

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	SunPower Corporation
Applicant Address	1414 Harbour Way South, Richmond, CA 94804, USA
FCC ID	YAW513402
Manufacturer's company (1)	ZyXEL Communications Corp.
Manufacturer Address (1)	No.6, Chuangxin 2nd Rd., Baoshan Township, Hsinchu County 308, Taiwan (R.O.C.)
Manufacturer's company (2)	MitraStar Technology Corporation
Manufacturer Address (2)	No. 6, Innovation Rd II, Hsinchu Science Park, Hsinchu 30076, Taiwan
Manufacturer's company (3)	WuXi MitraStar Technology Co. Ltd
Manufacturer Address (3)	60#-E, Minshan Road, Wuxi New district Jangsu, P.R.C.

Product Name	SunPower Monitoring System with PVS5x
Brand Name	SUNPOWER
Model No.	PVS5x
Test Rule	47 CFR FCC Part 15 Subpart C § 15.247
Test Freq. Range	2400 ~ 2483.5MHz
Received Date	Jun. 26, 2015
Final Test Date	Aug. 04, 2015
Submission Type	Original Equipment

Statement

Test result included in this report is for the IEEE 802.11n and IEEE 802.11b/g of the product.


The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2013, 47 CFR FCC Part 15 Subpart C, KDB558074 D01 v03r03 and KDB 662911 D01 v02r01.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. VERI	FICATION OF COMPLIANCE	
2. SUM	IMARY OF THE TEST RESULT	2
3. GEN	IERAL INFORMATION	3
3.1.	Product Details	
3.2.	Accessories	
3.3.	Table for Filed Antenna	
3.4.	Table for Carrier Frequencies	
3.5.	Table for Test Modes	8
3.6.	Table for Testing Locations	9
3.7.	Table for Supporting Units	9
3.8.	Table for Parameters of Test Software Setting	10
3.9.	EUT Operation during Test	10
3.10.	Duty Cycle	10
3.11.	. Test Configurations	11
4. TEST	RESULT	13
4.1.	AC Power Line Conducted Emissions Measurement	
4.2.	Maximum Conducted Output Power Measurement	17
4.3.	Power Spectral Density Measurement	19
4.4.	6dB Spectrum Bandwidth Measurement	27
4.5.	Radiated Emissions Measurement	34
4.6.	Emissions Measurement	53
4.7.	Antenna Requirements	71
5. LIST (OF MEASURING EQUIPMENTS	72
6. MEA	SUREMENT UNCERTAINTY	73
	DIX A. TEST PHOTOS	
ΔΡΡΕΝΓ	DIX B. MAXIMUM PERMISSIBI F FXPOSURF	B1 ∼ B5

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR562534AA	Rev. 01	Initial issue of report	Aug. 24, 2015

Page No. : ii of ii

Issued Date :Aug. 24, 2015

Project No: CB10408043

1. VERIFICATION OF COMPLIANCE

Product Name : SunPower Monitoring System with PVS5x

Brand Name : SUNPOWER

Model No. : PVS5x

Applicant: SunPower Corporation

Test Rule Part(s): 47 CFR FCC Part 15 Subpart C § 15.247

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Jun. 26, 2015 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen

SPORTON INTERNATIONAL INC.

Report Format Version: Rev. 01 FCC ID: YAW513402

Page No. : 1 of 73

Issued Date : Aug. 24, 2015

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart C					
Part	Part Rule Section Description of Test Result U					
4.1	15.207	AC Power Line Conducted Emissions	Complies	16.19 dB		
4.2	15.247(b)(3)	Maximum Conducted Output Power	Complies	2.04 dB		
4.3	15.247(e)	Power Spectral Density	Complies	3.87 dB		
4.4	15.247(a)(2)	6dB Spectrum Bandwidth	Complies	-		
4.5	15.247(d)	Radiated Emissions	Complies	0.20 dB		
4.6	15.247(d)	Band Edge Emissions	Complies	0.04 dB		
4.7	15.203	Antenna Requirements	Complies	-		

Page No. : 2 of 73

Issued Date : Aug. 24, 2015

3. GENERAL INFORMATION

3.1. Product Details

Items	Description
Product Type	IEEE 802.11b: WLAN (1TX, 1RX)
	IEEE 802.11g: WLAN (2TX, 2RX)
	IEEE 802.11n: WLAN (2TX, 2RX)
Radio Type	Intentional Transceiver
Power Type	Internal power supply
Modulation	IEEE 802.11b: DSSS
	IEEE 802.11g: OFDM
	IEEE 802.11n: see the below table
Data Modulation	IEEE 802.11b: DSSS (BPSK / QPSK / CCK)
	IEEE 802.11g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	IEEE 802.11b: DSSS (1/ 2/ 5.5/11)
	IEEE 802.11g: OFDM (6/9/12/18/24/36/48/54)
	IEEE 802.11n: see the below table
Frequency Range	2400 ~ 2483.5MHz
Channel Number	11 for 20MHz bandwidth ; 7 for 40MHz bandwidth
Channel Band Width (99%)	IEEE 802.11b: 13.98 MHz
	IEEE 802.11g: 27.96 MHz
	IEEE 802.11n MCS0 (HT20): 27.18 MHz
	IEEE 802.11n MCS0 (HT40): 39.22 MHz
Maximum Conducted Output	IEEE 802.11b: 21.63 dBm
Power	IEEE 802.11g: 27.96 dBm
	IEEE 802.11n MCS0 (HT20): 27.63 dBm
	IEEE 802.11n MCS0 (HT40): 20.17 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Items	Description		
Beamforming Function	☐ With beamforming		

Report Format Version: Rev. 01 Page No. : 3 of 73
FCC ID: YAW513402 Issued Date : Aug. 24, 2015

Antenna and Band width

Antenna	Single (TX)		Two	(TX)
Band width Mode	20 MHz	40 MHz	20 MHz	40 MHz
IEEE 802.11b	٧	Х	Х	X
IEEE 802.11g	Х	Х	V	X
IEEE 802.11n	Х	Х	٧	V

IEEE 11n Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
802.11n (HT20)	2	MCS 0-15
802.11n (HT40)	2	MCS 0-15

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT supports HT20 and HT40.

Note 2: Modulation modes consist of below configuration: HT20/HT40: IEEE 802.11n

3.2. Accessories

Others
RJ-45 cable*1, Non-shielded, w/o ferrite core, 1m
RS-485 cable*1(2 wire), Non-shielded, w/o ferrite core, 3m
RS-485 cable*1(4 wire), Non-shielded, w/o ferrite core, 3m
Cradle*1

Report Format Version: Rev. 01 Page No. : 4 of 73
FCC ID: YAW513402 Issued Date : Aug. 24, 2015

3.3. Table for Filed Antenna

Ant.	Brand	P/N	Antenna Type	Connector	Gain (dBi)
1	Airgain	N2420GS2-T-PK1-B90U	PIFA Antenna	I-PEX	Note 1
2	Airgain	N2420GS2-T-PK1-G155U	PIFA Antenna	I-PEX	Note 1
3	Airgain	N2420GS2-T-PK1-B130U	PIFA Antenna	I-PEX	Note 2
4	Airgain	N2420GS2-T-PK1-G70U	PIFA Antenna	I-PEX	Note 2

Note 1:

Ant.	Gain (dBi)			
Arii.	2412 MHz	2437 MHz	2442 MHz	2462 MHz
1	4.1	4.2	3.7	4.1
2	3.2	2.8	3.0	2.8

Note 2:

Ant.	Gain (dBi)				
AIII.	2405 MHz	2440 MHz	2475 MHz		
3	2.3	1.8	1.4		
4	4.8	4.7	4.2		

Note 3:

For IEEE 802.11b mode (1TX/1RX):

The EUT supports the antenna with TX and RX diversity functions.

