42.49 de JVNT 1-C RBW 100 kHz YBW 300 kHz	m m DH5 248 Mode A) Room OMHz A	· (1	pping F	Ref
Type Ref M1 M2 M3 M4 B2 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm	1 1 1 27.60 dBm 40 dB 2000/2000	2.480 2.48 2 2.48 ge(Hopp Offset 7. SWT 18	15 GHz 35 GHz .5 GHz 96 GHz bing) Ν 60 dB 3.9 μs	6.52 de -45.07 de -44.27 de -42.49 de JVNT 1-C RBW 100 kHz YBW 300 kHz	Mode A) Room OMHz A	· (1	pping F	Ref
Type Ref M1 M2 M3 M4 B2 Spectrum Ref Level Att SGL Count 10 dBm 0 dBm 10 dBm	1 1 1 27.60 dBm 40 dB 2000/2000	2.480 2.48 2 2.48 ge(Hopp Offset 7. SWT 18	15 GHz 35 GHz .5 GHz 96 GHz bing) Ν 60 dB 3.9 μs	6.52 de -45.07 de -44.27 de -42.49 de JVNT 1-C RBW 100 kHz YBW 300 kHz	Mode A) Room OMHz A	· (1	pping F	Ref
Type Ref M1 M2 M3 M4 Ba Spectrum Ref Level Att SGL Count 10 dBm 10 dBm 10 dBm 10 dBm	1 1 1 27.60 dBm 40 dB 2000/2000	2.480 2.48 2 2.48 ge(Hopp Offset 7. SWT 18	15 GHz 35 GHz .5 GHz 96 GHz bing) Ν 60 dB 3.9 μs	6.52 de -45.07 de -44.27 de -42.49 de JVNT 1-C RBW 100 kHz YBW 300 kHz	Mode A) Room OMHz A	· (1	pping F	Ref
Type Ref M1 M2 M3 M4 Base Base Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 10 dBm 0 dBm -10 dBm	1 1 1 27.60 dBm 40 dB 2000/2000	2.480 2.48 2 2.48 ge(Hopp Offset 7. SWT 18	15 GHz 35 GHz .5 GHz 96 GHz bing) Ν 60 dB 3.9 μs	6.52 de -45.07 de -44.27 de -42.49 de JVNT 1-C RBW 100 kHz YBW 300 kHz	Mode A) Room OMHz A	· (1	pping F	Ref
Type Ref M1 M2 M3 M4 B2 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 10 dBm 30 dBm	1 1 1 27.60 dBm 40 dB 2000/2000	2.480 2.48 2 2.48 ge(Hopp Offset 7. SWT 18	15 GHz 35 GHz .5 GHz 96 GHz bing) Ν 60 dB 3.9 μs	6.52 de -45.07 de -44.27 de -42.49 de JVNT 1-C RBW 100 kHz YBW 300 kHz	Mode A) Room OMHz A	· (1	pping F	Ref
Type Ref M1 M2 M3 M4 Base Base Spectrum Ref Level Att SGL Count 1Pk Max 1Pk Max 20 dBm 10 dBm 10 dBm 30 dBm 40 dBm 40 dBm	1 1 1 27.60 dBm 40 dB 2000/2000	2.480 2.48 2 2.48 ge(Hopp Offset 7. SWT 18	15 GHz 35 GHz .5 GHz 96 GHz bing) Ν 60 dB 3.9 μs	6.52 de -45.07 de -44.27 de -42.49 de JVNT 1-C RBW 100 kHz YBW 300 kHz	Mode A) Room OMHz A	· (1	pping F	Ref
Type Ref M1 M2 M3 M4 Base Base Spectrum Ref Level Att SGL Count SIPK Max 20 dBm 10 dBm 0 10 dBm 0 30 dBm 30 dBm 40 dBm 50 dBm 60 dBm 60 dBm	1 1 1 27.60 dBm 40 dB 2000/2000	2.480 2.48 2 2.48 ge(Hopp Offset 7. SWT 18	15 GHz 35 GHz .5 GHz 96 GHz bing) Ν 60 dB 3.9 μs	6.52 de -45.07 de -44.27 de -42.49 de JVNT 1-C RBW 100 kHz YBW 300 kHz	Mode A) Room OMHz A	· (1	pping F	Ref
Type Ref M1 M2 M3 M4 Base Base Spectrum Base Ref Level Att SQL Count DiPk Max 20 dBm 0 dBm 10 dBm 0 dBm 30 dBm 30 dBm 40 dBm 50 dBm	1 1 1 1 1 27.60 dBm 40 dB 2000/2000	2.480 2.48 2 2.48 ge(Hopp Offset 7. SWT 18	15 GHz 35 GHz .5 GHz 96 GHz bing) Ν 60 dB 3.9 μs	6.52 de -45.07 de -44.27 de -42.49 de JVNT 1-C RBW 100 kHz YBW 300 kHz	Mode A) Room OMHz A	· (1	2.47	Ref

∎1Pk Max	1000/1000]
20 dBm					M	1[1]			12.06 dBm 15000 GHz
10 dBm					м	2[1]	1	-	44.11 dBm 50000 GHz
0 dBm									
-16 dBm									
-80'dBm	D1 -31.966 M4	dBm M3							
-40 dBm -50 dBm-		ered mind y lever deser	own that we	al warder and	research metry ho	Unlustra	eventermen	adril manufacture	myladowards
-60 dBm—									
-70 dBm	6 GHz			1001	pts			Stop 2	2.576 GHz
1arker									
						tion	Fund	tion Result	
Type Re M1 M2	1	2.48	15 GHz 35 GHz	Y-value -12.06 dB -44.11 dB -43.18 dB	m				
Type Re M1	1	2.479 2.48 2	15 GHz	-12.06 dB	im im				
Type Re M1 M2 M3 M4 Spectrur Ref Level	Band	2.479 2.48: 2.49: Edge N Offset 7.	15 GHz 35 GHz .5 GHz 38 GHz VNT 2- 62 dB • R	-12.06 de -44.11 de -43.18 de -42.39 de DH5 24	m m m D2MHz) Peor	· (11		
Type Re M1 M2 M3 M4 Spectrur Ref Level Att SGL Count	1 1 1 Band n 27.62 dBm 40 dB	2.479 2.48: 2.49: Edge N Offset 7.	15 GHz 35 GHz .5 GHz 38 GHz VNT 2- 62 dB • R	-12.06 de -44.11 de -43.18 de -42.39 de	m m m D2MHz) Room	· (11		
Type Re M1 M3 M4 Spectrur Ref Level Att SGL Count	1 1 1 Band n 27.62 dBm 40 dB	2.479 2.48: 2.49: Edge N Offset 7.	15 GHz 35 GHz .5 GHz 38 GHz VNT 2- 62 dB • R	-12.06 de -44.11 de -43.18 de -42.39 de DH5 24	m m m D2MHz) Peor	· (11	ng Ref	
Type Re M1 M3 M4 Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm	1 1 1 Band n 27.62 dBm 40 dB	2.479 2.48: 2.49: Edge N Offset 7.	15 GHz 35 GHz .5 GHz 38 GHz VNT 2- 62 dB • R	-12.06 de -44.11 de -43.18 de -42.39 de DH5 24(BW 100 kHz BW 300 kHz	m m m D2MHz) Room	· (11	ng Ref	(TA) 3.07 dBm
Type Re M1 M2 M3 M4 Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm	1 1 1 Band n 27.62 dBm 40 dB	2.479 2.48: 2.49: Edge N Offset 7.	15 GHz 35 GHz .5 GHz 38 GHz VNT 2- 62 dB • R	-12.06 de -44.11 de -43.18 de -42.39 de DH5 24	m m m D2MHz) Room	· (11	ng Ref	(TA) 3.07 dBm
Type Re M1 M2 M3 M4 Spectrur	1 1 1 Band n 27.62 dBm 40 dB	2.479 2.48: 2.49: Edge N Offset 7.	15 GHz 35 GHz .5 GHz 38 GHz VNT 2- 62 dB • R	-12.06 de -44.11 de -43.18 de -42.39 de DH5 24(BW 100 kHz BW 300 kHz	m m m D2MHz) Room	· (11	ng Ref	(TA) 3.07 dBm
Type Ref M1 M2 M3 M4 Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm	1 1 1 Band n 27.62 dBm 40 dB	2.479 2.48: 2.49: Edge N Offset 7.	15 GHz 35 GHz .5 GHz 38 GHz VNT 2- 62 dB • R	-12.06 de -44.11 de -43.18 de -42.39 de DH5 24(BW 100 kHz BW 300 kHz	m m m D2MHz) Room	· (11	ng Ref	(TA) 3.07 dBm
Type Ref M1 M2 M3 M4 Spectrur Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm	1 1 1 Band n 27.62 dBm 40 dB	2.479 2.48: 2.49: Edge N Offset 7.	15 GHz 35 GHz .5 GHz 38 GHz VNT 2- 62 dB • R	-12.06 de -44.11 de -43.18 de -42.39 de DH5 24(BW 100 kHz BW 300 kHz	m m m D2MHz) Room	· (11	ng Ref	(TA) 3.07 dBm
Type Ref M1 M2 M3 M4 Spectrur Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm	1 1 1 Band n 27.62 dBm 40 dB	2.479 2.48: 2.49: Edge N Offset 7.	15 GHz 35 GHz .5 GHz 38 GHz VNT 2- 62 dB • R	-12.06 de -44.11 de -43.18 de -42.39 de DH5 24(BW 100 kHz BW 300 kHz	m m m D2MHz) Room	· (11	ng Ref	(TA) 3.07 dBm
Type Ref M1 M2 M3 M4 Spectrur Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm	1 1 1 Band n 27.62 dBm 40 dB	2.479 2.48: 2.49: Edge N Offset 7.	15 GHz 35 GHz .5 GHz 38 GHz VNT 2- 62 dB • R	-12.06 de -44.11 de -43.18 de -42.39 de DH5 24(BW 100 kHz BW 300 kHz	m m m D2MHz) Room	· (11	ng Ref	(TA) 3.07 dBm
Type Re M1 M2 M3 M4 M4 Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm	1 1 1 Band n 27.62 dBm 40 dB	2.479 2.48: 2.49: Edge N Offset 7.	15 GHz 35 GHz .5 GHz 38 GHz VNT 2- 62 dB • R	-12.06 de -44.11 de -43.18 de -42.39 de DH5 24(BW 100 kHz BW 300 kHz	m m m D2MHz) Room	· (11	ng Ref	(TA) 3.07 dBm
Type Re M1 M2 M3 M4 Spectrur Ref Level Att SGL Count 91Pk Max 20 dBm 10 dBm	1 1 1 1 27.62 dBm 40 dB 100/100	2.479 2.48: 2.49: Edge N Offset 7.	15 GHz 35 GHz .5 GHz 38 GHz VNT 2- 62 dB • R	-12.06 de -44.11 de -43.18 de -42.39 de DH5 24(BW 100 kHz BW 300 kHz	m m m D2MHz /) Room	· (11	2.401	(TA) 3.07 dBm

