

TEST REPORT (SPOT CHECK)

CERTIFICATE OF CONFORMITY

Standard:	47 CFR FCC Part 15, Subpart E (Section 15.407)
Report No.:	RFBFBE-WTW-P21118016A-1
FCC ID:	YAW539848-Z
Original FCC ID:	YAW539848
Model No.:	PVS6
Received Date:	2022/6/16
Test Date:	2022/6/28 ~ 2022/7/1
Issued Date:	2022/7/20
Applicant:	SunPower Corporation
Address:	1414 Harbour Way South Suite 1901, Richmond, CA 94804, USA
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
	Hsin Chu Laboratory
Lab Address:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan
Test Location:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan
FCC Registration /	723255 / TW2022
signation Number:	

Approved by:

Des

May Chen / Manager

This test report consists of 37 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.

Date:

2022/7/20

Prepared by : Vivian Huang / Specialist

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/ver-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is pernitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the report on the results conducted and the correctness of the report contents.

Table of Contents

Re	ease Control Record	3
1	Certificate	4
2	Summary of Test Results	5
2	 2.1 Measurement Uncertainty 2.2 Supplementary Information 	5 5
3	General Information	6
	 3.1 General Description of EUT	
4	Test Instruments	14
4 4 4	 4.1 RF Output Power	
5	Limits of Test Items	17
5555	 5.1 RF Output Power	
6	Test Arrangements	19
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6.1 RF Output Power 6.1.1 Test Setup 6.1.2 Test Procedure 6.2 AC Power Conducted Emissions 6.2.1 Test Setup 6.2.2 Test Procedure 6.3 Unwanted Emissions below 1 GHz 6.3.1 Test Setup 6.3.2 Test Procedure 6.3.1 Test Setup 6.3.2 Test Procedure 6.4 Unwanted Emissions above 1 GHz 6.4.1 Test Setup 6.4.2 Test Procedure	19 19 19 19 19 19 19 20 20 20 20 20 21 22 22 22
7	Test Results of Test Item	23
7 7 7 7	 7.1 RF Output Power 7.2 AC Power Conducted Emissions 7.3 Unwanted Emissions below 1 GHz 7.4 Unwanted Emissions above 1 GHz 	
8	Pictures of Test Arrangements	
9	Information of the Testing Laboratories	

Release Control Record

Issue No.	Description	Date Issued	
RFBFBE-WTW-P21118016A-1	Original release.	2022/7/20	

1 Certificate

Product:	SunPower Monitoring System with PVS6			
Brand:	SUNPOWER			
Test Model:	PVS6			
Sample Status: Engineering sample				
Applicant:	SunPower Corporation			
Test Date: 2022/6/28 ~ 2022/7/1				
Standard:	47 CFR FCC Part 15, Subpart E (Section 15.407)			
Measurement	ANSI C63.10-2013			
procedure:	KDB 789033 D02 General UNII Test Procedure New Rules v02r01			
	KDB 662911 D01 Multiple Transmitter Output v02r01			

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

2 Summary of Test Results

47 CFR FCC Part 15, Subpart E (Section 15.407)					
Clause	Test Item	Result	Remark		
15.407(a)(1/2/3)	RF Output Power	Pass	Meet the requirement of limit.		
15.407(a)(1/2/3)	Power Spectral Density	NA	Refer to Note 1 below		
15.407(e)	6 dB Bandwidth	NA	Refer to Note 1 below		
	Occupied Bandwidth	NA	Refer to Note 1 below		
15.407(g)	Frequency Stability	NA	Refer to Note 1 below		
15.407(b)(9)	AC Power Conducted Emissions	Pass	Minimum passing margin is -5.29 dB at 4.73047 MHz		
15.407(b)(9)	Unwanted Emissions below 1 GHz	Pass	Minimum passing margin is -1.1 dB at 135.31 MHz		
15.407(b) (1/2/3/4(i)/10)	Unwanted Emissions above 1 GHz	Pass	Minimum passing margin is -1.0 dB at 5930.77 MHz		
15.203	Antenna Requirement	Pass	Antenna connector is i-pex not a standard connector.		

Notes:

1. RF Output Power & AC Power Conducted Emissions & Unwanted Emissions Measurement were performed for this addendum. The others testing data refer to original test report.

2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Specification	Expanded Uncertainty (k=2) (±)		
AC Power Conducted Emissions	150 kHz ~ 30 MHz	1.9 dB		
Unwanted Emissions holew 1 CHz	9 kHz ~ 30 MHz	3.1 dB		
	30 MHz ~ 1 GHz	5.4 dB		
Linuanted Emissions above 1 CHz	1 GHz ~ 18 GHz	5.0 dB		
	18 GHz ~ 40 GHz	5.3 dB		

The other instruments specified are routine verified to remain within the calibrated levels, no measurement uncertainty is required to be calculated.

2.2 Supplementary Information

There is not any deviation from the test standards for the test method, and no modifications required for compliance.

3 **General Information**

3.1 **General Description of EUT**

Product	SunPower Monitoring System with PVS6
Brand	SUNPOWER
Test Model	PVS6
Status of EUT	Engineering sample
Power Supply Rating	AC100-240V, 0.75A , 50/60Hz
Modulation Type	64QAM, 16QAM, QPSK, BPSK for OFDM 256QAM for OFDM in 11ac mode 1024QAM for OFDMA in 11ax HE mode
Modulation Technology	OFDM, OFDMA
Transfer Rate	802.11a: up to 54 Mbps 802.11n: up to 300 Mbps 802.11ac: up to 866.7 Mbps 802.11ax: up to 1201.0 Mbps
Operating Frequency	5.18 GHz ~ 5.24 GHz 5.745 GHz ~ 5.825 GHz
Number of Channel	802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20): 9 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40): 4 802.11ac (VHT80), 802.11ax (HE80): 2
Output Power	5.18 GHz ~ 5.24 GHz : 90.375 mW (19.56 dBm) 5.745 GHz ~ 5.825 GHz: 166.276 mW (22.21 dBm)
EUT Category	Outdoor Access Point Client device
Accessory Device	-Hole Plugs x2 -Ethernet Cable x1: non-shielded, 1.5m -Bracket x1

Note:

- 1. Exhibit prepared and modification information is provided by the customer, the laboratory assists in evaluating the test conditions and Spot Check Verification report, for more details please refer to the declaration letter exhibit need to be performed. And all data was verified to meet the requirements. (Original FCC ID: YAW539848, Report No.: RFBFBE-WTW-P21118016-1)
- 2. The EUT contains certified WWAN module which FCC ID: XMR2020BG95M1 (Brand: Quectel; Model: BG95-M1)
- 3. There are WLAN, Bluetooth and WWAN technology used for the EUT.