Both Chain 1 and Chain 2 support transmit and receive functions, but only one of them will be used at one time.

The Chain 2 generated the worst case, so it was selected to test and record in the report.

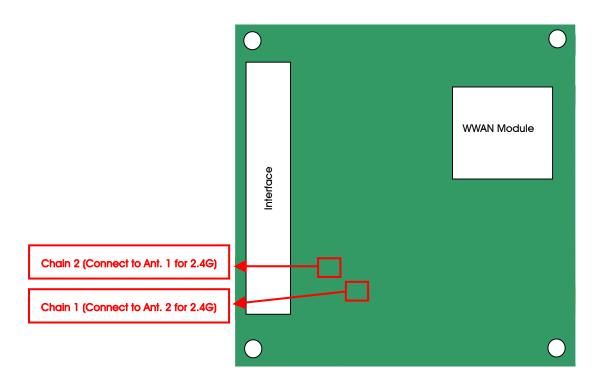
For IEEE 802.11g/n mode (2TX/2RX):

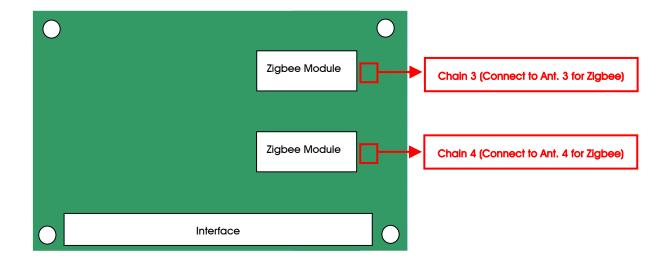
Chain 1 and Chain 2 will transmit/receive the same signal simultaneously.

Chain 1 and Chain 2 can be used as transmitting/receiving antennas.

For Zigbee mode (1TX/1RX):

Only Chain 3 can be used as transmitting/receiving antenna.


Only Chain 4 can be used as transmitting/receiving antenna.


 Report Format Version: Rev. 01
 Page No. : 5 of 73

 FCC ID: YAW513402
 Issued Date : Aug. 24, 2015

Issued Date : Aug. 24, 2015

3.4. Table for Carrier Frequencies

There are two bandwidth systems.

For 20MHz bandwidth systems, use Channel 1~Channel 11.

For 40MHz bandwidth systems, use Channel $3\sim$ Channel 9.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	1	2412 MHz	7	2442 MHz
	2	2417 MHz	8	2447 MHz
2400~2483.5MHz	3	2422 MHz	9	2452 MHz
2400~2463.5IVINZ	4	2427 MHz	10	2457 MHz
	5	2432 MHz	11	2462 MHz
	6	2437 MHz	-	-

Issued Date : Aug. 24, 2015

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel	Chain
AC Power Line Conducted Emissions	CTX	-	-	-
Maximum Conducted Output Power	11b/CCK	1 Mbps	1/6/11	2
	11g/BPSK	6 Mbps	1/6/11	1+2
	11n HT20	MCS0	1/6/11	1+2
	11n HT40	MCS0	3/6/9	1+2
Power Spectral Density	11b/CCK	1 Mbps	1/6/11	2
	11g/BPSK	6 Mbps	1/6/11	1+2
	11n HT20	MCS0	1/6/11	1+2
	11n HT40	MCS0	3/6/9	1+2
6dB Spectrum Bandwidth	11b/CCK	1 Mbps	1/6/11	2
	11g/BPSK	6 Mbps	1/6/11	1+2
	11n HT20	MCS0	1/6/11	1+2
	11n HT40	MCS0	3/6/9	1+2
Radiated Emissions 9kHz~1GHz	CTX	-	-	-
Radiated Emissions 1GHz~10 th	11b/CCK	1 Mbps	1/6/11	2
Harmonic	11g/BPSK	6 Mbps	1/6/11	1+2
	11n HT20	MCS0	1/6/11	1+2
	11n HT40	MCS0	3/6/9	1+2
Band Edge Emissions	11b/CCK	1 Mbps	1/6/11	2
	11g/BPSK	6 Mbps	1/6/11	1+2
	11n HT20	MCS0	1/6/11	1+2
	11n HT40	MCS0	3/6/9	1+2

The EUT can only be used at Y axis.

The following test modes were performed for all tests:

For Conducted Emission test:

Mode 1. CTX-EUT (WiFi + Zigbee: Chain 3 + Zigbee: Chain 4)

For Radiated Emission below 1GHz test:

Mode 1. CTX-EUT (WiFi + Zigbee: Chain 3 + Zigbee; Chain 4)

For Radiated Emission above 1GHz test:

Mode 1. CTX-EUT

 Report Format Version: Rev. 01
 Page No. : 8 of 73

 FCC ID: YAW513402
 Issued Date : Aug. 24, 2015

For Co-location MPE Test:

Mode 1. WLAN + Zigbee (chain 3) + Zigbee (chain 4)+ WWAN (FCC ID: RI7HE910)

Mode 2. WLAN + Zigbee (chain 3) + Zigbee (chain 4)+ WWAN (FCC ID: XMR201312UC20)

3.6. Table for Testing Locations

Test Site Location						
Address:	Address: No.8, Lane 724, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.					
TEL:	886-3-	886-3-656-9065				
FAX:	886-3-656-9085					
Test Site	No.	Site Category	Location	FCC Reg. No.	IC File No.	
03CH01	-СВ	SAC Hsin Chu 262045 IC 4086D				
CO01-	СВ	Conduction Hsin Chu 262045 IC 4086D				
TH01-0	СВ	OVEN Room	Hsin Chu	-	-	

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

3.7. Table for Supporting Units

For Test Site No: 03CH01-CB

Support Unit	Brand	Model	FCC ID
Notebook	DELL	E4300	DoC
3G SIM Card	N/A	N/A	N/A
3G base station	R&S	CMU200	N/A

For Test Site No: CO01-CB

Support Unit	Brand	Model	FCC ID
Notebook	DELL	E6430	DoC
3G SIM Card	N/A	N/A	N/A
3G base station	R&S	CMU200	N/A

For Test Site No: TH01-CB

Support Unit	Brand	Model	FCC ID
Notebook	DELL	E4300	DoC

: 9 of 73 Page No. FCC ID: YAW513402 Issued Date : Aug. 24, 2015

3.8. Table for Parameters of Test Software Setting

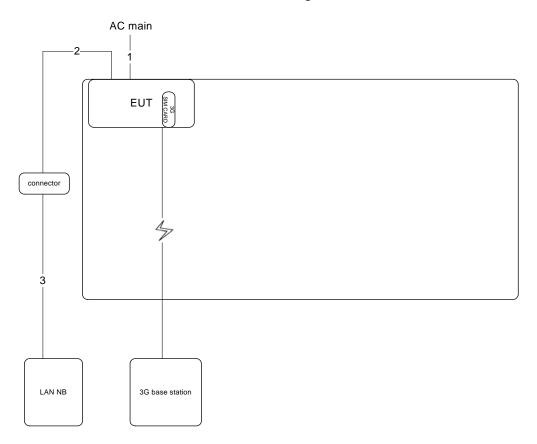
During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Test Software Version	Art2-GUI Version 2.3					
	Test Frequency (MHz)					
Mode	NCB: 20MHz			NCB: 40MHz		
	2412 MHz	2437 MHz	2462 MHz	2422 MHz	2437 MHz	2452 MHz
802.11b	21.5	22	21.5	-	-	-
802.11g	17.5	27	19	-	-	-
802.11n MCS0 HT20	16.5	26.5	18.5	-	-	-
802.11n MCS0 HT40	-	-	-	13	17	13.5

3.9. EUT Operation during Test

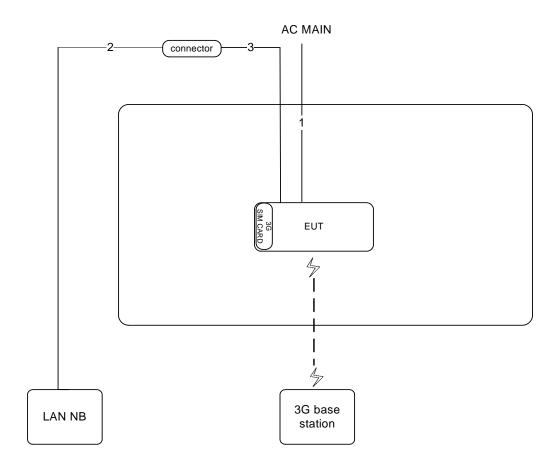
The EUT was programmed to be in continuously transmitting mode.