Spectrum	1							
Ref Level 27.62		t 7.62 dB 👄						
	10 dB SWT	227.5 µs 👄	VBW 300 kH	z Mode	Auto FFT			
SGL Count 100/1 1Pk Max	.00							
				м	1[1]			1.87 dBm
20 dBm					1[1]		2,401	65000 GHz
				м	2[1]			46.42 dBm
10 dBm							2.400	00000 GHz
) dBm								T.
Jubin								1 0
10 dBm								
20 dBm D1 -1	.6.930 dBm							
20 UDIII								
30 dBm								\vdash
40 d0m-			M4					1 1 1
40 dBm	Much rates in	wry may have	Julion Monum	Henry	and Antikated Associated	and a weather was	M3 MANN TIN - Arth	M2
-50 dBm	- marine and a merilia	A dimmin		Mannyayi Willer	www.vuur~~~V0~~4u	սիս ու Ն - Դի - ռոույի,	n. "Mm Persyle	intration of the
-60 dBm								
-70 dBm								
Start 2.306 GHz			1001	pts			Stop	2.406 GHz
1arker								
Type Ref Tro		alue	Y-value	Func	tion	Fund	tion Result	:
		40165 GHz	1.87 dB					
	1 1	2.4 GHz 2.39 GHz	-46.42 dB -45.94 dB					
Band	1 2	opping) N	-40.54 dB) D2MHz A	Ant1 Ho	oping R	Ē
Band Spectrum Ref Level 27.62	Edge(Ho	2.3502 GHz Opping) N t 7.62 dB • F	-40.54 dB	0H5 240		Ant1 Hoj	oping R	
Band Spectrum Ref Level 27.62 Att	Edge(Ho	2.3502 GHz Opping) N t 7.62 dB • F	-40.54 dB	0H5 240		Ant1 Ho	oping R	Ē
Band Spectrum Ref Level 27.62 Att 2 SGL Count 8000/	Edge(Ho	2.3502 GHz Opping) N t 7.62 dB • F	-40.54 dB	0H5 240		Ant1 Ho	oping R	Ē
Band Spectrum Ref Level 27.62	Edge(Ho	2.3502 GHz Opping) N t 7.62 dB • F	-40.54 dB	0H5 240 Mode A	uto FFT	Ant1 Ho	oping R	
Band Spectrum Ref Level 27.62 Att 2 SGL Count 8000/)IPk Max	Edge(Ho	2.3502 GHz Opping) N t 7.62 dB • F	-40.54 dB	0H5 240 Mode A		Ant1 Ho		Ē
Band Spectrum Ref Level 27.62 Att 2 SGL Count 8000/	Edge(Ho	2.3502 GHz Opping) N t 7.62 dB • F	-40.54 dB	0H5 240 Mode A	uto FFT	Ant1 Ho		5.00 dBm
Band Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ p1Pk Max 20 dBm	Edge(Ho	2.3502 GHz Opping) N t 7.62 dB • F	-40.54 dB	0H5 240 Mode A	uto FFT	Ant1 Ho		5.00 dBm 82820 GHz
Band Spectrum Ref Level 27.62 Att 2 SGL Count 8000/)IPk Max	Edge(Ho	2.3502 GHz Opping) N t 7.62 dB • F	-40.54 dB	0H5 240 Mode A	uto FFT	Ant1 Ho		5.00 dBm
Band Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ PIPk Max 20 dBm 10 dBm	Edge(Ho	2.3502 GHz Opping) N t 7.62 dB • F	-40.54 dB	0H5 240 Mode A	uto FFT	Ant1 Ho		5.00 dBm 82820 GHz
Band Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ p1Pk Max 20 dBm 10 dBm	Edge(Ho	2.3502 GHz Opping) N t 7.62 dB • F	-40.54 dB	0H5 240 Mode A	uto FFT	Ant1 Ho		5.00 dBm 82820 GHz
Band Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ 1Pk Max 20 dBm 10 dBm 0 dBm	Edge(Ho	2.3502 GHz Opping) N t 7.62 dB • F	-40.54 dB	0H5 240 Mode A	uto FFT	Ant1 Ho		5.00 dBm 82820 GHz
Band Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ PIPk Max 20 dBm 10 dBm	Edge(Ho	2.3502 GHz Opping) N t 7.62 dB • F	-40.54 dB	0H5 240 Mode A	uto FFT	Ant1 Ho		5.00 dBm 82820 GHz
Band Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ PIPK Max 20 dBm 10 dBm 10 dBm 10 dBm 10 dBm	Edge(Ho	2.3502 GHz Opping) N t 7.62 dB • F	-40.54 dB	0H5 240 Mode A	uto FFT	Ant1 Ho		5.00 dBm 82820 GHz
Band Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ 1Pk Max 20 dBm 10 dBm 10 dBm 10 dBm	Edge(Ho	2.3502 GHz Opping) N t 7.62 dB • F	-40.54 dB	0H5 240 Mode A	uto FFT	Ant1 Ho		5.00 dBm 82820 GHz
Band Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ 1PK Max 20 dBm 0 dBm 10 dBm 20 dBm 20 dBm	Edge(Ho	2.3502 GHz Opping) N t 7.62 dB • F	-40.54 dB	0H5 240 Mode A	uto FFT	Ant1 Ho		5.00 dBm 82820 GHz
Band Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ 1PK Max 20 dBm 0 dBm 10 dBm 20 dBm 20 dBm	Edge(Ho	2.3502 GHz Opping) N t 7.62 dB • F	-40.54 dB	0H5 240 Mode A	uto FFT	Ant1 Ho		5.00 dBm 82820 GHz
Band pectrum tef Level 27.62 tt 26 SGL Count 8000/ IPk Max 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm	Edge(Ho	2.3502 GHz Opping) N t 7.62 dB • F	-40.54 dB	0H5 240 Mode A	uto FFT	Ant1 Ho		5.00 dBm 82820 GHz
Band Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ 1PK Max 20 dBm 0 dBm 10 dBm 20 dBm 30 dBm	Edge(Ho	2.3502 GHz Opping) N t 7.62 dB • F	-40.54 dB	0H5 240 Mode A	uto FFT	Ant1 Ho		5.00 dBm 82820 GHz
Band Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ DIPk Max 20 dBm 10 dBm 10 dBm 20 dBm 30 dBm	Edge(Ho	2.3502 GHz Opping) N t 7.62 dB • F	-40.54 dB	0H5 240 Mode A	uto FFT			5.00 dBm 82820 GHz
Band Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ DIPk Max 20 dBm 10 dBm 10 dBm 20 dBm 30 dBm 40 dBm	Edge(Ho	2.3502 GHz Opping) N t 7.62 dB • F	-40.54 dB	0H5 240 Mode A	uto FFT			5.00 dBm 82820 GHz
Band Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ 1Pk Max 20 dBm 10 dBm 0 dBm	Edge(Ho	2.3502 GHz Opping) N t 7.62 dB • F	-40.54 dB	0H5 240 Mode A	uto FFT			5.00 dBm 82820 GHz
Band Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ DIPk Max 20 dBm 10 dBm 10 dBm 20 dBm 30 dBm 40 dBm	Edge(Ho	2.3502 GHz Opping) N t 7.62 dB • F	-40.54 dB	0H5 240 Mode A	uto FFT			5.00 dBm 82820 GHz
Band Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ DIPk Max 20 dBm 10 dBm 20 dBm 20 dBm 30 dBm 50 dBm 50 dBm	Edge(Ho	2.3502 GHz Opping) N t 7.62 dB • F	-40.54 dB	0H5 240 Mode A	uto FFT			5.00 dBm 82820 GHz
Band Spectrum Ref Level 27.62 Att 2 SGL Count 8000/ DIPk Max 20 dBm 10 dBm 10 dBm 20 dBm 20 dBm 30 dBm 50 dBm 50 dBm	Edge(Ho	2.3502 GHz Opping) N t 7.62 dB • F	-40.54 dB	0H5 240 Mode A	uto FFT			5.00 dBm 82820 GHz