4. The EUT has two radios as following table:	
---	--

	Radio 1		Radio 2			
WLAN (2	.4GHz+5GHz)+ BT	ن نHz+5GHz)+ BT WWAN (LTE)				
5. Simultaneously trans	mission condition.	hission condition.				
Condition		Technology				
1	WLAN(2.4GHz)	BT	WWAN			
2		рт	\A/\A/ANI			

Note:	The emission	of the simultaneous	operation has be	een evaluated and	no non-compliance w	as found.
-------	--------------	---------------------	------------------	-------------------	---------------------	-----------

6. The EUT needs to be supplied from an Internal power supply, the information is as below table:

Brand	Model No.	Spec.
WLAN WELL	IRM-30-12	AC Input: 100-240V, 0.75A , 50/60Hz DC Output: 12V, 2.5A

7. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 Antenna Description of EUT

1. The antenna information is listed as below.

WLAN / Bluetooth							
Ant No.	Chain No.	Brand	Model	Antenna Net Gain (dBi)	Frequency rang (GHz)	Antenna type	Connector type
	Chain 0 (Including BT)	Chain 0 (Including BT) airgain 65-		2.2	2.4~2.4835		
1			65-031-212002B	3.8	5.15~5.25	РСВ	I-PEX
				4.2	5.725~5.85		
	Chain 1 (WLAN use only)			4.2	2.4~2.4835		
2		Chain 1 airgain 65-031-2120	65-031-212003B	4.1	5.15~5.25	РСВ	I-PEX
				4.8	5.725~5.85		

*The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

2. The EUT incorporates a MIMO function:

5GHz Band					
MODULATION MODE	TX & RX CON	IFIGURATION			
802.11a	2TX	2RX			
802.11n (HT20)	2TX	2RX			
802.11n (HT40)	2TX	2RX			
802.11ac (VHT20)	2TX	2RX			
802.11ac (VHT40)	2TX	2RX			
802.11ac (VHT80)	2TX	2RX			
802.11ax (HE20)	2TX	2RX			
802.11ax (HE40)	2TX	2RX			
802.11ax (HE80)	2TX	2RX			

Note:

 The modulation and bandwidth are similar for 802.11n mode for 20MHz (40MHz), 802.11ac mode for 20MHz (40MHz, 80MHz) and 802.11ax mode for 20MHz (40MHz, 80MHz), therefore the manufacturer will control the power for 802.11n/ac mode is the same as the 802.11ax or more lower than it and investigated worst case to representative mode in test report.

3.3 Channel List

FOR 5180 ~ 5240 MHz

4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20) and 802.11ax (HE20):

Channel	Frequency	Channel	Frequency
36	5180 MHz	44	5220 MHz
40	5200 MHz	48	5240 MHz

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40) and 802.11ax (HE40):

Channel	Frequency	Channel	Frequency
38	5190 MHz	46	5230 MHz

1 channels are provided for 802.11ac (VHT80) and 802.11ax (HE80):

Channel	Frequency
42	5210 MHz

FOR 5745 ~ 5825 MHz:

5 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20) and 802.11ax (HE20):

Channel	Frequency	Channel	Frequency
149	5745 MHz	161	5805 MHz
153	5765 MHz	165	5825 MHz
157	5785 MHz		

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40) and 802.11ax (HE40):

Channel	Frequency	Channel	Frequency
151	5755 MHz	159	5795 MHz

1 channel is provided for 802.11ac (VHT80) and 802.11ax (HE80):

Channel	Frequency
155	5775 MHz

3.4 Power Setting

	For U-NII-1 Band (Master mode) & U-NII-3 Band										
802	.11a		802	.11ac	: (VHT20)	802.11ac	: (VHT	40)	802	802.11ac (VHT80)	
Frequency (MHz)	Pow	er Setting	Setting Frequen (MHz)		equency (MHz) Power Setting Frequency (MHz) Power S		er Setting (MHz		icy	Power Setting	
5180		57	5180		58	5190		45 5210			45
5200		62	5200		63	5230		61	5775		58
5240		60	5240		60	5755		67			
5745		72	5745		72	5795		73			
5785		80	5785		78						
5825		74	5825		74						
80	2.11ax	k (HE20)			802.11a	(HE40)			802.11a	k (HE	80)
Frequency (M	Hz)	Power	Setting	Fre	equency (MHz)	Power Settir	ng	Frequen	cy (MHz)	Р	ower Setting
5180		5	8		5190	45		52	10		45
5200		6	3		5230	61		5775			58
5240		6	0		5755	67					
5745		7	2		5795	73					
5785		7	8								
5825		7	4								
				F	or U-NII-1 Ban	d (Client mode))				
802	.11a		802	.11ac	(VHT20) 802.11ac (VHT40)			802.11ac (VHT80)			
Frequency (MHz)	Pow	er Setting	Frequen (MHz)	су	Power Setting	Frequency (MHz)	Pow	er Setting	Frequen (MHz)	су	Power Setting
5180		57	5180		58	5190		45	5210		45
5200		63	5200		65	5230		61			
5240		60	5240		60						
80	2.11ax	k (HE20)			802.11a	(HE40)			802.11a	k (HE	80)
Frequency (M	Hz)	Power	Setting	Fre	equency (MHz)	Power Settir	ng	Frequen	cy (MHz)	P	ower Setting
5180		5	8		5190	45		52	10		45
5200		6	5		5230	61					
5240		6	0								