3.10. Duty Cycle


Mode	On Time (ms)	On+Off Time (ms)	Duty Cycle (%)	Duty Factor (dB)	1/T Minimum VBW (kHz)
802.11b	1.000	1.000	100.00	0.00	0.01
802.11g	1.350	1.396	96.73	0.14	0.74
802.11n MCS0 HT20	1.263	1.310	96.41	0.16	0.79
802.11n MCS0 HT40	0.630	0.667	94.52	0.24	1.59

3.11. Test Configurations

3.11.1. AC Power Line Conduction Emissions Test Configuration



Item	Connection	Shielded	Length
1	Power cable	No	1.8m
2	RJ-45 cable	No	1m
3	RJ-45 cable	No	10m

3.11.2. Radiation Emissions Test Configuration

Item	Connection	Shielded	Length
1	Power cable	No	1.8m
2	RJ-45 cable	No	10m
3	RJ-45 cable	No	1m

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

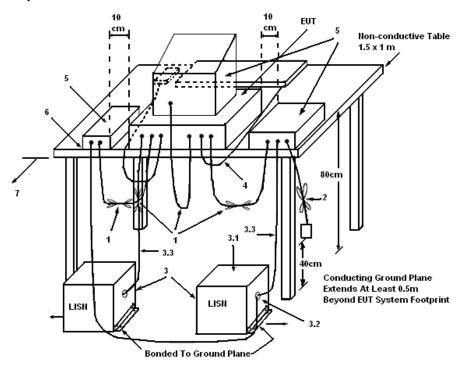
For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


4.1.3. Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far
 from the conducting wall of the shielding room and at least 80 centimeters from any other
 grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 kHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

 Report Format Version: Rev. 01
 Page No.
 : 13 of 73

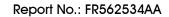
 FCC ID: YAW513402
 Issued Date
 : Aug. 24, 2015

4.1.4. Test Setup Layout

LEGEND:

- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

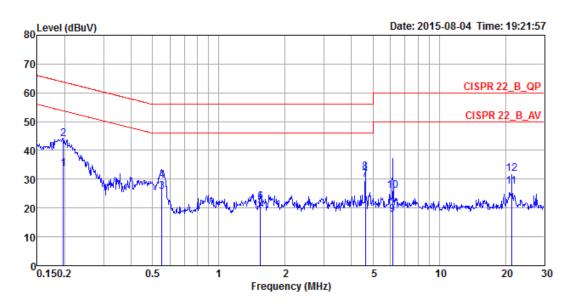
4.1.5. Test Deviation

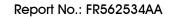

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

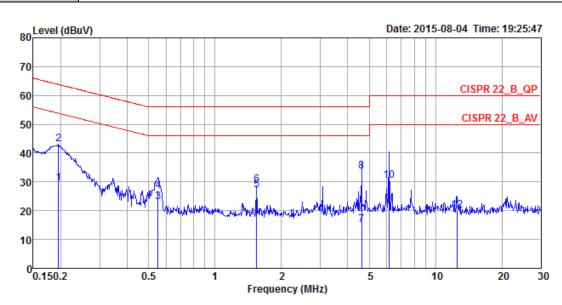
The EUT was placed on the test table and programmed in normal function.

 Report Format Version: Rev. 01
 Page No. : 14 of 73


 FCC ID: YAW513402
 Issued Date : Aug. 24, 2015


4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	26℃	Humidity	62%
Test Engineer	Deven Huang	Phase	Line
Configuration	СТХ		


			0ver	Limit	Read	LISN	Cable		
	Freq	Level	Limit	Line	Level	Factor	Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.1965	33.57	-20.19	53.76	23.62	9.93	0.02	LINE	Average
2	0.1965	44.13	-19.63	63.76	34.18	9.93	0.02	LINE	QP
3	0.5523	25.68	-20.32	46.00	15.70	9.94	0.04	LINE	Average
4	0.5523	29.65	-26.35	56.00	19.67	9.94	0.04	LINE	QP
5	1.5436	20.79	-25.21	46.00	10.75	9.98	0.06	LINE	Average
6	1.5436	22.11	-33.89	56.00	12.07	9.98	0.06	LINE	QP
7	4.6223	29.81	-16.19	46.00	19.68	10.04	0.09	LINE	Average
8	4.6223	32.39	-23.61	56.00	22.26	10.04	0.09	LINE	QP
9	6.1534	17.60	-32.40	50.00	7.37	10.10	0.13	LINE	Average
10	6.1534	25.86	-34.14	60.00	15.63	10.10	0.13	LINE	QP
11	21.2596	27.54	-22.46	50.00	16.79	10.48	0.27	LINE	Average
12	21.2596	31.91	-28.09	60.00	21.16	10.48	0.27	LINE	QP

Report Format Version: Rev. 01 FCC ID: YAW513402 Issued Date : Aug. 24, 2015

Temperature	26°C	Humidity	62%
Test Engineer	Deven Huang	Phase	Neutral
Configuration	CTX		