Ref Level Att	40 dB			RBW 100 kH VBW 300 kH		Auto FFT			
SGL Count	1000/1000								
20 dBm					м	1[1]		2,403	5.57 dBm 85000 GHz
10 dBm					M	2[1]		-	20.78 dBm 00000 &Hz
0 dBm								2.100	
-10 dBm									M
	D1 -14.997	dBm							
-20 dBm									
-30 dBm							M4	МЗ	
	mutula	entryphina	nontroun	energenetics	nolunanolly	haddengath	utray when the	and the second sub-	walk
-50 dBm									
-60 dBm—			1						
-70 dBm	6 GHz			1001	nts			Stop 1	2.406 GHz
larker	0 0112			1001	. pt3			01007	
M1	1	2 40	385 GHz	5.57 dB	m				
M2 M3 M4	1	2	2.4 GHz .39 GHz	-20.78 dB -43.08 dB -36.37 dB	m				
M3 M4 Spectrun Ref Level	Band 27.60 dBm	2 2.: Edge N	2.4 GHz .39 GHz 383 GHz IVNT 2- 7.60 dB • F	-43.08 dB -36.37 dB -DH5 248 RBW 100 kHz	m BOMHz /		o-Hoppir	ng Ref	
M3 M4 Spectrun Ref Level Att SGL Count	1 1 1 Band 27.60 dBm 40 dB	2 2.: Edge N	2.4 GHz .39 GHz 383 GHz IVNT 2- 7.60 dB • F	-43.08 dB -36.37 dB	m BOMHz /		-Hoppir	ng Ref	
M3 M4 Spectrun Ref Level Att SGL Count JIPk Max	1 1 1 Band 27.60 dBm 40 dB	2 2.: Edge N	2.4 GHz .39 GHz 383 GHz IVNT 2- 7.60 dB • F	-43.08 dB -36.37 dB -DH5 248 RBW 100 kHz	m BOMHZ A Mode A		p-Hoppir		(∰) 2.13 dBm 85610 GHz
M3 M4 Spectrun Ref Level Att SGL Count IPk Max 20 dBm-	1 1 1 Band 27.60 dBm 40 dB	2 2.: Edge N	2.4 GHz .39 GHz 383 GHz IVNT 2- 7.60 dB • F	-43.08 dB -36.37 dB -DH5 248 RBW 100 kHz	m BOMHZ A Mode A	uto FFT	o-Hoppir		2.13 dBm
M3 M4 Spectrun Ref Level Att SGL Count IPk Max 20 dBm-	1 1 1 Band 27.60 dBm 40 dB	2 2.: Edge N	2.4 GHz .39 GHz 383 GHz IVNT 2- 7.60 dB • F	-43.08 dB -36.37 dB -DH5 248 RBW 100 kHz	m BOMHZ A Mode A	uto FFT	p-Hoppir		2.13 dBm
M3 M4 Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm	1 1 1 Band 27.60 dBm 40 dB	2 2.: Edge N	2.4 GHz .39 GHz 383 GHz IVNT 2- 7.60 dB • F	-43.08 dB -36.37 dB -DH5 248 RBW 100 kHz yBW 300 kHz	m BOMHZ A Mode A	uto FFT	p-Hoppir		2.13 dBm
M3 M4 Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm	1 1 1 Band 27.60 dBm 40 dB	2 2.: Edge N	2.4 GHz .39 GHz 383 GHz IVNT 2- 7.60 dB • F	-43.08 dB -36.37 dB -DH5 248 RBW 100 kHz yBW 300 kHz	m BOMHZ A Mode A	uto FFT	p-Hoppir		2.13 dBm
M3 M4 Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm	1 1 1 Band 27.60 dBm 40 dB	2 2.: Edge N	2.4 GHz .39 GHz 383 GHz IVNT 2- 7.60 dB • F	-43.08 dB -36.37 dB -DH5 248 RBW 100 kHz yBW 300 kHz	m BOMHZ A Mode A	uto FFT	p-Hoppir		2.13 dBm
M3 M4 Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm	1 1 1 Band 27.60 dBm 40 dB	2 2.: Edge N	2.4 GHz .39 GHz 383 GHz IVNT 2- 7.60 dB • F	-43.08 dB -36.37 dB -DH5 248 RBW 100 kHz yBW 300 kHz	m BOMHZ A Mode A	uto FFT	p-Hoppir		2.13 dBm
M3 M4 Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	1 1 1 Band 27.60 dBm 40 dB	2 2.: Edge N	2.4 GHz .39 GHz 383 GHz IVNT 2- 7.60 dB • F	-43.08 dB -36.37 dB -DH5 248 RBW 100 kHz yBW 300 kHz	m BOMHZ A Mode A	uto FFT	p-Hoppir		2.13 dBm
M3 M4 Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm	1 1 1 Band 27.60 dBm 40 dB	2 2.: Edge N	2.4 GHz .39 GHz 383 GHz IVNT 2- 7.60 dB • F	-43.08 dB -36.37 dB -DH5 248 RBW 100 kHz yBW 300 kHz	m BOMHZ A Mode A	uto FFT	p-Hoppir		2.13 dBm
M3 M4 Spectrun Ref Level Att SGL Count 9 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	1 1 1 Band 27.60 dBm 40 dB	2 2.: Edge N	2.4 GHz .39 GHz 383 GHz IVNT 2- 7.60 dB • F	-43.08 dB -36.37 dB -DH5 248 RBW 100 kHz yBW 300 kHz	m BOMHZ A Mode A	uto FFT	p-Hoppir		2.13 dBm
M3 M4 Spectrun Ref Level Att SGL Count 9 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	1 1 1 Band 27.60 dBm 40 dB	2 2.: Edge N	2.4 GHz .39 GHz 383 GHz IVNT 2- 7.60 dB • F	-43.08 dB -36.37 dB -DH5 248 RBW 100 kHz yBW 300 kHz	m BOMHZ A Mode A	uto FFT	p-Hoppir		2.13 dBm
M3 M4 Spectrun Ref Level Att SGL Count JPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm	1 1 1 Band 27.60 dBm 40 dB	2 2.: Edge N	2.4 GHz .39 GHz 383 GHz IVNT 2- 7.60 dB • F	-43.08 dB -36.37 dB -DH5 248 RBW 100 kHz yBW 300 kHz	m BOMHZ A Mode A	uto FFT	p-Hoppir		2.13 dBm
M3 M4 Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	1 1 1 27.60 dBm 40 dB 100/100	2 2.: Edge N	2.4 GHz .39 GHz 383 GHz IVNT 2- 7.60 dB • F	-43.08 dB -36.37 dB -DH5 248 RBW 100 kHz yBW 300 kHz	Mode A	uto FFT	p-Hoppir	2.479	2.13 dBm

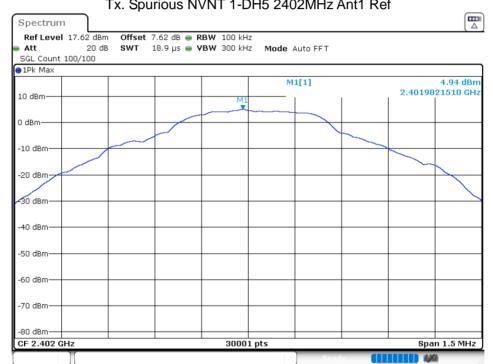
20 dBm 2.4798 M2[1] -4	2.99 dBm 5000 GHz 4.73 dBm 0000 GHz
10,dBm 2.4835 0 dBm 2.4835 0 dBm 2.4835 -10 dBm	
-10 dBm	
-20 dBm D1 -17.871 dBm	
-20 dBm	
40 demie M4 M3	
and how were the second of the	
	monoralis
-60 dBm	
-70 dBm	
	576 GHz
Type Ref Trc X-value Y-value Function Function Result M1 1 2.47985 GHz 2.99 dBm	
M2 1 2.4835 GHz -44.73 dBm M3 1 2.5 GHz -44.67 dBm	
M4 1 2.491 GHz -43.45 dBm	
SGL Count 8000/8000 1Pk Max	6 07 dB
SGL Count 8000/8000 PIPk Max M1[1] 2.1750	6.07 dBm 0400 GHz
SGL Count 8000/8000) 1Pk Max 20 dBm	
SGL Count 8000/8000	
SGL Count 8000/8000 P1Pk Max M1[1]	
SGL Count 8000/8000 IPk Max 20 dBm 10 dBm 2.4760	
SGL Count 8000/8000 PIPk Max 20 dBm 10 dBm 0 dBm	
SGL Count 8000/8000 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm	
SGL Count 8000/8000 IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	
SGL Count 8000/8000 IPk Max 20 dBm 10 dBm 10 dBm 20 dBm 10 dBm 10 dBm 10 dBm 10 dBm 40 dBm	
SGL Count 8000/8000 PIPk Max 20 dBm M1[1] 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	
SGL Count 8000/8000 IPk Max 20 dBm 10 dBm 10 dBm 20 dBm 10 dBm 10 dBm 10 dBm 10 dBm 40 dBm	