3.5 Test Mode Applicability and Tested Channel Detail

Worst Case: 1. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below:

-	802 112			
	002.11a	157	BPSK	6Mb/s
-	802.11a	157	BPSK	6Mb/s
-	802.11a	157	BPSK	6Mb/s
	802.11a	36, 40, 48, 149, 157, 165	BPSK	6Mb/s
	802.11ac (VHT20)		BPSK	MCS0
٨	802.11ac (VHT40)	38, 46, 151, 159	BPSK	MCS0
A	802.11ac (VHT80) 42, 155		BPSK	MCS0
	802.11ax (HE20) 36, 40, 48, 149, 157, 165		BPSK	MCS0
	802.11ax (HE40)	38, 46, 151, 159	BPSK	MCS0
	802.11ax (HE80)	42, 155	BPSK	MCS0
	802.11a	36, 40, 48	BPSK	6Mb/s
	802.11ac (VHT20)	36, 40, 48	BPSK	MCS0
	802.11ac (VHT40)	38, 46	BPSK	MCS0
В	802.11ac (VHT80)	42	BPSK	MCS0
	802.11ax (HE20)	36, 40, 48	BPSK	MCS0
	802.11ax (HE40)	38, 46	BPSK	MCS0
	802.11ax (HE80)	42	BPSK	MCS0
A	Master mode			
В	Client mode (Only U-N	ll 1)		
	- A A B A B t mode)	- 802.11a - 802.11a 802.11a 802.11a 802.11ac (VHT20) 802.11ac (VHT40) 802.11ac (VHT40) 802.11ac (VHT80) 802.11ax (HE20) 802.11ax (HE20) 802.11ax (HE40) 802.11ax (HE40) 802.11ac (VHT20) 802.11ac (VHT40) 802.11ac (VHT40) 802.11ac (VHT40) 802.11ac (VHT40) 802.11ac (VHT40) 802.11ac (VHT40) 802.11ac (VHT40) 802.11ac (VHT80) 802.11ax (HE20) 802.11ax (HE20) 802.11ax (HE20) 802.11ax (HE20) 802.11ax (HE20) 802.11ax (HE20) 802.11ax (HE30) A Master mode B Client mode (Only U-N	- 802.11a 157 - 802.11a 157 - 802.11a 157 802.11a 36, 40, 48, 149, 157, 165 36, 40, 48, 149, 157, 165 802.11ac (VHT20) 36, 40, 48, 149, 157, 165 362.11ac (VHT40) 38, 46, 151, 159 802.11ac (VHT40) 38, 46, 151, 159 362.11ac (VHT80) 42, 155 802.11ax (HE20) 36, 40, 48, 149, 157, 165 362.11ax (HE20) 36, 40, 48, 149, 157, 165 802.11ax (HE20) 36, 40, 48, 149, 157, 165 802.11ax (HE80) 42, 155 802.11ax (HE40) 38, 46, 151, 159 802.11ac (VHT20) 36, 40, 48 802.11ac (VHT20) 36, 40, 48 802.11ac (VHT40) 38, 46 802.11ac (VHT40) 38, 46 802.11ac (VHT40) 38, 46 802.11ac (VHT80) 42 802.11ac (VHT80) 42 802.11ax (HE20) 36, 40, 48 802.11ac (VHT80) 42 802.11ax (HE40) 38, 46 802.11ac (HE40) 38, 46 802.11ax (HE80) 42 42 44 802.11ax (HE80) 42 42 44 <td>- 802.11a 157 BPSK - 802.11a 157 BPSK - 802.11a 157 BPSK - 802.11a 36, 40, 48, 149, 157, 165 BPSK 802.11ac (VHT20) 36, 40, 48, 149, 157, 165 BPSK 802.11ac (VHT40) 38, 46, 151, 159 BPSK 802.11ac (VHT80) 42, 155 BPSK 802.11ax (HE20) 36, 40, 48, 149, 157, 165 BPSK 802.11ax (HE40) 38, 46, 151, 159 BPSK 802.11ax (HE80) 42, 155 BPSK 802.11ac (VHT20) 36, 40, 48 BPSK 802.11ac (VHT40) 38, 46 BPSK 802.11ac (VHT80) 42 BPSK 802.11ax (HE20) 36, 40, 48 BPSK 802.11ax (HE40) 38, 46 BPSK 802.11ax (HE40) 38, 46 BPSK</td>	- 802.11a 157 BPSK - 802.11a 157 BPSK - 802.11a 157 BPSK - 802.11a 36, 40, 48, 149, 157, 165 BPSK 802.11ac (VHT20) 36, 40, 48, 149, 157, 165 BPSK 802.11ac (VHT40) 38, 46, 151, 159 BPSK 802.11ac (VHT80) 42, 155 BPSK 802.11ax (HE20) 36, 40, 48, 149, 157, 165 BPSK 802.11ax (HE40) 38, 46, 151, 159 BPSK 802.11ax (HE80) 42, 155 BPSK 802.11ac (VHT20) 36, 40, 48 BPSK 802.11ac (VHT40) 38, 46 BPSK 802.11ac (VHT80) 42 BPSK 802.11ax (HE20) 36, 40, 48 BPSK 802.11ax (HE40) 38, 46 BPSK 802.11ax (HE40) 38, 46 BPSK

3.6 Duty Cycle of Test Signal

Duty cycle of test signal is >= 98 %, duty factor is not required. Duty cycle of test signal is < 98 %, duty factor shall be considered.