		0ver	Limit	Read	LISN	Cable			
Freq	Level	Limit	Line	Level	Factor	Loss	Pol/Phase	Remark	
MHz	dBuV	dB	dBuV	dBuV	dB	dB			
0.1955	29.54	-24.26	53.80	19.73	9.79	0.02	NEUTRAL	Average	
0.1955	43.05	-20.75	63.80	33.24	9.79	0.02	NEUTRAL	QP	
0.5523	22.89	-23.11	46.00	13.05	9.80	0.04	NEUTRAL	Average	
0.5523	26.96	-29.04	56.00	17.12	9.80	0.04	NEUTRAL	QP	
1.5436	27.12	-18.88	46.00	17.23	9.83	0.06	NEUTRAL	Average	
1.5436	28.92	-27.08	56.00	19.03	9.83	0.06	NEUTRAL	QP	
4.6223	15.05	-30.95	46.00	5.07	9.89	0.09	NEUTRAL	Average	
4.6223	33.77	-22.23	56.00	23.79	9.89	0.09	NEUTRAL	QP	
6.1534	22.14	-27.86	50.00	12.07	9.94	0.13	NEUTRAL	Average	
6.1534	30.44	-29.56	60.00	20.37	9.94	0.13	NEUTRAL	QP	
12.5156	18.72	-31.28	50.00	8.41	10.06	0.25	NEUTRAL	Average	
12.5156	20.04	-39.96	60.00	9.73	10.06	0.25	NEUTRAL	QP	
	MHz 0.1955 0.1955 0.5523 0.5523 1.5436 1.5436 4.6223 4.6223 6.1534 6.1534 12.5156	MHz dBuV 0.1955 29.54 0.1955 43.05 0.5523 22.89 0.5523 26.96 1.5436 27.12 1.5436 28.92 4.6223 15.05 4.6223 33.77 6.1534 22.14 6.1534 30.44 12.5156 18.72	Freq Level Limit MHz dBuV dB 0.1955 29.54 -24.26 0.1955 43.05 -20.75 0.5523 22.89 -23.11 0.5523 26.96 -29.04 1.5436 27.12 -18.88 1.5436 28.92 -27.08 4.6223 15.05 -30.95 4.6223 33.77 -22.23 6.1534 22.14 -27.86 6.1534 30.44 -29.56 12.5156 18.72 -31.28	Freq Level Limit Line MHz dBuV dB dBuV 0.1955 29.54 -24.26 53.80 0.1955 43.05 -20.75 63.80 0.5523 22.89 -23.11 46.00 0.5523 26.96 -29.04 56.00 1.5436 27.12 -18.88 46.00 1.5436 28.92 -27.08 56.00 4.6223 15.05 -30.95 46.00 4.6223 33.77 -22.23 56.00 6.1534 22.14 -27.86 50.00 6.1534 30.44 -29.56 60.00 12.5156 18.72 -31.28 50.00	MHz Level Limit Line Level 0.1955 29.54 -24.26 53.80 19.73 0.1955 43.05 -20.75 63.80 33.24 0.5523 22.89 -23.11 46.00 13.05 0.5523 26.96 -29.04 56.00 17.12 1.5436 27.12 -18.88 46.00 17.23 1.5436 28.92 -27.08 56.00 19.03 4.6223 15.05 -30.95 46.00 5.07 4.6223 33.77 -22.23 56.00 23.79 6.1534 22.14 -27.86 50.00 12.07 6.1534 30.44 -29.56 60.00 20.37 12.5156 18.72 -31.28 50.00 8.41	Freq Level Limit Line Level Factor MHz dBuV dBuV <th col<="" td=""><td>Freq Level Limit Line Level Factor Loss MHz dBuV dB dBuV dBuV dB dB 0.1955 29.54 -24.26 53.80 19.73 9.79 0.02 0.1955 43.05 -20.75 63.80 33.24 9.79 0.02 0.5523 22.89 -23.11 46.00 13.05 9.80 0.04 0.5523 26.96 -29.04 56.00 17.12 9.80 0.04 1.5436 27.12 -18.88 46.00 17.23 9.83 0.06 1.5436 28.92 -27.08 56.00 19.03 9.83 0.06 4.6223 15.05 -30.95 46.00 5.07 9.89 0.09 4.6223 33.77 -22.23 56.00 23.79 9.89 0.09 6.1534 22.14 -27.86 50.00 12.07 9.94 0.13 6.1534 30.44 -29.56</td><td>Freq Level Limit Line Level Factor Loss Pol/Phase MHz dBuV dBuV dBuV dB dB 0.1955 29.54 -24.26 53.80 19.73 9.79 0.02 NEUTRAL 0.1955 43.05 -20.75 63.80 33.24 9.79 0.02 NEUTRAL 0.5523 22.89 -23.11 46.00 13.05 9.80 0.04 NEUTRAL 0.5523 26.96 -29.04 56.00 17.12 9.80 0.04 NEUTRAL 1.5436 27.12 -18.88 46.00 17.23 9.83 0.06 NEUTRAL 1.5436 28.92 -27.08 56.00 19.03 9.83 0.06 NEUTRAL 4.6223 15.05 -30.95 46.00 5.07 9.89 0.09 NEUTRAL 4.6223 33.77 -22.23 56.00 23.79 9.89 0.09 NEUTRAL 6.1534 22.14 -27.86 50.00 12.07 9.94 0.13 NEUTRAL 6.1534 30.44 -29.56 60.00 20.37 9.94 0.13 NEUTRAL 12.5156 18.72 -31.28 50.00 8.41 10.06 0.25 NEUTRAL</td></th>	<td>Freq Level Limit Line Level Factor Loss MHz dBuV dB dBuV dBuV dB dB 0.1955 29.54 -24.26 53.80 19.73 9.79 0.02 0.1955 43.05 -20.75 63.80 33.24 9.79 0.02 0.5523 22.89 -23.11 46.00 13.05 9.80 0.04 0.5523 26.96 -29.04 56.00 17.12 9.80 0.04 1.5436 27.12 -18.88 46.00 17.23 9.83 0.06 1.5436 28.92 -27.08 56.00 19.03 9.83 0.06 4.6223 15.05 -30.95 46.00 5.07 9.89 0.09 4.6223 33.77 -22.23 56.00 23.79 9.89 0.09 6.1534 22.14 -27.86 50.00 12.07 9.94 0.13 6.1534 30.44 -29.56</td> <td>Freq Level Limit Line Level Factor Loss Pol/Phase MHz dBuV dBuV dBuV dB dB 0.1955 29.54 -24.26 53.80 19.73 9.79 0.02 NEUTRAL 0.1955 43.05 -20.75 63.80 33.24 9.79 0.02 NEUTRAL 0.5523 22.89 -23.11 46.00 13.05 9.80 0.04 NEUTRAL 0.5523 26.96 -29.04 56.00 17.12 9.80 0.04 NEUTRAL 1.5436 27.12 -18.88 46.00 17.23 9.83 0.06 NEUTRAL 1.5436 28.92 -27.08 56.00 19.03 9.83 0.06 NEUTRAL 4.6223 15.05 -30.95 46.00 5.07 9.89 0.09 NEUTRAL 4.6223 33.77 -22.23 56.00 23.79 9.89 0.09 NEUTRAL 6.1534 22.14 -27.86 50.00 12.07 9.94 0.13 NEUTRAL 6.1534 30.44 -29.56 60.00 20.37 9.94 0.13 NEUTRAL 12.5156 18.72 -31.28 50.00 8.41 10.06 0.25 NEUTRAL</td>	Freq Level Limit Line Level Factor Loss MHz dBuV dB dBuV dBuV dB dB 0.1955 29.54 -24.26 53.80 19.73 9.79 0.02 0.1955 43.05 -20.75 63.80 33.24 9.79 0.02 0.5523 22.89 -23.11 46.00 13.05 9.80 0.04 0.5523 26.96 -29.04 56.00 17.12 9.80 0.04 1.5436 27.12 -18.88 46.00 17.23 9.83 0.06 1.5436 28.92 -27.08 56.00 19.03 9.83 0.06 4.6223 15.05 -30.95 46.00 5.07 9.89 0.09 4.6223 33.77 -22.23 56.00 23.79 9.89 0.09 6.1534 22.14 -27.86 50.00 12.07 9.94 0.13 6.1534 30.44 -29.56	Freq Level Limit Line Level Factor Loss Pol/Phase MHz dBuV dBuV dBuV dB dB 0.1955 29.54 -24.26 53.80 19.73 9.79 0.02 NEUTRAL 0.1955 43.05 -20.75 63.80 33.24 9.79 0.02 NEUTRAL 0.5523 22.89 -23.11 46.00 13.05 9.80 0.04 NEUTRAL 0.5523 26.96 -29.04 56.00 17.12 9.80 0.04 NEUTRAL 1.5436 27.12 -18.88 46.00 17.23 9.83 0.06 NEUTRAL 1.5436 28.92 -27.08 56.00 19.03 9.83 0.06 NEUTRAL 4.6223 15.05 -30.95 46.00 5.07 9.89 0.09 NEUTRAL 4.6223 33.77 -22.23 56.00 23.79 9.89 0.09 NEUTRAL 6.1534 22.14 -27.86 50.00 12.07 9.94 0.13 NEUTRAL 6.1534 30.44 -29.56 60.00 20.37 9.94 0.13 NEUTRAL 12.5156 18.72 -31.28 50.00 8.41 10.06 0.25 NEUTRAL

Note:

Level = Read Level + LISN Factor + Cable Loss.

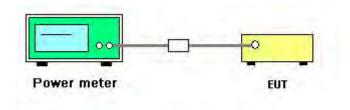
Issued Date : Aug. 24, 2015

4.2. Maximum Conducted Output Power Measurement

4.2.1. Limit

The limit for output power is 30dBm.