Att	27.60 dBm 40 dB 1000/1000			● RBW 100 kH ● VBW 300 kH		Auto FFT			
20 dBm					м	1[1]		2 476	5.46 dBm 65000 GHz
10 dBm					м	2[1]		-	40.26 dBm 50000 GHz
p /dø m				_					
-10 cBm—	D1 -13.925	dBm							
-20 aBm—									
-30 dBm M2 -40 dB	wa uhutu	A Mallon	h. l	HANNA MARY	L all alana	witzants w	4m producted	MARMAN	hidhourd
-50 dBm	a a adfor la saa	k, alfuudik, e. a vî	AUNING CONTRACTION OF THE SECTION OF		M. A. L. A.	80.1.0.0	• • · · () ·		. a a by a . B
-60 dBm									
-70 dBm	6 CH2			1001	Ints			Stor	2.576 GHz
1arker									
Type Re M1 M2 M3	I I 1 1 1 1	2.48	e 65 GHz 35 GHz 2.5 GHz	Y-value 5.46 dE -40.26 dE -42.28 dE	Зm	tion	Fund	tion Result	
Ref Level		Edge N	.62 dB 👄	-36.10 dE 3-DH5 24 RBW 100 kHz VBW 300 kHz	02MHz		o-Hoppin	ng Ref	
Spectrun Ref Level Att SGL Count	Band n 27.62 dBm 40 dB	Edge N	VNT :	3-DH5 24	02MHz	uto FFT	o-Hoppin	ng Ref	
Spectrun Ref Level Att SGL Count IPk Max	Band n 27.62 dBm 40 dB	Edge N	VNT :	3-DH5 24	02MHz		o-Hoppin		4.47 dBm 82420 GHz
Spectrun Ref Level Att SGL Count IPk Max 20 dBm-	Band n 27.62 dBm 40 dB	Edge N	VNT :	3-DH5 24	02MHz	uto FFT	o-Hoppin		(△) 4.47 dBm
Spectrun Ref Level Att SGL Count JPk Max 20 dBm	Band n 27.62 dBm 40 dB	Edge N	VNT :	3-DH5 24	02MHz	uto FFT	p-Hoppin		(△) 4.47 dBm
Spectrun Ref Level	Band n 27.62 dBm 40 dB	Edge N	VNT :	3-DH5 24	02MHz	uto FFT	p-Hoppin		(△) 4.47 dBm
Spectrun Ref Level Att SGL Count JPk Max 20 dBm	Band n 27.62 dBm 40 dB	Edge N	VNT :	3-DH5 24	02MHz	uto FFT	p-Hoppin		(△) 4.47 dBm
Spectrum Ref Level Att SGL Count 10 HPK Max 20 dBm	Band n 27.62 dBm 40 dB	Edge N	VNT :	3-DH5 24	02MHz	uto FFT	p-Hoppin		(△) 4.47 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm	Band n 27.62 dBm 40 dB	Edge N	VNT :	3-DH5 24	02MHz	uto FFT	p-Hoppin		(△) 4.47 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm	Band n 27.62 dBm 40 dB	Edge N	VNT :	3-DH5 24	02MHz	uto FFT	p-Hoppin		(△) 4.47 dBm
Spectrum Ref Level Att SGL Count PIPK Max 20 dBm 10 dBm 10 dBm 20 dBm 30 dBm 40 dBm	Band n 27.62 dBm 40 dB	Edge N	VNT :	3-DH5 24	02MHz	uto FFT	p-Hoppin		(△) 4.47 dBm
Spectrum Ref Level Att SGL Count 10 dBm	Band n 27.62 dBm 40 dB	Edge N	VNT :	3-DH5 24	02MHz	uto FFT			(△) 4.47 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm	Band n 27.62 dBm 40 dB	Edge N	VNT :	3-DH5 24	02MHz	uto FFT			(△) 4.47 dBm
Spectrum Ref Level Att SGL Count 10 Hm 20 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm	Band n 27.62 dBm 40 dB 300/300	Edge N	VNT :	3-DH5 24	02MHz	uto FFT	p-Hoppin	2.401	(△) 4.47 dBm 82420 GHz

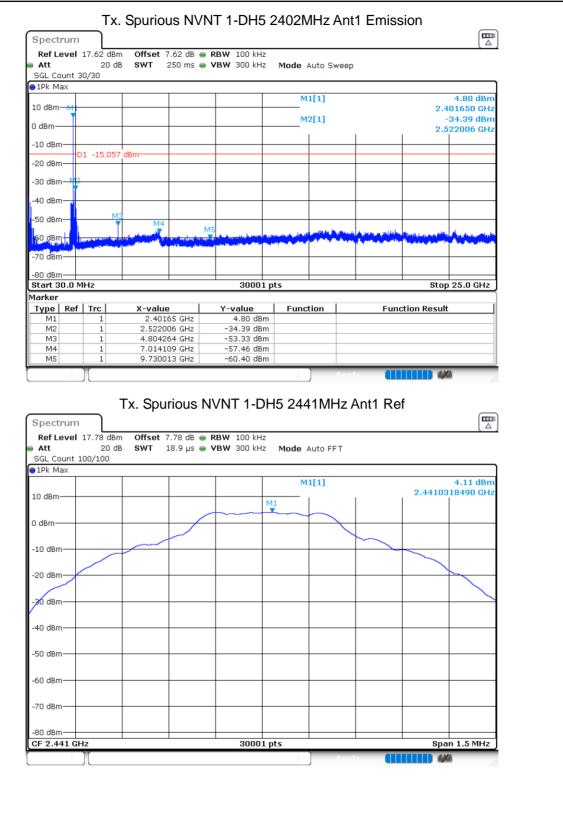
Spectrum Ref Level 3	27.62 dBm	Offset 7	7.62 dB 😑 R	BW 100 kHz	Z				
Att	40 dB			/BW 300 kHz		Auto FFT			
SGL Count :	100/100								
⊖1Pk Max									
20 dBm					M	1[1]		0.401	4.30 dBm 185000 GHz
20 0011					м	2[1]			-43.24 dBm
10 dBm									0000001GHz
0 dBm									X
o abiii									
-10 dBm									
-20 dBm	01 -15.535	dBm							
									Jul
-30 dBm					M4				
-40 dBm	A.			Lin t			-	МЗ	M2
դավուստ ուստու -50 dBm	asserting Juntula	hatedualingthe	adates a contraction	M. M	Aruna had	pulstone	warden ber warden warden w	human when	how he
-30 aBM									
-60 dBm									
-70 dBm									
Start 2.306	GHz			1001	pts			Stop	2.406 GHz
Marker					•			F	
Type Ref	Trc	X-value		Y-value	Func	tion 📋	Func	tion Result	t l
M1	1		85 GHz	4.30 dBr					
M2 M3	1		2.4 GHz	-43.24 dBr					
		2.3	39 GHz	-46.32 dBr					
M4	1		39 GHz 19 GHz	-46.32 dBr -40.04 dBr					
M4 Ba Spectrum Ref Level 3	and Edg	2.36 ge(Hopp offset 7.	19 GHz Ding) N\ .62 dB • RE	-40.04 dBr	m H5 240		Ant1 Ho	oping R	ef
M4 Ba Spectrum Ref Level 3 Att SGL Count 3	1 and Edg 27.62 dBm 40 dB	2.36 ge(Hopp offset 7.	19 GHz Ding) N\ .62 dB • RE	-40.04 dBr	m H5 240		Ant1 Ho	oping R	
M4 Ba Spectrum Ref Level 3 Att	1 and Edg 27.62 dBm 40 dB	2.36 ge(Hopp offset 7.	19 GHz Ding) N\ .62 dB • RE	-40.04 dBr	m H5 240 Mode A	uto FFT	ndr 🚺 Ant1 Hoj	oping R	
M4 Spectrum Ref Level : Att SGL Count : • 1Pk Max	1 and Edg 27.62 dBm 40 dB	2.36 ge(Hopp offset 7.	19 GHz Ding) N\ .62 dB • RE	-40.04 dBr	m H5 240 Mode A		ndr 🚺		4.53 dBm
M4 Ba Spectrum Ref Level 3 Att SGL Count 3	1 and Edg 27.62 dBm 40 dB	2.36 ge(Hopp offset 7.	19 GHz Ding) N\ .62 dB • RE	-40.04 dBr	m H5 240 Mode A	uto FFT	Ant1 Hop		
M4 Spectrum Ref Level : Att SGL Count : 91Pk Max 20 dBm	1 and Edg 27.62 dBm 40 dB	2.36 ge(Hopp offset 7.	19 GHz Ding) N\ .62 dB • RE	-40.04 dBr	m H5 240 Mode A	uto FFT	Ant1 Hop		4.53 dBm
M4 Spectrum Ref Level : Att SGL Count : • 1Pk Max	1 and Edg 27.62 dBm 40 dB	2.36 ge(Hopp offset 7.	19 GHz Ding) N\ .62 dB • RE	-40.04 dBr	m H5 240 Mode A	uto FFT	Ant1 Hop		4.53 dBm
M4 Spectrum Ref Level 3 Att SGL Count 3 • 1Pk Max 20 dBm 10 dBm	1 and Edg 27.62 dBm 40 dB	2.36 ge(Hopp offset 7.	19 GHz Ding) N\ .62 dB • RE	-40.04 dBr	m H5 240 Mode A	uto FFT 1[1]	Ant1 Hop		4.53 dBm
M4 Spectrum Ref Level : Att SGL Count : 9 1Pk Max 20 dBm	1 and Edg 27.62 dBm 40 dB	2.36 ge(Hopp offset 7.	19 GHz Ding) N\ .62 dB • RE	-40.04 dBr	m H5 240 Mode A	uto FFT 1[1]	Ant1 Hop		4.53 dBm
M4 Spectrum Ref Level 3 Att SGL Count 3 O dBm 10 dBm 0 dBm	1 and Edg 27.62 dBm 40 dB	2.36 ge(Hopp offset 7.	19 GHz Ding) N\ .62 dB • RE	-40.04 dBr	m H5 240 Mode A	uto FFT 1[1]	Ant1 Hop		4.53 dBm
M4 Ba Spectrum Ref Level 3 Att SGL Count 3 O dBm 10 dBm	1 and Edg 27.62 dBm 40 dB	2.36 ge(Hopp offset 7.	19 GHz Ding) N\ .62 dB • RE	-40.04 dBr	m H5 240 Mode A	uto FFT 1[1]	Ant1 Hop		4.53 dBm
M4 Spectrum Ref Level 3 Att SGL Count 3 O dBm 10 dBm 0 dBm	1 and Edg 27.62 dBm 40 dB	2.36 ge(Hopp offset 7.	19 GHz Ding) N\ .62 dB • RE	-40.04 dBr	m H5 240 Mode A	uto FFT 1[1]	Ant1 Hop		4.53 dBm
M4 Spectrum Ref Level 3 Att SGL Count 3 SGL Count 3 O dBm 10 dBm 0 dBm -10 dBm	1 and Edg 27.62 dBm 40 dB	2.36 ge(Hopp offset 7.	19 GHz Ding) N\ .62 dB • RE	-40.04 dBr	m H5 240 Mode A	uto FFT 1[1]	Ant1 Hop		4.53 dBm
M4 Spectrum Ref Level 3 Att SGL Count 3 SGL Count 3 O dBm 10 dBm 0 dBm -10 dBm	1 and Edg 27.62 dBm 40 dB	2.36 ge(Hopp offset 7.	19 GHz Ding) N\ .62 dB • RE	-40.04 dBr	m H5 240 Mode A	uto FFT 1[1]	Ant1 Hop		4.53 dBm
M4 Spectrum Ref Level 3 SGL Count 3 SGL Count 3 O dBm 10 dBm -10 dBm -10 dBm -20 dBm	1 and Edg 27.62 dBm 40 dB	2.36 ge(Hopp offset 7.	19 GHz Ding) N\ .62 dB • RE	-40.04 dBr	m H5 240 Mode A	uto FFT 1[1]	Ant1 Hop		4.53 dBm
M4 Spectrum Ref Level 3 SGL Count 3 SGL Count 3 9 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm	1 and Edg 27.62 dBm 40 dB	2.36 ge(Hopp offset 7.	19 GHz Ding) N\ .62 dB • RE	-40.04 dBr	m H5 240 Mode A	uto FFT 1[1]	Ant1 Hop		4.53 dBm
M4 Spectrum Ref Level 3 SGL Count 3 SGL Count 3 9 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	1 and Edg 27.62 dBm 40 dB	2.36 ge(Hopp offset 7.	19 GHz Ding) N\ .62 dB • RE	-40.04 dBr	m H5 240 Mode A	uto FFT 1[1]	Ant1 Hop		4.53 dBm
M4 Spectrum Ref Level 3 SGL Count 3 SGL Count 3 9 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	1 and Edg 27.62 dBm 40 dB	2.36 ge(Hopp offset 7.	19 GHz Ding) N\ .62 dB • RE	-40.04 dBr	m H5 240 Mode A	uto FFT 1[1]	Ant1 Hop		4.53 dBm
M4 Spectrum Ref Level 3 SGL Count 3 SGL Count 3 SGL Count 3 O dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	1 and Edg 27.62 dBm 40 dB	2.36 ge(Hopp offset 7.	19 GHz Ding) N\ .62 dB • RE	-40.04 dBr	m H5 240 Mode A	uto FFT 1[1]	Ant1 Hop		4.53 dBm
M4 Spectrum Ref Level 3 SGL Count 3 SGL Count 3 SGL Count 3 O dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	1 and Edg 27.62 dBm 40 dB	2.36 ge(Hopp offset 7.	19 GHz Ding) N\ .62 dB • RE	-40.04 dBr	m H5 240 Mode A	uto FFT 1[1]	Ant1 Hop		4.53 dBm
M4 Spectrum Ref Level : Att SGL Count : SGL Count : O dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm	1 and Edg 27.62 dBm 40 dB	2.36 ge(Hopp offset 7.	19 GHz Ding) N\ .62 dB • RE	-40.04 dBr	m H5 240 Mode A	uto FFT 1[1]	Ant1 Hop		4.53 dBm
M4 Spectrum Ref Level : Att SGL Count : SGL Count : O dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm	1 and Edg 27.62 dBm 40 dB	2.36 ge(Hopp offset 7.	19 GHz Ding) N\ .62 dB • RE	-40.04 dBr	m H5 240 Mode A	uto FFT 1[1]	Ant1 Hop	2.403	4.53 dBm 902300 GHz
M4 Spectrum Ref Level : Att SGL Count : SGL Count : O dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	1 and Edg 27.62 dBm 40 dB 3000/3000	2.36 ge(Hopp offset 7.	19 GHz Ding) N\ .62 dB • RE	-40.04 dBr	m H5 240	uto FFT 1[1]	Ant1 Hop	2.403	4.53 dBm
M4 Spectrum Ref Level : Att SGL Count : 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm	1 and Edg 27.62 dBm 40 dB 3000/3000	2.36 ge(Hopp offset 7.	19 GHz Ding) N\ .62 dB • RE	-40.04 dBr	m H5 240	uto FFT 1[1]	Ant1 Hop	2.403	4.53 dBm 902300 GHz