802.11a: Duty cycle = 2.063 ms / 2.101 ms x 100% = 98.2% **802.11ax (HE20):** Duty cycle = 1.486 ms / 1.516 ms x 100% = 98.0% **802.11ax (HE40):** Duty cycle = 0.771 ms / 0.802 ms x 100% = 96.1%, duty factor = 10 * log (1/Duty cycle) = 0.17 dB **802.11ax (HE80):** Duty cycle = 0.401 ms / 0.43 ms x 100% = 93.3%, duty factor = 10 * log (1/Duty cycle) = 0.30 dB

3.7 Test Program Used and Operation Descriptions

Controlling software (Run Putty.exe paste PVS6_WiFi+BT+BLE SOP.docx command) has been activated to set the EUT under transmission condition continuously at specific channel frequency.

3.8 Connection Diagram of EUT and Peripheral Devices

NOTE: The test configuration was defined by the applicant requirement.

3.9 Configuration of Peripheral Devices and Cable Connections

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α	iPod	Apple	MC749TA/A	CC4DMFJUDFDM	N/A	Provided by Lab
В	Laptop	Lenovo	20U5S01X00 L14	PF-28LKK7	N/A	Provided by Lab

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1	AC Cable	1	1.8	No	0	Supplied by Applicant
2	RJ-45 Cable	1	10	No	0	Provided by Lab
3	USB Cable	1	0.1	Yes	0	Provided by Lab

4 Test Instruments

The calibration interval of the all test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.1 RF Output Power

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Attenuator WOKEN	MDCS18N-10	MDCS18N-10-01	2022/4/5	2023/4/4
Power Meter Anritsu	ML2495A	1529002	2022/6/22	2023/6/21
Pulse Power Sensor Anritsu	MA2411B	1726434	2022/6/22	2023/6/21
Software	ADT_RF Test Software V6.6.5.4	N/A	N/A	N/A

Notes:

1. The test was performed in Oven room 2.

2. Tested Date: 2022/7/1

4.2 AC Power Conducted Emissions

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
50 ohms Terminator	50	3	2021/10/27	2022/10/26
Fixed attenuator STI	STI02-2200-10	005	2021/8/27	2022/8/26
LISN R&S	ESH3-Z5	848773/004	2021/10/29	2022/10/28
RF Coaxial Cable JYEBO	5D-FB	COCCAB-001	2021/9/25	2022/9/24
Software BVADT	BVADT_Cond_V7.3.7.4	N/A	N/A	N/A
TEST RECEIVER R&S	ESCS 30	847124/029	2021/10/13	2022/10/12

Notes:

1. The test was performed in Conduction 1

2. Tested Date: 2022/6/28

4.3 Unwanted Emissions below 1 GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	N/A	N/A
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-3-01	2021/9/23	2022/9/22
LOOP ANTENNA Electro-Metrics	EM-6879	264	2022/3/18	2023/3/17
MXE EMI Receiver(20 Hz to 44 GHz) Keysight	N9038A	MY54450088	2021/7/6	2022/7/5
Pre_Amplifier Agilent	8447D	2944A10636	2022/3/19	2023/3/18
Pre_Amplifier Mini-Circuits	ZFL-1000VH2	QA0838008	2021/10/19	2022/10/18
RF Coaxial Cable		LOOPCAB-001	2022/1/6	2023/1/5
JYEBO	<u>Э</u> Д-РВ	LOOPCAB-002	2022/1/6	2023/1/5
		966-4-1	2022/3/8	2023/3/7
RF Coaxial Cable	8D	966-3-2	2022/2/26	2023/2/25
		966-3-3	2022/2/26	2023/2/25
Software	ADT_Radiated_V8.7.08	N/A	N/A	N/A
Trilog Broadband Antenna Schwarzbeck	VULB 9168	9168-361	2021/10/26	2022/10/25

Notes:

2. Tested Date: 2022/6/28

^{1.} The test was performed in 966 Chamber No. 3.

4.4 **Unwanted Emissions above 1 GHz**

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	N/A	N/A
Fix tool for Boresight antenna tower BV	FBA-01	FBA_SIP01	N/A	N/A
Horn Antenna	BBHA9120-D	9120D-406	2021/11/14	2022/11/13
Schwarzbeck	BBHA 9170	9170-739	2021/11/14	2022/11/13
MXE EMI Receiver(20 Hz to 44 GHz) Keysight	N9038A	MY54450088	2021/7/6	2022/7/5
Pre_Amplifier	EMC12630SE	980384	2022/1/10	2023/1/9
EMCI	EMC184045SE	980387	2022/1/10	2023/1/9
RF Cable EMCI	EMC104-SM-SM-6000	210201	2022/5/10	2023/5/9
RF Cable-Frequency range: 1- 40GHz EMCI	EMC102-KM-KM-1200	160924	2022/1/10	2023/1/9
RE Coovial Cable	EMC104-SM-SM-1500	180504	2022/4/25	2023/4/24
RF COAXIAI CADIE	EMC104-SM-SM-2000	180601	2022/6/6	2023/6/5
	EMC-KM-KM-4000	200214	2022/3/8	2023/3/7
Software	ADT_Radiated_V8.7.08	N/A	N/A	N/A
Spectrum Analyzer Keysight	N9030A	MY54490679	2021/7/9	2022/7/8

Notes:

The test was performed in 966 Chamber No. 3.
 Tested Date: 2022/6/30

5 Limits of Test Items

5.1 RF Output Power

Operation Band	EUT Category	Limit
U-NII-1	Outdoor Access Point	1 Watt (30 dBm) (Max. e.i.r.p ≦ 125mW(21 dBm) at any elevation angle above 30 degrees as measured from the horizon)
	Fixed point-to-point Access Point	1 Watt (30 dBm)
	Indoor Access Point	1 Watt (30 dBm)
	Mobile and Portable client device	250 mW (24 dBm)

Operation Band	Limit
U-NII-3	1 Watt (30 dBm)

Per KDB 662911 D01 Multiple Transmitter Output Method of conducted output power measurement on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any N_{ANT};

Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less, for 20-MHz channel widths with N_{ANT} \geq 5.

For power measurements on all other devices: Array Gain = $10 \log(N_{ANT}/N_{SS}) dB$.