4.2.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Bandwidth	50MHz bandwidth is greater than the EUT emission bandwidth
Detector	Average

4.2.3. Test Procedures

- 1. Test procedures refer KDB558074 D01 v03r03 section 9.2.3.2 Measurement using a power meter (PM).
- 2. Multiple antenna systems was performed in accordance with KDB 662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 3. This procedure provides an alternative for determining the RMS output power using a broadband RF average power meter with a thermocouple detector.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No. : 17 of 73

 FCC ID: YAW513402
 Issued Date : Aug. 24, 2015

4.2.7. Test Result of Maximum Conducted Output Power

Temperature	25°C	Humidity	45%
Test Engineer	Roki Liu	Test Date	Jul. 29, 2015

Mode	Frequency	Conducted Power (dBm) Chain 2	Max. Limit (dBm)	Result
	2412 MHz	21.36	30.00	Complies
802.11b	2437 MHz	21.63	30.00	Complies
	2462 MHz	21.14	30.00	Complies

Mode	Fraguanay	Con	ducted Power (Max. Limit	Result	
Mode	Frequency	Chain 1	Chain 2	Total	(dBm)	Resuli
	2412 MHz	17.67	17.96	20.83	30.00	Complies
802.11g	2437 MHz	24.38	25.46	27.96	30.00	Complies
	2462 MHz	18.49	18.97	21.75	30.00	Complies
802.11n	2412 MHz	16.58	16.91	19.76	30.00	Complies
MCS0 HT20	2437 MHz	23.93	25.21	27.63	30.00	Complies
IVIC30 HIZO	2462 MHz	18.03	18.39	21.22	30.00	Complies
802.11n	2422 MHz	12.86	14.12	16.55	30.00	Complies
MCS0 HT40	2437 MHz	16.33	17.85	20.17	30.00	Complies
IVICSU H140	2452 MHz	12.54	14.44	16.60	30.00	Complies

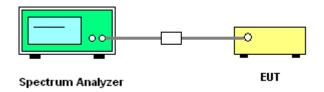
Page No. : 18 of 73 Issued Date : Aug. 24, 2015

4.3. Power Spectral Density Measurement

4.3.1. Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

4.3.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Set the span to 1.5 times the DTS channel bandwidth.
RBW	3 kHz ≤ RBW ≤ 100kHz
VBW	≥ 3 x RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto couple

4.3.3. Test Procedures

- Test was performed in accordance with KDB558074 D01 v03r03 for Performing Compliance
 Measurements on Digital Transmission Systems (DTS) section 10.2 Method PKPSD (peak PSD) and
 KDB 662911 D01 v02r01 section In-Band Power Spectral Density (PSD) Measurements option (b)
 Measure and sum spectral maximal across the outputs.
- 2. Use this procedure when the maximum conducted output power in the fundamental emission is used to demonstrate compliance. The EUT must be configured to transmit continuously at full power over the measurement duration.
- 3. Ensure that the number of measurement points in the sweep ≥ 2 x span/RBW (use of a greater number of measurement points than this minimum requirement is recommended).
- 4. Use the peak marker function to determine the maximum level in any 3 kHz band segment within the fundamental EBW.
- 5. The resulting PSD level must be \leq 8 dBm.

4.3.4. Test Setup Layout

 Report Format Version: Rev. 01
 Page No.
 : 19 of 73

 FCC ID: YAW513402
 Issued Date
 : Aug. 24, 2015

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: Rev. 01 Page No. : 20 of 73 FCC ID: YAW513402 Issued Date : Aug. 24, 2015

4.3.7. Test Result of Power Spectral Density

Temperature	25°C	Humidity	45%
Test Engineer	Roki Liu		

Mode Frequency		Power Density (dBm/3kHz)		Result
WOOE	riequericy	Chain 2	(dBm/3kHz)	Resuli
	2412 MHz	-2.58	7.32	Complies
802.11b	2437 MHz	-2.36	7.43	Complies
	2462 MHz	-2.34	7.49	Complies

Mode	Frequency	Power Density (dBm/3kHz)			Power Density Limit	Doorth
		Chain 1	Chain 2	Total	(dBm/3kHz)	Result
802.11g	2412 MHz	-8.00	-7.10	-4.52	7.32	Complies
	2437 MHz	-0.58	1.44	3.56	7.43	Complies
	2462 MHz	-7.13	-6.71	-3.90	7.49	Complies
802.11n MCS0 HT20	2412 MHz	-10.57	-9.43	-6.95	7.32	Complies
	2437 MHz	-2.81	0.13	1.91	7.43	Complies
	2462 MHz	-8.25	-7.61	-4.91	7.49	Complies
802.11n MCS0 HT40	2422 MHz	-16.96	-14.65	-12.64	7.32	Complies
	2437 MHz	-12.92	-11.22	-8.98	7.43	Complies
	2452 MHz	-16.77	-14.50	-12.48	7.49	Complies

Note:

2412MHz:
$$Directional Gain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 6.68 dBi > 6 dBi, So Limit = 8 - (6.68-6) = 7.32 dBm/MHz$$

2422MHz:
$$Directional Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 6.68 \text{dBi} > 6 \text{dBi}, \text{So Limit} = 8 - (6.68 - 6) = 7.32 \text{dBm/MHz}$$

Note:
$$2412 \text{MHz: } \underbrace{Directional Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 6.68 \text{dBi} > 6 \text{dBi}, \text{So Limit} = 8 - (6.68 - 6) = 7.32 \text{dBm/MHz} }$$

$$2422 \text{MHz: } \underbrace{Directional Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 6.68 \text{dBi} > 6 \text{dBi}, \text{So Limit} = 8 - (6.68 - 6) = 7.32 \text{dBm/MHz} }$$

$$2437 \text{MHz: } \underbrace{Directional Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 6.57 \text{dBi} > 6 \text{dBi}, \text{So Limit} = 8 - (6.57 - 6) = 7.43 \text{dBm/MHz} }$$

Report Format Version: Rev. 01 : 21 of 73 Page No. FCC ID: YAW513402 Issued Date : Aug. 24, 2015

2452MHz:
$$Directional Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 6.51 \text{dBi} > 6 \text{dBi}, \text{So Limit} = 8-(6.51-6) = 7.49 \text{dBm/MHz}$$

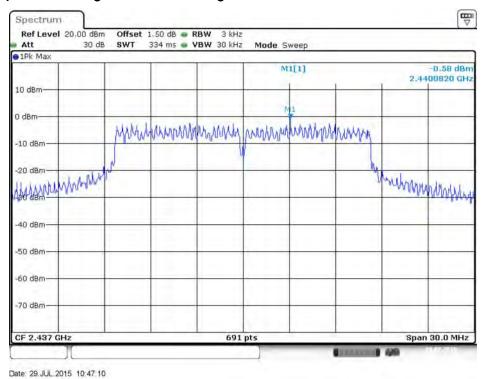

$$2462 \text{MHz:} Directional Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right] = 6.51 \text{dBi} > 6 \text{dBi}, \text{So Limit} = 8-(6.51-6) = 7.49 \text{dBm/MHz}$$

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.


 Report Format Version: Rev. 01
 Page No. : 22 of 73

 FCC ID: YAW513402
 Issued Date : Aug. 24, 2015



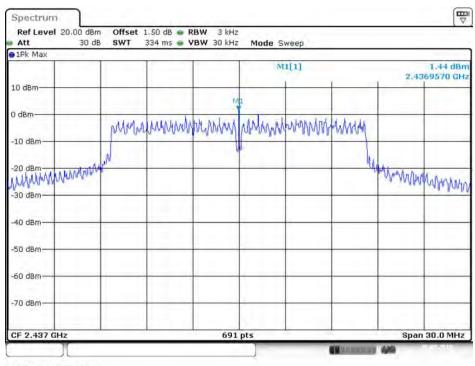
Power Density Plot on Configuration IEEE 802.11b / 2462 MHz / Chain 2

Power Density Plot on Configuration IEEE 802.11g / 2437 MHz / Chain 1

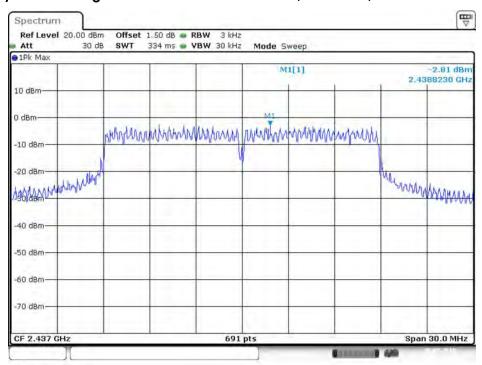


Report Format Version: Rev. 01
FCC ID: YAW513402

: 23 of 73


Page No.