Ref Level Att	27.62 dBm 40 dB		_	RBW 100 k⊢ VBW 300 k⊢		Auto FFT			
SGL Count 1Pk Max	1000/1000								
20 dBm					М	1[1]		2 401	3.82 dBm 95000 GHz
10 dBm					м	2[1]		-	37.31 dBm 00000ggHz
D dBm									A di
-10 dBm									1464
	D1 -15.469	dBm							
-30 dBm									
							atte it are		M2
ինեն/հայտունը -50 dBm——	hhaventlikathart	M-brailyn Malad	have me who so	anthouse	John Mary Mary Mary Mary Mary Mary Mary Mary	low-yearthouted and	han contraction ten	nonthus upon	0 V V
-60 dBm									
-70 dBm									
Start 2.306 1arker	5 GHz		1	1001	1 pts	1		Stop 2	2.406 GHz
Type Ref		X-value		Y-value	Func	tion	Fund	tion Result	
M1 M2	1		95 GHz	3.82 dE					
			.4 GHz	-37.31 dE					
M3 M4	1	2.3	2.4 GHz 39 GHz 79 GHz	-37.31 dE -38.76 dE -36.59 dE	3m				
M4 Spectrum Ref Level	Band 27.60 dBm	2.38 2.38 Edge N Offset 7.	39 GHz 79 GHz VNT 3- 60 dB • R	-38.76 de -36.59 de DH5 24 BW 100 kHz	am am 80MHz /		-Hoppiı	ng Ref	
M4 Spectrum Ref Level Att SGL Count	1 1 Band 27.60 dBm 40 dB	2.38 2.38 Edge N Offset 7.	39 GHz 79 GHz VNT 3- 60 dB • R	-38.76 dE -36.59 dE DH5 24	am am 80MHz /		-Hoppin	ng Ref	
M4 Spectrum Ref Level Att SGL Count JPk Max	1 1 Band 27.60 dBm 40 dB	2.38 2.38 Edge N Offset 7.	39 GHz 79 GHz VNT 3- 60 dB • R	-38.76 de -36.59 de DH5 24 BW 100 kHz	BOMHZ A		-Hoppir		(△) 6.19 dBm
M4 Spectrum Ref Level Att SGL Count	1 1 Band 27.60 dBm 40 dB	2.38 2.38 Edge N Offset 7.	39 GHz 79 GHz VNT 3- 60 dB • R	-38.76 de -36.59 de DH5 24 BW 100 kHz	BOMHZ A	uto FFT	p-Hoppin		
M4 Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm	1 1 Band 27.60 dBm 40 dB	2.38 2.38 Edge N Offset 7.	39 GHz 79 GHz VNT 3- 60 dB • R	-38.76 de -36.59 de DH5 24 BW 100 kHz	BOMHZ A	uto FFT	p-Hoppin		(△) 6.19 dBm
M4 Spectrum Ref Level Att SGL Count JPk Max	1 1 Band 27.60 dBm 40 dB	2.38 2.38 Edge N Offset 7.	39 GHz 79 GHz VNT 3- 60 dB • R	-38.76 de -36.59 de DH5 24 BW 100 kHz	BOMHZ A	uto FFT	p-Hoppin		(△) 6.19 dBm
M4 Spectrum Ref Level Att SGL Count JIPk Max 20 dBm 10 dBm 0 dBm	1 1 Band 27.60 dBm 40 dB	2.38 2.38 Edge N Offset 7.	39 GHz 79 GHz VNT 3- 60 dB • R	-38.76 de -36.59 de DH5 24 BW 100 kHz	BOMHZ A	uto FFT	p-Hoppin		(△) 6.19 dBm
M4 Spectrum Ref Level Att SGL Count JIPk Max 20 dBm 10 dBm 0 dBm	1 1 Band 27.60 dBm 40 dB	2.38 2.38 Edge N Offset 7.	39 GHz 79 GHz VNT 3- 60 dB • R	-38.76 de -36.59 de DH5 24 BW 100 kHz	BOMHZ A	uto FFT	p-Hoppin		(△) 6.19 dBm
M4 Spectrum Ref Level Att SGL Count JIPk Max 20 dBm 10 dBm -10 dBm	1 1 Band 27.60 dBm 40 dB	2.38 2.38 Edge N Offset 7.	39 GHz 79 GHz VNT 3- 60 dB • R 3.9 µs • V	-38.76 de -36.59 de DH5 24 BW 100 kHz	BOMHZ A	1[1]	p-Hoppin		(△) 6.19 dBm
M4 Spectrum Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -20 dBm	1 1 Band 27.60 dBm 40 dB	2.38 2.38 Edge N Offset 7.	39 GHz 79 GHz VNT 3- 60 dB • R	-38.76 de -36.59 de DH5 24 BW 100 kHz	BOMHZ A	uto FFT	p-Hoppin		(△) 6.19 dBm
M4 Spectrum Ref Level Att SGL Count) IPk Max 20 dBm 10 dBm 	1 1 Band 27.60 dBm 40 dB	2.38 2.38 Edge N Offset 7.	39 GHz 79 GHz VNT 3- 60 dB • R 3.9 µs • V	-38.76 de -36.59 de DH5 24 BW 100 kHz	BOMHZ A	1[1]	p-Hoppin		(△) 6.19 dBm
M4 Spectrum Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -20 dBm	1 1 Band 27.60 dBm 40 dB	2.38 2.38 Edge N Offset 7.	39 GHz 79 GHz VNT 3- 60 dB • R 3.9 µs • V	-38.76 de -36.59 de DH5 24 BW 100 kHz	BOMHZ A	1[1]	p-Hoppin		(△) 6.19 dBm
M4 Spectrum Ref Level Att SGL Count ID dBm ID dBm ID dBm ID dBm -10 dBm -20 dBm -30 dBm	1 1 Band 27.60 dBm 40 dB	2.38 2.38 Edge N Offset 7.	39 GHz 79 GHz VNT 3- 60 dB • R 3.9 µs • V	-38.76 de -36.59 de DH5 24 BW 100 kHz	BOMHZ A	1[1]	p-Hoppin		(△) 6.19 dBm
M4 Spectrum Ref Level Att SGL Count ID dBm I	1 1 Band 27.60 dBm 40 dB	2.38 2.38 Edge N Offset 7.	39 GHz 79 GHz VNT 3- 60 dB • R 3.9 µs • V	-38.76 de -36.59 de DH5 24 BW 100 kHz	BOMHZ A	1[1]	p-Hoppin		(△) 6.19 dBm
M4 Spectrum Ref Level Att SGL Count ID dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -60 dBm	1 1 Band 27.60 dBm 40 dB	2.38 2.38 Edge N Offset 7.	39 GHz 79 GHz VNT 3- 60 dB • R 3.9 µs • V	-38.76 de -36.59 de DH5 24 BW 100 kHz	BOMHZ A	1[1]	p-Hoppin		(△) 6.19 dBm
M4 Spectrum Ref Level Att SGL Count ID dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm	1 1 27.60 dBm 40 dB 100/100	2.38 2.38 Edge N Offset 7.	39 GHz 79 GHz VNT 3- 60 dB • R 3.9 µs • V	-38.76 dE -36.59 dE DH5 24 Bw 100 kHz Bw 300 kHz	BOMHZ A	1[1]	p-Hoppin	2.479	(△) 6.19 dBm