5.2 AC Power Conducted Emissions

Frequency (MHz)	Conducted Limit (dBuV)					
	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

5.3 Unwanted Emissions below 1 GHz

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

5.4 Unwanted Emissions above 1 GHz

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
Above 960	500	3

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

	Applicable To	Limit			
789033 D02 Genera	I UNII Test Procedure New Rules	Field Strength at 3 m			
	v02r01	PK: 74 (dBμV/m)	AV: 54 (dBµV/m)		
Frequency Band	Applicable To	EIRP Limit	Equivalent Field Strength at 3 m		
5150~5250 MHz	15.407(b)(1)				
5250~5350 MHz	15.407(b)(2)	PK: -27 (dBm/MHz)	PK: 68.2 (dBµV/m)		
5470~5725 MHz	15.407(b)(3)				
5725~5850 MHz	15.407(b)(4)(i)	PK: -27 (dBm/MHz) ^{*1} PK: 10 (dBm/MHz) ^{*2} PK: 15.6 (dBm/MHz) ^{*3} PK: 27 (dBm/MHz) ^{*4}	PK: 68.2 (dBµV/m) ^{*1} PK: 105.2 (dBµV/m) ^{*2} PK: 110.8 (dBµV/m) ^{*3} PK: 122.2 (dBµV/m) ^{*4}		
 *1 beyond 75 MHz or r *3 below the band edg dBm/MHz at 5 MHz 	nore above of the band edge. ge increasing linearly to a level of above.	 ^{*2} below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above. 15.6 ^{*4} from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the 			
dBm/MHz at 5 MHz	above.	increasing linearly to a level of 27 dBm/MHz at the band edge.			

Note: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3}$$

 μ V/m, where P is the eirp (Watts).

6 Test Arrangements

6.1 RF Output Power

6.1.1 Test Setup

6.1.2 Test Procedure

Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst and set the detector to average. Duty factor is not added to measured value.

6.2 AC Power Conducted Emissions

6.2.1 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.2.2 Test Procedure

- a. The EUT was placed on a 0.8 meter to the top of rotating table and placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.
- Note: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz-30 MHz.

6.3 Unwanted Emissions below 1 GHz

6.3.1 Test Setup

For Radiated emission below 30 MHz

For Radiated emission above 30 MHz

6.3.2 Test Procedure

For Radiated emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode, except for the frequency band (9 kHz to 90 kHz and 110 kHz to 490 kHz) set to average detect function and peak detect function.

Notes:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 200 Hz at frequency below 150 kHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz or 10 kHz at frequency (150 kHz to 30 MHz).
- 3. All modes of operation were investigated and the worst-case emissions are reported.

For Radiated emission above 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

Notes:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. All modes of operation were investigated and the worst-case emissions are reported.

6.4 Unwanted Emissions above 1 GHz

6.4.1 Test Setup

For Radiated emission above 1 GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.4.2 Test Procedure

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Notes:

- 1. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection (AV) at frequency above 1 GHz.
- For fundamental and harmonic signal measurement, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10 Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1 GHz.
- 3. All modes of operation were investigated and the worst-case emissions are reported.

7 Test Results of Test Item

7.1 RF Output Power

Mode A

Input Powe	er:	120 Vac, 60 Hz		Envir Cor	Environmental Conditions:		25°C, 60% RH		l By:	Eric Peng	
302.11a											
Chan.	Chan Freq.	Average (dE	verage Power (dBm) Total Total Power Power	Power Limit	Maximum	EIRP	EIRP	EIRP Limit	Test		
	(MHz)) Chain 0	Chain 1	(mW)	(dBm)	(dBm)	Gain (ubi)	(11100)		(dBm)	Result
36	5180	14.47	14.39	55.469	17.44	30	1.49	78.163	18.93	21	Pass
40	5200	15.88	16.23	80.702	19.07	30	1.49	113.763	20.56	21	Pass
48	5240	15.07	15.26	65.71	18.18	30	1.49	92.683	19.67	21	Pass
							_				

Chan.	Chan. Freq.	Average Power (dBm)		Total Power	Total Power	Power Limit	Test Result	
	(IVIHZ)	Chain 0	Chain 1	(mvv)	(abm)	(автт)		
149	5745	19.14	16.77	129.569	21.13	30	Pass	
157	5785	20.08	18.09	166.276	22.21	30	Pass	
165	5825	19.33	16.88	134.457	21.29	30	Pass	

Notes:

1. Directional gain is the maximum gain of antennas.

2. For U-NII-1, the maximum gain is 4.1 dBi < 6 dBi, so the output power limit shall not be reduced.

3. For U-NII-3, the maximum gain is 4.8 dBi < 6 dBi, so the output power limit shall not be reduced.

4. For U-NII-1, the gain of above 30 degrees from the horizon is 1.49 dBi, EIRP (dBm) = Average Power (dBm) + 1.49 dBi

802.11ac (VHT20)

Chan. Freq. (MHz)	Chan. Freq.	Average (dE	e Power 3m)	Total Power	Total Power	Power Limit Cain (dBi)	Total Power Ma Power Limit Ga	Total Power Power Limit	EIRP	EIRP	EIRP Limit	Test
	Chain 0	Chain 1	(mW)	(dBm)	(dBm)	Gain (ubi)	(11100)	(ubiii)	(dBm)	Result		
36	5180	14.05	14.22	51.834	17.15	30	1.49	73.114	18.64	21	Pass	
40	5200	15.83	15.97	77.819	18.91	30	1.49	109.648	20.4	21	Pass	
48	5240	14.70	14.74	59.297	17.73	30	1.49	83.56	19.22	21	Pass	

Chan.	Chan. Freq.	Average Power (dBm)		Total Power	Total Power	Power Limit	Test Result
	(IMHZ)	Chain 0	Chain 1	(mvv)	(dBm)	(abm)	
149	5745	18.68	16.67	120.242	20.80	30	Pass
157	5785	20.31	17.02	157.749	21.98	30	Pass
165	5825	18.98	16.59	124.672	20.96	30	Pass

Notes:

- 1. Directional gain is the maximum gain of antennas.
- 2. For U-NII-1, the maximum gain is 4.1 dBi < 6 dBi, so the output power limit shall not be reduced.
- 3. For U-NII-3, the maximum gain is 4.8 dBi < 6 dBi, so the output power limit shall not be reduced.