Issued Date : Aug. 24, 2015

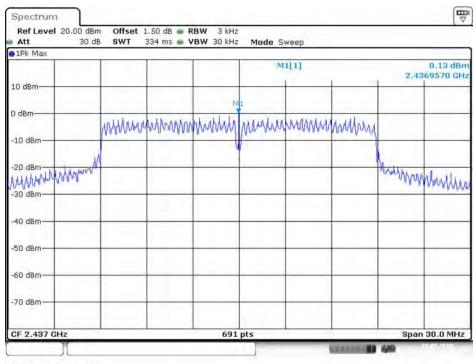


Power Density Plot on Configuration IEEE 802.11g / 2437 MHz / Chain 2

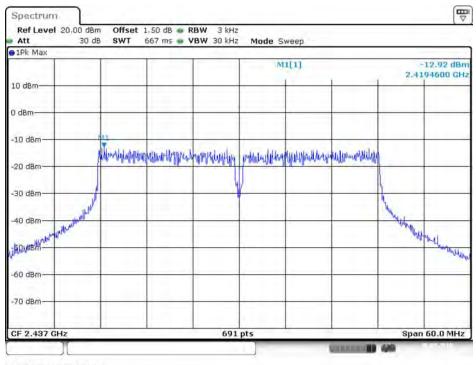


Date: 29.JUL.2015 10:46:34

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / 2437 MHz / Chain 1



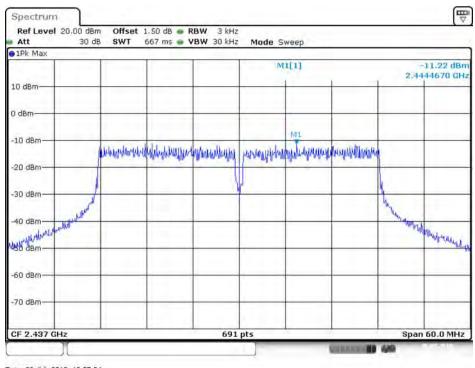
Date: 29.JUL.2015 10:51:23



Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / 2437 MHz / Chain 2

Date: 29.JUL.2015 10:52:27

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / 2437 MHz / Chain 1



Date: 29.JUL.2015 10:58:53

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / 2437 MHz / Chain 2

Date: 29.JUL.2015 10:57:54

: 26 of 73 Page No. Issued Date : Aug. 24, 2015

4.4. 6dB Spectrum Bandwidth Measurement

4.4.1. Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the Spectrum Analyzer.

6dB Spectrum Bandwidth					
Spectrum Parameters	Setting				
Attenuation	Auto				
Span Frequency	> 6dB Bandwidth				
RBW	100kHz				
VBW	≥ 3 x RBW				
Detector	Peak				
Trace	Max Hold				
Sweep Time	Auto				
99% Occupied Bandwidth					
Spectrum Parameters	Setting				
Span	1.5 times to 5.0 times the OBW				
RBW	1 % to 5 % of the OBW				
VBW	≥ 3 x RBW				
Detector	Peak				
Trace	Max Hold				

4.4.3. Test Procedures

For Radiated 6dB Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- 2. Test was performed in accordance with KDB558074 D01 v03r03 for Performing Compliance Measurements on Digital Transmission Systems (DTS) section 8.0 DTS bandwidth=> 8.1 Option 1.
- 3. Multiple antenna system was performed in accordance with KDB 662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. Measured the spectrum width with power higher than 6dB below carrier.

4.4.4. Test Setup Layout

For Radiated 6dB Bandwidth Measurement:

This test setup layout is the same as that shown in section 4.5.4.

 Report Format Version: Rev. 01
 Page No. : 27 of 73

 FCC ID: YAW513402
 Issued Date : Aug. 24, 2015

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: Rev. 01 Page No. : 28 of 73 FCC ID: YAW513402 Issued Date : Aug. 24, 2015

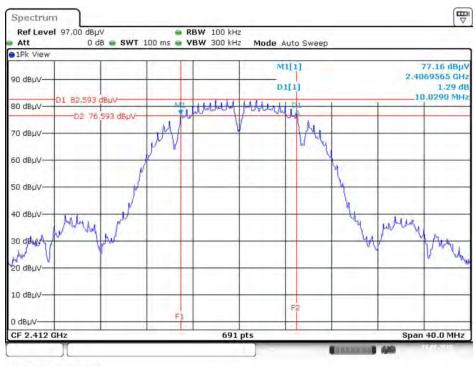
4.4.7. Test Result of 6dB Spectrum Bandwidth

Temperature	25℃	Humidity	45%
Test Engineer	Roki Liu		

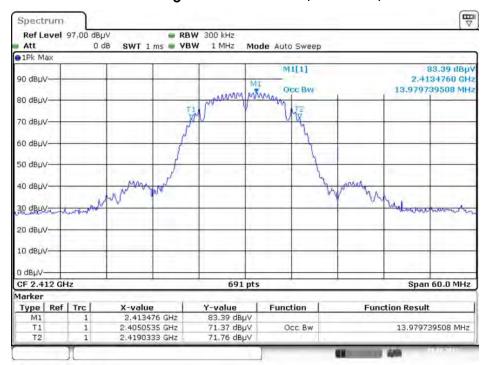

Mode	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
802.11b	2412 MHz	10.03	13.98	500	Complies
	2437 MHz	10.03	13.98	500	Complies
	2462 MHz	10.03	13.98	500	Complies
802.11g	2412 MHz	16.12	16.85	500	Complies
	2437 MHz	12.17	27.96	500	Complies
	2462 MHz	16.12	16.50	500	Complies
802.11n MCS0 HT20	2412 MHz	12.17	17.19	500	Complies
	2437 MHz	17.57	27.18	500	Complies
	2462 MHz	17.57	18.41	500	Complies
802.11n MCS0 HT40	2422 MHz	35.36	39.22	500	Complies
	2437 MHz	36.41	37.34	500	Complies
	2452 MHz	35.48	39.07	500	Complies

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.