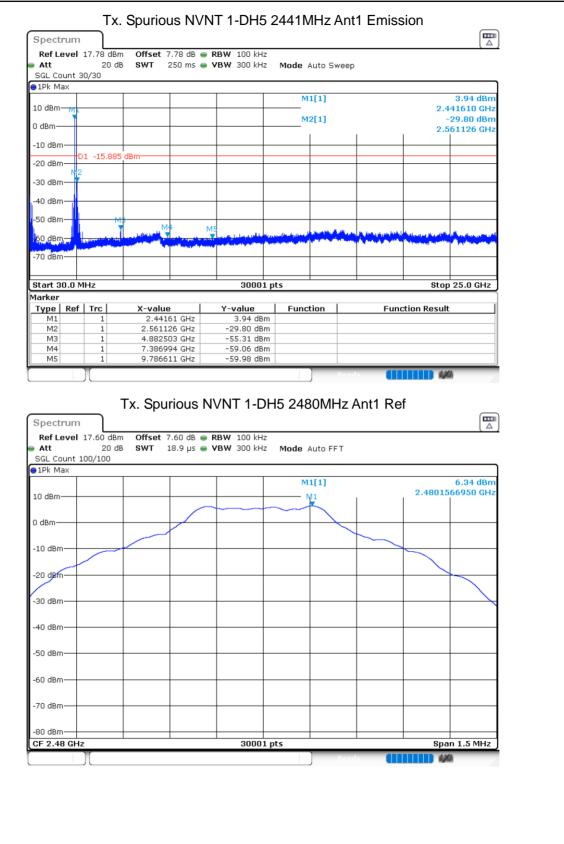
Att SGL Count	40 dB : 100/100	SWT 22	27.5 µs 👄	700 W 300 KH	14 MOQE	Auto FFT				1
-					M	1[1]			5.10 dBm	
20 dBm					M	2[1]		2.47	995000 GHz -45.15 dBm	
10MBm						1	I	2.48	350000 GHz	
0 d <mark>8</mark> m										
-10 cBm	-D1 -13.814	dDen								
-20 dBm	DI -13.814	ubiii								
-30 dBm								<u> </u>		
-40 dBm	M4	MB		h				L A.		
√ \⊼_∾ -50 dBm—	and the the	Madalewsphed	round Houry	and the second stands and a second	www.www.	Harring	manumana	which when	why may made	
-60 dBm										
-70 dBm										
Start 2.47	6 GHz			1001	1 pts			Stop	2.576 GHz	
Marker Type Re	ef Trc	X-value	e	Y-value	Fund	tion	Fun	ction Resu	lt l	
M1 M2	1	2.479	95 GHz 35 GHz	5.10 de -45.15 de	3m					
			2.5 GHz	-45.13 de	3m					i.
M3	1			-42.83 dP	3m					
M3 M4 Spectrun Ref Level Att		2.49 ge(Hopp Offset 7.	Ding) N .60 dB • RE 8.9 µs • VI	BW 100 kHz)H5 248		Ant1 Ho	pping F	Ref	
M3 M4 Spectrun Ref Level Att	and Edg n 27.60 dBm 40 dB	2.49 ge(Hopp Offset 7.	36 GHz ping) N\ .60 dB ● RE	/NT 3-D	2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	uto FFT	Ant1 Ho	pping F		
M3 M4 Spectrur Ref Level Att SGL Count	and Edg n 27.60 dBm 40 dB	2.49 ge(Hopp Offset 7.	36 GHz ping) N\ .60 dB ● RE	/NT 3-D	2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3		Ant1 Ho		(IIII)	
M3 M4 Spectrun Ref Level Att SGL Count @1Pk Max	and Edg n 27.60 dBm 40 dB	2.49 ge(Hopp Offset 7.	36 GHz ping) N\ .60 dB ● RE	/NT 3-D	0H5 248 ² Mode A	uto FFT	Ant1 Ho		5.78 dBm	
M3 M4 Spectrun Ref Level Att SGL Count • 1Pk Max 20 dBm-	and Edg n 27.60 dBm 40 dB	2,49 ge(Hopp offset 7, swT 1/	36 GHz ping) N\ .60 dB ● RE	/NT 3-D	0H5 248 ² Mode A	uto FFT	Ant1 Ho		5.78 dBm	
M3 M4 Spectrum Ref Level Att SGL Count IPk Max 20 dBm 10 dBm	and Edg n 27.60 dBm 40 dB	2,49 ge(Hopp offset 7, swT 1/	36 GHz ping) N\ .60 dB ● RE	/NT 3-D	0H5 248 ² Mode A	uto FFT	Ant1 Ho		5.78 dBm	
M3 M4 Spectrum Ref Level Att SGL Count ID dBm 10 dBm -10 dBm	and Edg n 27.60 dBm 40 dB	2,49 ge(Hopp offset 7, swT 1/	36 GHz ping) N\ .60 dB ● RE	/NT 3-D	0H5 248 ² Mode A	uto FFT	Ant1 Ho		5.78 dBm	
M3 M4 Spectrun Ref Level Att SGL Count 9 IPk Max 20 dBm 10 dBm	and Edg n 27.60 dBm 40 dB	2,49 ge(Hopp offset 7, swT 1/	36 GHz ping) N\ .60 dB ● RE	/NT 3-D	0H5 248 ² Mode A	uto FFT	Ant1 Ho		5.78 dBm	
M3 M4 Spectrum Ref Level Att SGL Count ID dBm 10 dBm -10 dBm	and Edg n 27.60 dBm 40 dB	2,49 ge(Hopp offset 7, swT 1/	36 GHz ping) N\ .60 dB ● RE	/NT 3-D	0H5 248 ² Mode A	uto FFT			5.78 dBm	
M3 M4 Spectrum Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm	and Edg n 27.60 dBm 40 dB	2,49 ge(Hopp offset 7, swT 1/	36 GHz ping) N\ .60 dB ● RE	/NT 3-D	0H5 248 ² Mode A	uto FFT	Ant1 Ho		5.78 dBm	
M3 M4 Spectrun Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	and Edg n 27.60 dBm 40 dB	2,49 ge(Hopp offset 7, swT 1/	36 GHz ping) N\ .60 dB ● RE	/NT 3-D	0H5 248 ² Mode A	uto FFT			5.78 dBm	
M3 M4 Spectrun Ref Level Att SGL Count • 1Pk Max 20 dBm -10 dBm -10 dBm -20 dBm -30 dBm	and Edg n 27.60 dBm 40 dB	2,49 ge(Hopp offset 7, swT 1/	36 GHz ping) N\ .60 dB ● RE	/NT 3-D	0H5 248 ² Mode A	uto FFT			5.78 dBm	
M3 M4 Spectrun Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	and Edg n 27.60 dBm 40 dB	2,49 ge(Hopp offset 7, swT 1/	36 GHz ping) N\ .60 dB ● RE	/NT 3-D	0H5 248 ² Mode A	uto FFT			5.78 dBm	
M3 M4 Spectrun Ref Level Att SGL Count •1Pk Max 20 dBm •10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	and Edg n 27.60 dBm 40 dB 8000/8000	2,49 ge(Hopp offset 7, swT 1/	36 GHz ping) N\ .60 dB ● RE		DH5 248	uto FFT		2.47	5.78 dBm 783420 GHz	
M3 M4 B Spectrun Ref Level Att SGL Count ● 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	and Edg n 27.60 dBm 40 dB 8000/8000	2,49 ge(Hopp offset 7, swT 1/	36 GHz ping) N\ .60 dB ● RE	/NT 3-D	DH5 248	uto FFT		2.47	5.78 dBm 783420 GHz	
M3 M4 Ref Level Att SGL Count 91Pk Max 20 dBm 10 dBm 10 dBm - -10 dBm - -20 dBm - -30 dBm - -50 dBm - -60 dBm -	and Edg n 27.60 dBm 40 dB 8000/8000	2,49 ge(Hopp offset 7, swT 1/	36 GHz ping) N\ .60 dB ● RE		DH5 248	uto FFT		2.47	5.78 dBm 783420 GHz	