4. For U-NII-1, the gain of above 30 degrees from the horizon is 1.49 dBi, EIRP (dBm) = Average Power (dBm) + 1.49 dBi

802.11ac (VHT40)

Chan.	Chan. Freq. (MHz)	Average (dE Chain 0	e Power 3m) Chain 1	Total Power (mW)	Total Power (dBm)	Power Limit (dBm)	Maximum Gain (dBi)	EIRP (mW)	EIRP (dBm)	EIRP Limit (dBm)	Test Result
38	5190	10.94	10.75	24.302	13.86	30	1.49	34.277	15.35	21	Pass
46	5230	15.17	15.35	67.162	18.27	30	1.49	94.624	19.76	21	Pass

Chan.	Chan. Freq.	Average Power (dBm)		Total Power	Total Power	Power Limit	Test Result
	(IVI⊓ <i>∠)</i>	Chain 0	Chain 1	(11100)	(автт)	(автт)	
151	5755	17.13	15.87	90.278	19.56	30	Pass
159	5795	18.85	17.26	129.947	21.14	30	Pass

Notes:

- 1. Directional gain is the maximum gain of antennas.
- 2. For U-NII-1, the maximum gain is 4.1 dBi < 6 dBi, so the output power limit shall not be reduced.
- 3. For U-NII-3, the maximum gain is 4.8 dBi < 6 dBi, so the output power limit shall not be reduced.
- 4. For U-NII-1, the gain of above 30 degrees from the horizon is 1.49 dBi, EIRP (dBm) = Average Power (dBm) + 1.49 dBi

802.11ac (VHT80)

Chan. Chan. Freq. (MHz)	Chan. Freq.	Average (dE	e Power 3m)	Total Power	Total Power	Power Limit	Maximum Gain (dBi)	EIRP (mW)	EIRP (dBm)	EIRP Limit	Test Result
		Chain 0	Chain 1	(mvv)	(udiii)	(автт)				(ubiii)	
42	5210	11.29	11.32	27.01	14.32	30	1.49	38.107	15.81	21	Pass

Chan.	Chan. Freq. (MHz)	Average Po	ower (dBm)	Total Power	Total Power	Power Limit	Test Result
		Chain 0	Chain 1	(11100)	(ubiii)	(ubiii)	
155	5775	12.09	10.98	28.712	14.58	30	Pass

Notes:

- 1. Directional gain is the maximum gain of antennas.
- 2. For U-NII-1, the maximum gain is 4.1 dBi < 6 dBi, so the output power limit shall not be reduced.
- 3. For U-NII-3, the maximum gain is 4.8 dBi < 6 dBi, so the output power limit shall not be reduced.

4. For U-NII-1, the gain of above 30 degrees from the horizon is 1.49 dBi, EIRP (dBm) = Average Power (dBm) + 1.49 dBi

802.11ax (HE20)

Chan. Chan. Freq.		Average Power (dBm)		Total Total Power Power		Power Limit		EIRP		EIRP Limit	Test
	(MHz)	Chain 0	Chain 1	(mW)	(dBm)	(dBm)	Gain (ubi)	(11100)	(автт)	(dBm)	Result
36	5180	14.35	14.41	54.833	17.39	30	1.49	77.268	18.88	21	Pass
40	5200	15.99	16.11	80.551	19.06	30	1.49	113.501	20.55	21	Pass
48	5240	14.91	14.95	62.235	17.94	30	1.49	87.7	19.43	21	Pass

Chan.	Chan. Freq.	Average Power (dBm)		Total Power	Total Power	Power Limit	Test Result
	(IVIHZ)	Chain 0	Chain 1	(mvv)	(dBm)	(abm)	
149	5745	18.92	16.99	127.986	21.07	30	Pass
157	5785	20.51	17.21	165.062	22.18	30	Pass
165	5825	19.25	16.84	132.445	21.22	30	Pass

Notes:

1. Directional gain is the maximum gain of antennas.

2. For U-NII-1, the maximum gain is 4.1 dBi < 6 dBi, so the output power limit shall not be reduced.

3. For U-NII-3, the maximum gain is 4.8 dBi < 6 dBi, so the output power limit shall not be reduced.

4. For U-NII-1, the gain of above 30 degrees from the horizon is 1.49 dBi, EIRP (dBm) = Average Power (dBm) + 1.49 dBi

802.11ax (HE40)

Chan.	Chan. Freq. (MHz)	Average (dE Chain 0	e Power 3m) Chain 1	Total Power (mW)	Total Power (dBm)	Power Limit (dBm)	Maximum Gain (dBi)	EIRP (mW)	EIRP (dBm)	EIRP Limit (dBm)	Test Result
38	5190	11.16	11.02	25.709	14.10	30	1.49	36.224	15.59	21	Pass
46	5230	15.38	15.59	70.739	18.50	30	1.49	99.77	19.99	21	Pass

Chan.	Chan. Freq.	Average Power (dBm)		Total Power	Total Power	Power Limit	Test Result	
	(MHZ)	Chain 0	Chain 1	(mVV)	(aBm)	(aBm)		
151	5755	17.31	16.09	94.471	19.75	30	Pass	
159	5795	19.09	17.56	138.113	21.40	30	Pass	

Notes:

1. Directional gain is the maximum gain of antennas.

2. For U-NII-1, the maximum gain is 4.1 dBi < 6 dBi, so the output power limit shall not be reduced.

3. For U-NII-3, the maximum gain is 4.8 dBi < 6 dBi, so the output power limit shall not be reduced.

4. For U-NII-1, the gain of above 30 degrees from the horizon is 1.49 dBi, EIRP (dBm) = Average Power (dBm) + 1.49 dBi

802.11ax (HE80)