Report Format Version: Rev. 01 FCC ID: YAW513402

Page No. : 29 of 73 Issued Date : Aug. 24, 2015

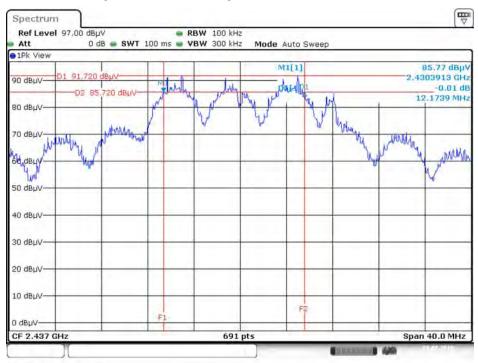


6 dB Bandwidth Plot on Configuration IEEE 802.11b / 2412 MHz / Chain 2

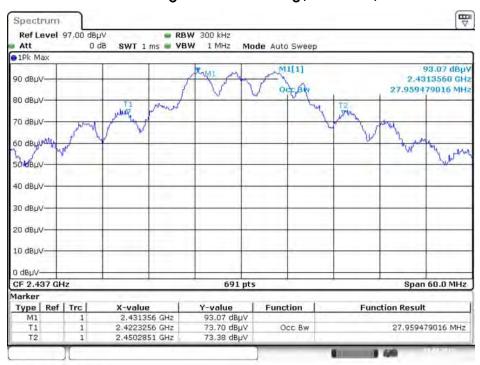


Date: 29.JUL.2015 11:12:08

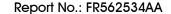
99% Occupied Bandwidth Plot on Configuration IEEE 802.11b / 2412 MHz / Chain 2



Date: 29.JUL.2015 11:25:41

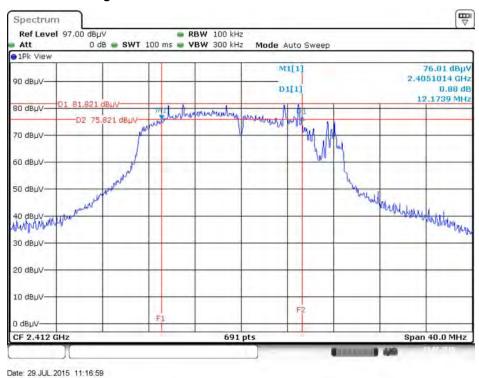


6 dB Bandwidth Plot on Configuration IEEE 802.11g / 2437 MHz / Chain 1 + Chain 2

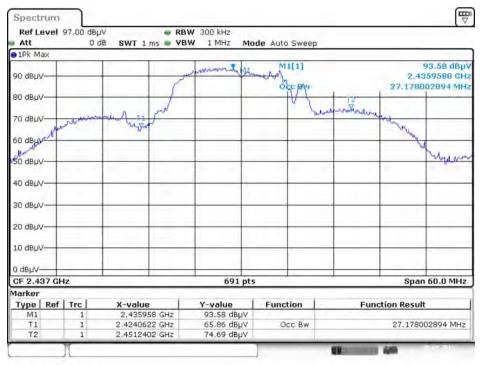


Date: 29.JUL.2015 11:13:38

99% Occupied Bandwidth Plot on Configuration IEEE 802.11g / 2437 MHz / Chain 1 + Chain 2

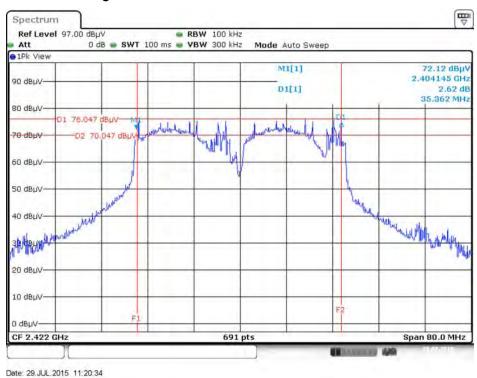


Date: 29.JUL.2015 11:29:21

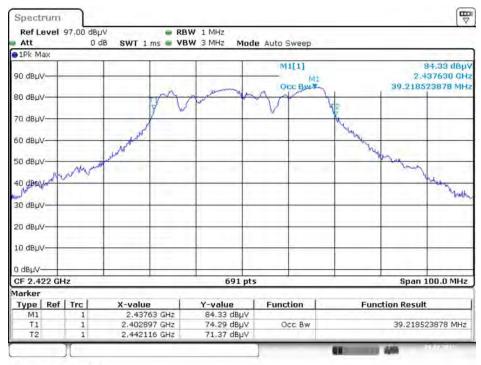



6 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / 2412 MHz / Chain 1 + Chain 2

99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / 2437 MHz / Chain 1 + Chain 2



Date: 29.JUL.2015 11:31:56



6 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / 2422 MHz / Chain 1 + Chain 2

99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / 2422 MHz / Chain 1 + Chain 2

Date: 29.JUL.2015 11:33:45

4.5. Radiated Emissions Measurement

4.5.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance		
(MHz)	(micorvolts/meter)	(meters)		
0.009~0.490	2400/F(kHz)	300		
0.490~1.705	24000/F(kHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

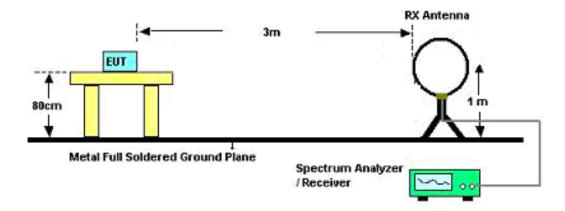
Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,		
	1MHz / 1/T for Average		
RBW / VBW (Emission in non-restricted band)	100kHz / 300kHz for peak		

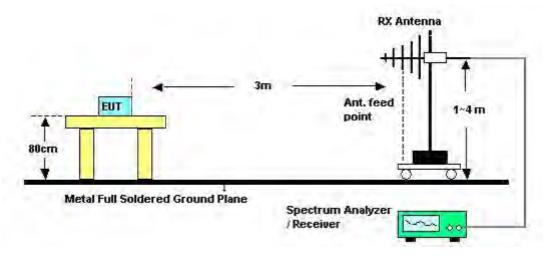
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP

Report Format Version: Rev. 01 Page No. : 34 of 73 FCC ID: YAW513402 Issued Date : Aug. 24, 2015

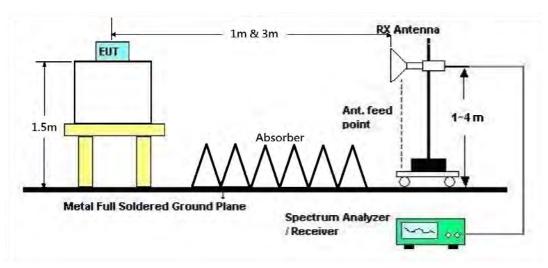
4.5.3. Test Procedures

Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5
meter above ground. The phase center of the receiving antenna mounted on the top of a
height-variable antenna tower was placed 1m & 3m far away from the turntable.


- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 m to 4 m) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.



4.5.4. Test Setup Layout


For Radiated Emissions: 9kHz ~30MHz

For Radiated Emissions: 30MHz~1GHz

For Radiated Emissions: Above 1GHz

ersion: Rev. 01 Page No. : 36 of 73
402 Issued Date : Aug. 24, 2015

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: Rev. 01 Page No. : 37 of 73 FCC ID: YAW513402 Issued Date : Aug. 24, 2015

4.5.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	24°C	Humidity	55%
Test Engineer	JC Yang	Configurations	СТХ
Test Date	Aug. 04, 2015		

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

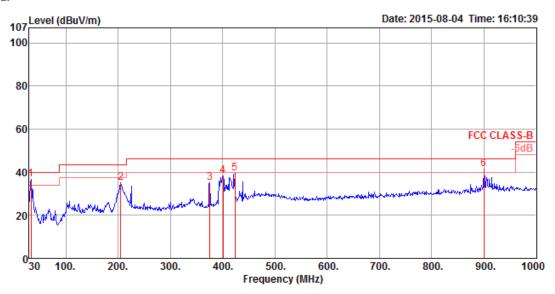
Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

 $\label{limits} \mbox{Limit line} = \mbox{specific limits (dBuV)} + \mbox{distance extrapolation factor}.$

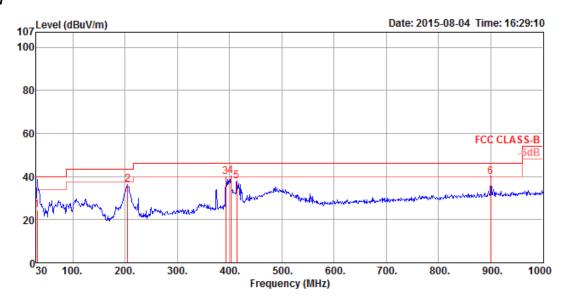
Report Format Version: Rev. 01 Page No. : 38 of 73 FCC ID: YAW513402 Issued Date : Aug. 24, 2015