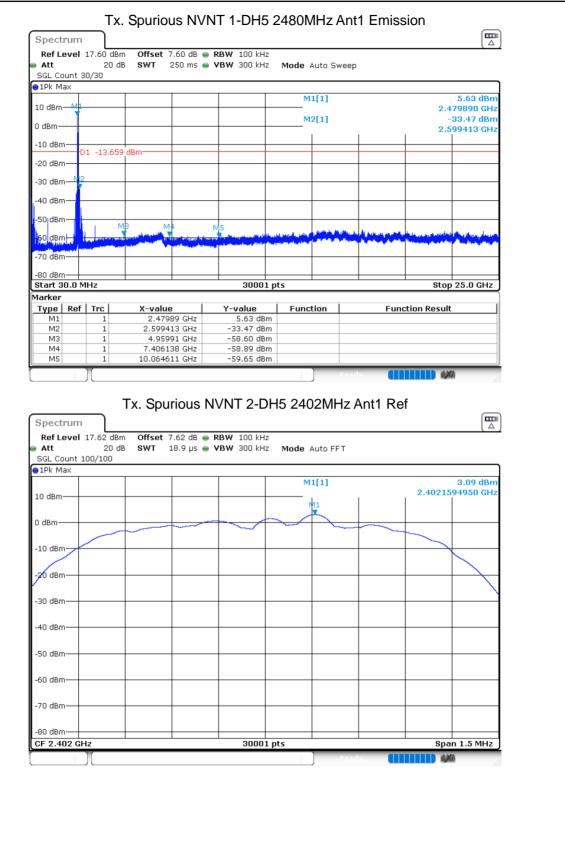
Spectrun	ı]						
Ref Level	27.60 dBr	n Offset 7.60 dB	🔵 RBW 100 kHz				
Att	40 d		🔵 VBW 300 kHz	Mode Auto FF	τ		
SGL Count	1000/100	0					
1Pk Max							
				M1[1]			2.63 dBm
20 dBm							75000 GHz
10 40				M2[1]			39.95 dBm
10 dBm					1	2.483	50000 GHz
bullan							
-10 dBm							
	D1 -14.22	2 dBm					
-20 dBm							
-30 dBm	4						
M2	Ti	M3 M3 Indukted		and the de	ا ماران	LI DI LEA -	A Second
-40 dB	-		Rillow particular of	when the back	<mark>₼₦₳₽₽₽₽₽₽</mark> ₽₽₽₽₽₽	and water the	ԽՆՈՒՆՈՒՆՈ
	.0.0	all (by i all and a loss of		· · · · · ·		•	
-50 dBm							
-60 dBm—							
-00 ubiii							
-70 dBm							
Start 2.47	5 GHz		1001 p	ts		Stop	2.576 GHz
/larker							
- 1-	f Trc	X-value	Y-value	Function	F	unction Result	:
Type Re	1	2.47875 GHz	2.63 dBm				
M1		0.4005.001-	-39.95 dBm				
	1	2.4835 GHz 2.5 GHz	-39.95 dBm				

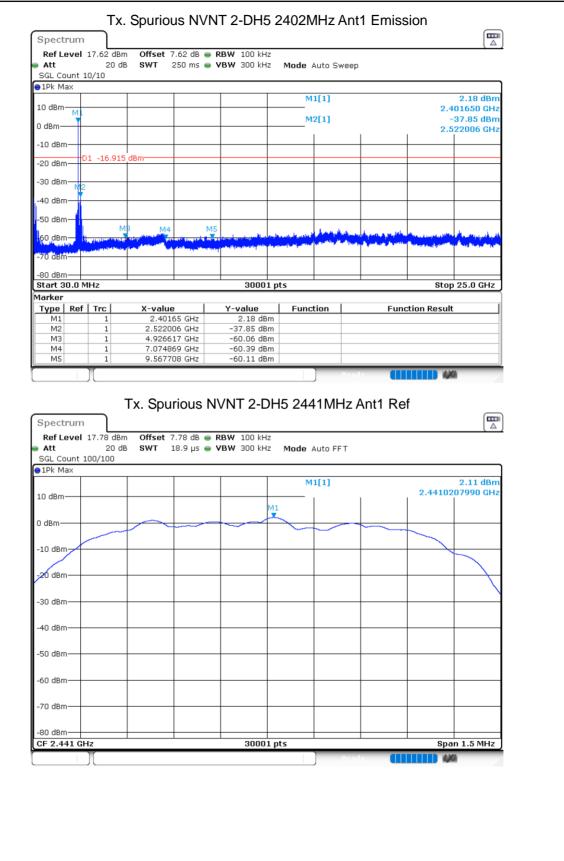

8.7 CONDUCTED RF SPURIOUS EMISSION

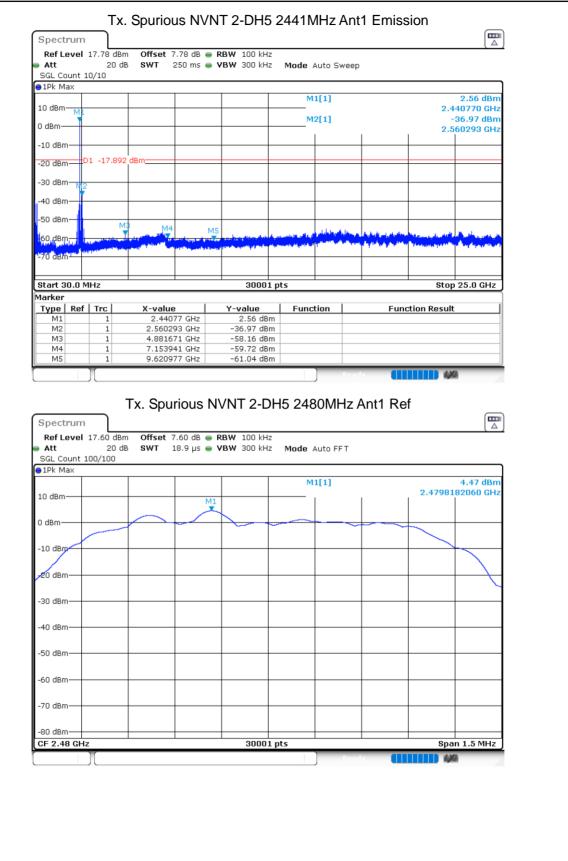
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-39.33	-20	Pass
NVNT	1-DH5	2441	Ant 1	-33.9	-20	Pass
NVNT	1-DH5	2480	Ant 1	-39.81	-20	Pass
NVNT	2-DH5	2402	Ant 1	-40.93	-20	Pass
NVNT	2-DH5	2441	Ant 1	-39.08	-20	Pass
NVNT	2-DH5	2480	Ant 1	-40.75	-20	Pass
NVNT	3-DH5	2402	Ant 1	-36.52	-20	Pass
NVNT	3-DH5	2441	Ant 1	-35.8	-20	Pass
NVNT	3-DH5	2480	Ant 1	-41.01	-20	Pass