Chan. Chan. (MHz)	Chan. Freq.	Average (dE	e Power 3m)	Total Power	Total Power	Power Limit	Maximum	EIRP		EIRP Limit	Test
	(MHz)	Chain 0	Chain 1	(mW)	(dBm)	(dBm)	Gain (ubi)	(11100)	(ubiii)	(dBm)	Result
42	5210	11.45	11.52	28.154	14.50	30	1.49	39.719	15.99	21	Pass

Chan.	Chan. Freq. (MHz)	Average Po	ower (dBm)	Total Power	Total Power	Power Limit	Test Result
		Chain 0	Chain 1	(11100)	(автт)	(автт)	
155	5775	12.27	11.19	30.018	14.77	30	Pass

Notes:

1. Directional gain is the maximum gain of antennas.

2. For U-NII-1, the maximum gain is 4.1 dBi < 6 dBi, so the output power limit shall not be reduced.

3. For U-NII-3, the maximum gain is 4.8 dBi < 6 dBi, so the output power limit shall not be reduced.

4. For U-NII-1, the gain of above 30 degrees from the horizon is 1.49 dBi, EIRP (dBm) = Average Power (dBm) + 1.49 dBi

Mode B

Input Power:	120 Vac, 60 Hz	Environmental Conditions:	25°C, 60% RH	Tested By:	Eric Peng
802.11a					

Chan.	Chan. Freq.	Average Power (dBm)		Total Power	Total Power	Power Limit	Test Result
	(IVIHZ)	Chain 0	Chain 1	(mvv)	(abm)	(uom)	
36	5180	14.47	14.39	55.469	17.44	24	Pass
40	5200	16.15	16.38	84.661	19.28	24	Pass
48	5240	15.07	15.26	65.71	18.18	24	Pass

Notes:

- 1. Directional gain is the maximum gain of antennas.
- 2. For U-NII-1, the maximum gain is 4.1 dBi < 6 dBi, so the output power limit shall not be reduced.

802.11ac (VHT20)

Chan.	Chan. Freq. (MHz)	Average Power (dBm)		Total Power	Total Power	Power Limit	Test Result
		Chain 0	Chain 1	(mvv)	(UDIII)	(ubiii)	
36	5180	14.05	14.22	51.834	17.15	24	Pass
40	5200	16.27	16.39	85.915	19.34	24	Pass
48	5240	14.70	14.74	59.297	17.73	24	Pass

Notes:

1. Directional gain is the maximum gain of antennas.

2. For U-NII-1, the maximum gain is 4.1 dBi < 6 dBi, so the output power limit shall not be reduced.

802.11ac (VHT40)

Chan.	Chan. Freq.	Average Power (dBm)		Total Power	Total Power	Power Limit	Test Result
	(MHz) Chain 0 Chain 1		(mvv)	(abm)	(abm)		
38	5190	10.94	10.75	24.302	13.86	24	Pass
46	5230	15.17	15.35	67.162	18.27	24	Pass

Notes:

1. Directional gain is the maximum gain of antennas.

2. For U-NII-1, the maximum gain is 4.1 dBi < 6 dBi, so the output power limit shall not be reduced.

802.11ac (VHT80)

Chan.	Chan. Freq. (MHz)	Average Power (dBm)		Total Power	Total Power	Power Limit	Test Result
		Chain 0	Chain 1	(mvv)	(uditi)	(UDIII)	
42	5210	11.29	11.32	27.01	14.32	24	Pass

Notes:

1. Directional gain is the maximum gain of antennas.

2. For U-NII-1, the maximum gain is 4.1 dBi < 6 dBi, so the output power limit shall not be reduced.

802.11ax (HE20)

Chan.	Chan. Freq. (MHz)	Average Power (dBm)		Total Power	Total Power	Power Limit	Test Result
		Chain 0	Chain 1	(mvv)	(abm)	(uBm)	
36	5180	14.35	14.41	54.833	17.39	24	Pass
40	5200	16.51	16.59	90.375	19.56	24	Pass
48	5240	14.91	14.95	62.235	17.94	24	Pass

Notes:

- 1. Directional gain is the maximum gain of antennas.
- 2. For U-NII-1, the maximum gain is 4.1 dBi < 6 dBi, so the output power limit shall not be reduced.

802.11ax (HE40)

Chan.	Chan. Freq. (MHz)	Average Power (dBm)		Total Power	Total Power	Power Limit	Test Result
		Chain 0	Chain 1	(mvv)	(ubiii)	(ubiii)	
38	5190	11.16	11.02	25.709	14.10	24	Pass
46	5230	15.38	15.59	70.739	18.50	24	Pass

Notes:

- 1. Directional gain is the maximum gain of antennas.
- 2. For U-NII-1, the maximum gain is 4.1 dBi < 6 dBi, so the output power limit shall not be reduced.

802.11ax (HE80)

Chan.	Chan. Freq. (MHz)	Average Power (dBm)		Total Power	Total Power	Power Limit	Test Result
		Chain 0	Chain 1	(11100)	(uditi)	(UDIII)	
42	5210	11.45	11.52	28.154	14.50	24	Pass

Notes:

- 1. Directional gain is the maximum gain of antennas.
- 2. For U-NII-1, the maximum gain is 4.1 dBi < 6 dBi, so the output power limit shall not be reduced.