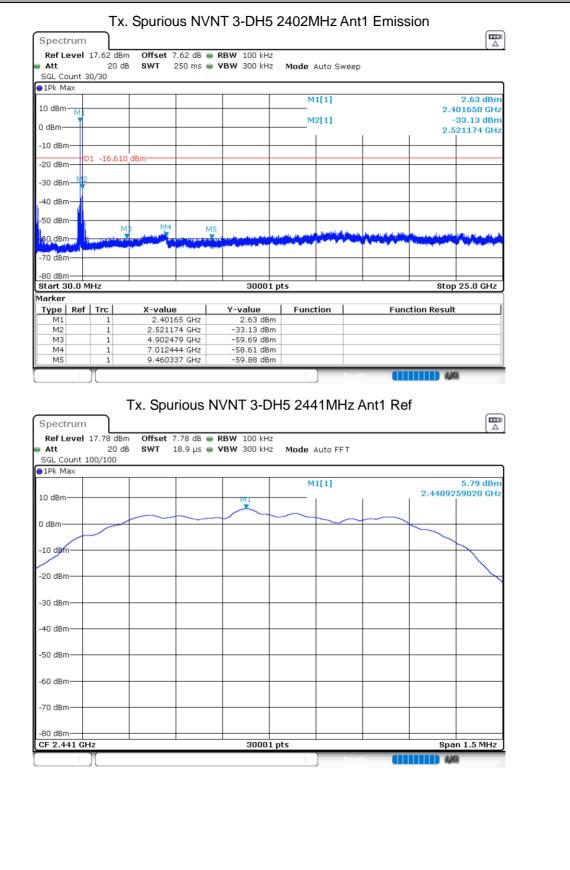


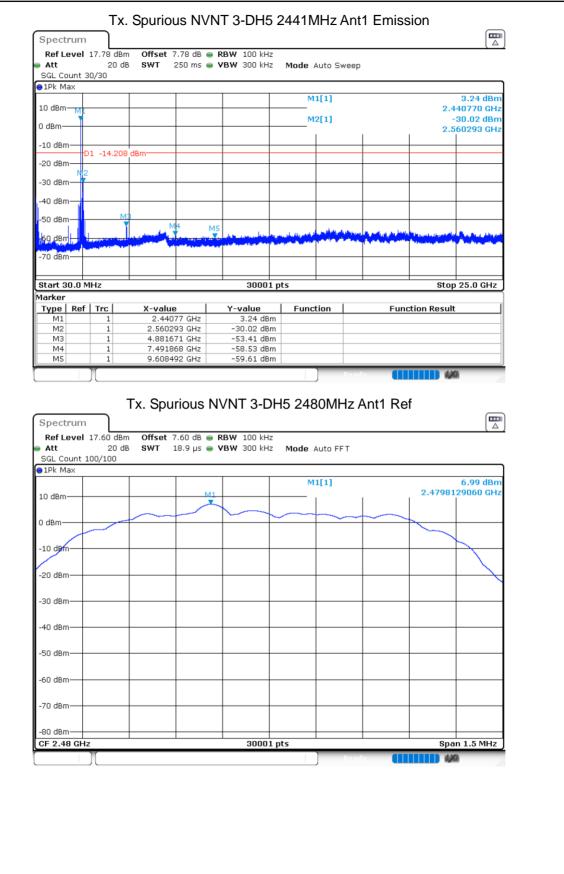
Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref











Ref Level 17.60 dB		dB 👄 RBW 100 kHz ms 👄 VBW 300 kHz	Mode Auto Swee	p		
SGL Count 10/10 1Pk Max]
10 dBm			M1[1]		2.4	1.54 dBm 79890 GHz
) dBm			M2[1]			36.28 dBm 59461 GHz
10 dBm						
20 dBm						
30 dBm - 19 <mark>2</mark>						
40 dBm						
60.dBm	M3 M4	M5	and the second	Aller a south	Tour of a part of the	Asternation
70 dBm	and have been and a first of ^{the second second}	postelhono post, cente acitant de	an a		A suggestion allow	A data the second second
80 dBm						
Start 30.0 MHz Iarker		30001			Stop	25.0 GHz
TypeRefTrcM11	X-value 2.47989 G			Fund	tion Result	
M2 1 M3 1	2.559461 G 5.029826 G	Hz -60.44 dBm	1			
M4 1 M5 1	7.377839 G 10.011341 G					
M5 1	10.011341 G		Rea	Ant1 Re	f	
M5 1 Spectrum Ref Level 17.62 db Att 20 SGL Count 100/100	10.011341 G Tx. Spurio 3m Offset 7.62	Hz -59.63 dBm	H5 2402MHz	Ant1 Re	f	
M5 1 Spectrum Ref Level 17.62 db Att 20 SGL Count 100/100	10.011341 G Tx. Spurio 3m Offset 7.62	-59.63 dBm us NVNT 3-DI dB • RBW 100 kHz	H5 2402MHz	Ant1 Re	f	(TTT) (Δ) 3.39 dBm
M5 1 Spectrum Ref Level 17.62 dE	10.011341 G Tx. Spurio 3m Offset 7.62	Hz -59.63 dBm US NVNT 3-DI dB • RBW 100 kHz μs • VBW 300 kHz M1	H5 2402MHz Mode Auto FFT	Ant1 Re		
M5 1 Spectrum Ref Level 17.62 de Att 20 SGL Count 100/100 p1Pk Max 10 dBm	10.011341 G Tx. Spurio 3m Offset 7.62	HZ -59.63 dBm US NVNT 3-DI dB • RBW 100 kHz µs • VBW 300 kHz	H5 2402MHz Mode Auto FFT	Ant1 Re		3.39 dBm
M5 1 Spectrum	10.011341 G Tx. Spurio 3m Offset 7.62	Hz -59.63 dBm US NVNT 3-DI dB • RBW 100 kHz μs • VBW 300 kHz M1	H5 2402MHz Mode Auto FFT	Ant1 Re		3.39 dBm
M5 1 Spectrum Ref Level 17.62 df Att 20 ds 20 ds SGL Count 100/100 11Pk Max L0 dBm 0 dBm 10 dBm 10 dBm	10.011341 G Tx. Spurio 3m Offset 7.62	Hz -59.63 dBm US NVNT 3-DI dB • RBW 100 kHz μs • VBW 300 kHz M1	H5 2402MHz Mode Auto FFT	Ant1 Re		3.39 dBm
M5 1 Spectrum	10.011341 G Tx. Spurio 3m Offset 7.62	Hz -59.63 dBm US NVNT 3-DI dB • RBW 100 kHz μs • VBW 300 kHz M1	H5 2402MHz Mode Auto FFT	Ant1 Re		3.39 dBm
M5 1 Spectrum Ref Level 17.62 df Att 20 ds 20 ds SGL Count 100/100 11Pk Max L0 dBm 0 dBm 10 dBm 10 dBm	10.011341 G Tx. Spurio 3m Offset 7.62	Hz -59.63 dBm US NVNT 3-DI dB • RBW 100 kHz μs • VBW 300 kHz M1	H5 2402MHz Mode Auto FFT	Ant1 Re		3.39 dBm
M5 1 Ref Level 17.62 dE Att 20 SGL Count 100/100 11Pk Max 10 10 dBm 10 20 dBm 20 dBm	10.011341 G Tx. Spurio 3m Offset 7.62	Hz -59.63 dBm US NVNT 3-DI dB • RBW 100 kHz μs • VBW 300 kHz M1	H5 2402MHz Mode Auto FFT	Ant1 Re		3.39 dBm
M5 1 Ref Level 17.62 dE Att 20 dB SGL Count 100/100 IPk Max 10 0 dBm 10 20 dBm 30 dBm	10.011341 G Tx. Spurio 3m Offset 7.62	Hz -59.63 dBm US NVNT 3-DI dB • RBW 100 kHz μs • VBW 300 kHz M1	H5 2402MHz Mode Auto FFT	Ant1 Re		3.39 dBm
M5 1 Ref Level 17.62 dB Att 20 dB SGL Count 100/100 IPk Max 10 0 dBm 10 20 dBm 30 dBm 40 dBm 50 dBm	10.011341 G Tx. Spurio 3m Offset 7.62	Hz -59.63 dBm US NVNT 3-DI dB • RBW 100 kHz μs • VBW 300 kHz M1	H5 2402MHz Mode Auto FFT	Ant1 Re		3.39 dBm
M5 1 Spectrum Ref Level 17.62 de Att SGL Count 100/100 SGL Count 100/100 PIPk Max 10 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 50 dBm	10.011341 G Tx. Spurio 3m Offset 7.62	Hz -59.63 dBm US NVNT 3-DI dB • RBW 100 kHz μs • VBW 300 kHz M1	H5 2402MHz Mode Auto FFT	Ant1 Re		3.39 dBm
M5 1 Ref Level 17.62 dB Att 20 dB SGL Count 100/100 10/100 10 dBm 0 10 dBm 0 20 dBm 0 30 dBm 0 40 dBm 50 dBm	10.011341 G Tx. Spurio 3m Offset 7.62	Hz -59.63 dBm US NVNT 3-DI dB • RBW 100 kHz μs • VBW 300 kHz M1	H5 2402MHz Mode Auto FFT	Ant1 Re		3.39 dBm
M5 1 Spectrum Ref Level 17.62 de Att SGL Count 100/100 SGL Count 100/100 SGL Max 0 10 dBm 0 20 dBm 0 30 dBm 0 40 dBm 50 dBm 50 dBm 60 dBm	10.011341 G Tx. Spurio 3m Offset 7.62	Hz -59.63 dBm US NVNT 3-DI dB • RBW 100 kHz μs • VBW 300 kHz M1	H5 2402MHz Mode Auto FFT M1[1]	Ant1 Re	2.40198	3.39 dBm

	Tx	. Spuriou	s NV	NT 3-DH5	52	480N	1Hz A	Ant	1 Emis	sion	_		
Spectrum	, I												
Ref Level	17.60 dBr	m Offset 7.	60 dB 🧉	RBW 100 kH	z								
🕨 Att	20 d	B SWT 2	50 ms 🧉	• VBW 300 kH	z	Mode /	Auto Sv	veep					
SGL Count	30/30												
⊖1Pk Max													
10 dBm						M	1[1]				4.42 dBm		
TO OBIU-M							0141			2.479890 GH			
0 dBm					<u> </u>	IVI.	2[1]				-34.03 dBm 559461 GHz		
							I	1		1	339401 0112		
-10 dBm—	D1 -13.008	3 dBm											
-20 dBm													
-20 0011													
-30 dBm— <mark>-1</mark>	2	++											
-40 dBm—		1 1											
-50 dBm	N	<u>4</u> B											
		M M		M5					k	14	4		
60 dBm —	And the second second		de se presenta de la competencia de la		(table		and the second						
-70 dBm	and the second secon		and the second second										
-70 ubiii													
-80 dBm		+			<u> </u>								
Start 30.0 I	MHz			3000	1 pt	5				Sto	p 25.0 GHz		
1arker													
Type Ref		X-value		Y-value		Funct	tion		Fun	ction Resul	lt		
M1	1	2.4798		4.42 dB									
M2	1	2.55946		-34.03 dB									
M3 M4	1	4.95907		-53.30 dB -59.28 dB									
M5	1	10.04047		-59.28 dB									
	7	10.01011		55.45 GB			2	_					
									Y		KA ()		

END OF REPORT