7.2 AC Power Conducted Emissions

RF Mode	TX 802.11a	Channel	CH 157:5785 MHz
Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	25°C, 75% RH
Tested By	Ryan Du		

	Phase Of Power : Line (L)									
No	Frequency	Correction Factor	Readin (dB	Reading Value Emission Level (dBuV) (dBuV)		Liı (dB	nit uV)	Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	3.49609	10.23	34.64	26.06	44.87	36.29	56.00	46.00	-11.13	-9.71
2	4.77344	10.30	36.38	25.26	46.68	35.56	56.00	46.00	-9.32	-10.44
3	5.78906	10.36	41.12	28.78	51.48	39.14	60.00	50.00	-8.52	-10.86
4	6.70703	10.42	39.86	29.30	50.28	39.72	60.00	50.00	-9.72	-10.28
5	6.94141	10.43	36.52	24.54	46.95	34.97	60.00	50.00	-13.05	-15.03
6	7.96875	10.49	40.38	29.92	50.87	40.41	60.00	50.00	-9.13	-9.59
7	10.07031	10.61	41.53	29.32	52.14	39.93	60.00	50.00	-7.86	-10.07

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

RF Mode	TX 802.11a	Channel	CH 157:5785 MHz
Frequency Range	150 kHz ~ 30 MHz	Detector Function &	Quasi-Peak (QP) /
Trequency Kange		Resolution Bandwidth	Average (AV), 9 kHz
Input Dowor		Environmental	25°C 750/ DU
Input Power	120 Vac, 60 Hz	Conditions	25 C, 75% RH
Tested By	Ryan Du		

			P	hase Of P	ower : Nei	utral (N)				
No	Frequency	Correction Factor	Readin (dB	eading Value Emission Level (dBuV) (dBuV)		Liı (dB	nit uV)	Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	1.49219	10.10	34.67	28.28	44.77	38.38	56.00	46.00	-11.23	-7.62
2	2.50391	10.15	35.28	27.54	45.43	37.69	56.00	46.00	-10.57	-8.31
3	3.50391	10.19	37.01	28.63	47.20	38.82	56.00	46.00	-8.80	-7.18
4	4.73047	10.24	39.91	30.47	50.15	40.71	56.00	46.00	-5.85	-5.29
5	5.71484	10.29	40.24	30.36	50.53	40.65	60.00	50.00	-9.47	-9.35
6	6.72656	10.34	41.00	31.35	51.34	41.69	60.00	50.00	-8.66	-8.31
7	7.80078	10.39	39.47	27.21	49.86	37.60	60.00	50.00	-10.14	-12.40
8	9.96875	10.49	41.19	31.00	51.68	41.49	60.00	50.00	-8.32	-8.51

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

7.3 Unwanted Emissions below 1 GHz

RF Mode	TX 802.11a	Channel	CH 157:5785 MHz
Frequency Range	9 kHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	22°C, 70% RH
Tested By	Ryan Du		

Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	82.06	35.4 QP	40.0	-4.6	2.00 H	46	48.9	-13.5	
2	105.13	39.5 QP	43.5	-4.0	1.50 H	127	51.1	-11.6	
3	135.31	42.4 QP	43.5	-1.1	1.50 H	96	51.2	-8.8	
4	213.23	41.6 QP	43.5	-1.9	2.00 H	287	52.8	-11.2	
5	296.99	43.4 QP	46.0	-2.6	1.50 H	159	51.2	-7.8	
6	421.53	41.5 QP	46.0	-4.5	1.50 H	155	46.1	-4.6	

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

RF Mode	TX 802.11a	Channel	CH 157:5785 MHz
Frequency Range	9 kHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	22°C, 70% RH
Tested By	Ryan Du		

	Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	50.51	32.3 QP	40.0	-7.7	1.50 V	135	40.6	-8.3	
2	80.74	32.1 QP	40.0	-7.9	1.50 V	285	45.4	-13.3	
3	148.53	40.3 QP	43.5	-3.2	2.00 V	59	48.4	-8.1	
4	247.56	41.2 QP	46.0	-4.8	2.00 V	87	50.8	-9.6	
5	297.06	43.0 QP	46.0	-3.0	2.00 V	53	50.8	-7.8	
6	419.56	42.2 QP	46.0	-3.8	2.00 V	244	46.9	-4.7	

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

7.4 Unwanted Emissions above 1 GHz

RF Mode	TX 802.11a	Channel	CH 157:5785 MHz	
Frequency Range	1 GHz ~ 40 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 10 Hz	
Input Power	120 Vac, 60 Hz Environmental Conditions		20°C, 70% RH	
Tested By	Ryan Du			

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	#5647.74	65.3 PK	68.2	-2.9	2.04 H	261	60.4	4.9
2	*5785.00	114.6 PK			2.04 H	261	109.4	5.2
3	*5785.00	104.4 AV			2.04 H	261	99.2	5.2
4	#5930.77	67.2 PK	68.2	-1.0	2.04 H	261	61.7	5.5
5	11570.00	48.8 PK	74.0	-25.2	1.95 H	206	33.7	15.1
6	11570.00	37.5 AV	54.0	-16.5	1.95 H	206	22.4	15.1
7	#17355.00	51.5 PK	68.2	-16.7	1.69 H	97	32.6	18.9

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

6. " # ": The radiated frequency is out of the restricted band.

RF Mode	TX 802.11a	Channel	CH 157:5785 MHz
Frequency Range	1 GHz ~ 40 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 10 Hz
Input Power	120 Vac, 60 Hz	Environmental Conditions	20°C, 70% RH
Tested By	Ryan Du		

	Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	#5647.77	63.0 PK	68.2	-5.2	1.00 V	209	58.1	4.9	
2	*5785.00	113.7 PK			1.00 V	209	108.5	5.2	
3	*5785.00	103.5 AV			1.00 V	209	98.3	5.2	
4	#5931.16	62.1 PK	68.2	-6.1	1.00 V	209	56.6	5.5	
5	11570.00	49.2 PK	74.0	-24.8	1.67 V	240	34.1	15.1	
6	11570.00	36.9 AV	54.0	-17.1	1.67 V	240	21.8	15.1	
7	#17355.00	51.4 PK	68.2	-16.8	2.16 V	149	32.5	18.9	

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

6. " # ": The radiated frequency is out of the restricted band.

Plot of Band Edge

8 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo)

9 Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@bureauveritas.com</u> Web Site: <u>http://ee.bureauveritas.com.tw</u>

The address and road map of all our labs can be found in our web site also.

--- END ---