4.5.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	24°C	Humidity	55%
Test Engineer	JC Yang	Configurations	CTX

Horizontal



	Freq	Level		Over Limit					-	T/Pos	Pol/Phase	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m	dB	dB	cm	deg		
1	33.88	36.87	40.00	-3.13	51.31	17.61	0.59	32.64	200	49	HORIZONTAL	Peak
2	204.60	34.97	43.50	-8.53	55.61	10.50	1.41	32.55	100	194	HORIZONTAL	Peak
3	375.32	35.05	46.00	-10.95	49.73	15.93	1.93	32.54	100	6	HORIZONTAL	Peak
4	400.54	38.48	46.00	-7.52	52.53	16.50	1.99	32.54	200	356	HORIZONTAL	Peak
5	423.82	39.56	46.00	-6.44	53.28	16.79	2.05	32.56	200	348	HORIZONTAL	Peak
6	900.09	41.53	46.00	-4.47	48.80	21.60	2.99	31.86	150	75	HORIZONTAL	Peak

Vertical

	Freq	Level		Over Limit					-	-	Pol/Phase	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB/m	dB	dB	cm	deg		
1	31.94	24.32	40.00	-15.68	37.64	18.77	0.55	32.64	125	357	VERTICAL	QP
2	204.60	36.17	43.50	-7.33	56.81	10.50	1.41	32.55	100	16	VERTICAL	Peak
3	392.78	39.92	46.00	-6.08	54.18	16.31	1.97	32.54	150	360	VERTICAL	Peak
4	402.48	40.32	46.00	-5.68	54.34	16.52	2.00	32.54	150	358	VERTICAL	Peak
5	414.12	37.94	46.00	-8.06	51.79	16.68	2.02	32.55	125	131	VERTICAL	Peak
6	900.09	39.93	46.00	-6.07	47.20	21.60	2.99	31.86	150	320	VERTICAL	QP

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Page No. : 40 of 73

Issued Date : Aug. 24, 2015

4.5.9. Results for Radiated Emissions (1GHz \sim 10th Harmonic)

Temperature	24°C	Humidity	55%
Test Engineer	JC Yang	Configurations	IEEE 802.11b CH 1 / Chain 2
Test Date	Jul. 07, 2015		

Horizontal

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHz	dBu∨/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	4823.92	57.70	74.00	-16.30	54.16	5.38	32.55	34.39	195	52	HORIZONTAL	Peak
2	4823.94	53.78	54.00	-0.22	50.24	5.38	32.55	34.39	195	52	HORIZONTAL	Average

Vertical

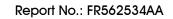
			Limit	0∨er	Read	Cable	Ant enna	Preamp	A/Pos	T/Pos			
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor			Pol/Phase	Remark	
	MHz	dBu√/m	dBu√/m	dB	dBu√	dB	dB/m	dB	cm	deg			
1	4823.88	54.41	74.00	-19.59	50.87	5.38	32.55	34.39	132	1	VERTICAL	Peak	
2	4823.91	50.37	54.00	-3.63	46.83	5.38	32.55	34.39	132	1	VERTICAL	Average	

Report Format Version: Rev. 01 Page No. : 41 of 73 FCC ID: YAW513402 Issued Date : Aug. 24, 2015

Temperature	24°C	Humidity	55%
Test Engineer	JC Yang	Configurations	IEEE 802.11b CH 6 / Chain 2
Test Date	Jul. 07, 2015		

Horizontal

	Freq	Level		Over Limit						T/Pos	Pol/Phase	Remark
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		deg		
1	4873.91	53.80	54.00	-0.20	50.12	5.40	32.66	34.38	174	55	HORIZONTAL	Average
2	4873.96	57.48	74.00	-16.52	53.80	5.40	32.66	34.38	174	55	HORIZONTAL	Peak


	Freq	Level	Limi1 Line	Limit	Level	Loss	Factor	Factor	/Pos	T/Pos	Pol/Phase	Remark	
	MHz	dBu√/m	dBu∀/m	dB	dBu∀	dB	dB/m	——dB	Cm	deg			-
1	4873.94	52.85	54.00	-1.15	49.17	5.40	32.66	34.38	121	341	VERTICAL	Average	
2	4874.04	56.42	74.00	-17.58	52.74	5.40	32.66	34.38	121	341	VERTICAL	Peak	

Temperature	24°C	Humidity	55%
Test Engineer	JC Yang	Configurations	IEEE 802.11b CH 11 / Chain 2
Test Date	Jul. 07, 2015		

	Freq	Level	Limit Line						A/Pos		Pol/Phase	Remark
	MHz	dBu√/m	dBu√/m	dB	dBu√	dB	dB/m	dB	cm	deg		
1	4923.83	57.48	74.00	-16.52	53.67	5.42	32.76	34.37	200	28	HORIZONTAL	Peak
2	4923.93	53.55	54.00	-0.45	49.74	5.42	32.76	34.37	200	28	HORIZONTAL	Average

	Freq	Level	Limit Line						A/Pos	T/Pos	Pol/Phase	Remark
	MHz	dBu√/m	dBu√/m	dB	dBu∀	dB	dB/m	dB		deg		
1	4923.94	52.71	54.00	-1.29	48.90	5.42	32.76	34.37	131	347	VERTICAL	Average
2	4924.01	56.31	74.00	-17.69	52.50	5.42	32.76	34.37	131	347	VERTICAL	Peak

Temperature	24°C	Humidity	55%
Test Engineer	JC Yang	Configurations	IEEE 802.11g CH 1 / Chain 1 + Chain 2
Test Date	Jul. 09, 2015		

	Freq	Level	Limit Line	Over Limit				Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	dB	dBu∇	₫B	dB/m	- dB	deg	Cm		
1 2 3 4	3215.92 3215.95 4823.80 4823.84	46.21 51.36	54.00	-22.64	47.78 49.09		29.78 29.78 32.69 32.69	34.52	262 262 344 344	182 137	Peak Average Peak Average	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
-	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	₫B	dBuV	₫B	dB/m	₫B	deg	Cin		
1 2 3 4	3215.92 3215.97 4828.72 4830.92	44.56 36.13		-9.44 -17.87	46.13 33.86	3.30 4.10	29.78 32.69	34.65 34.52	177 177 320 320	173 136	Peak Average Average Peak	VERTICAL VERTICAL VERTICAL VERTICAL

Page No. : 44 of 73

Issued Date : Aug. 24, 2015

Temperature	24°C	Humidity	55%
Test Engineer	JC Yang	Configurations	IEEE 802.11g CH 6 / Chain 1 + Chain 2
Test Date	Jul. 09, 2015		

	Freq	Level	Limit Line	Over Limit				Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	₫B	dBu∇	₫B	dB/m	₫B	deg	Cm		
1 2 3 4 5 6	3249.17 3249.26 4872.80 4873.50 7307.20 7307.50		54.00 74.00 54.00 54.00	-25.88 -11.38 -10.14 -3.44 -7.78 -14.07	49.56 44.06 61.46 48.16 38.66 52.37	3.32 3.32 4.13 4.13 5.09 5.09		34.51	259 259 19 19 82 82	200 214 214 201	Peak Average Peak Average Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	₫B	dBu∀	₫B	dB/m	₫B	deg	Cm		
1 2 3 4 5	3249.00 3249.28 4872.40 4873.00 7305.90 7320.50	46.69 40.27 59.76 47.30 45.45 58.06	54.00 74.00 54.00	-13.73 -14.24 -6.70 -8.55	44.90 37.89	3.32 3.32 4.13 4.13 5.09		34.64 34.64 34.51 34.51 34.76	185 185 340 340 331 331	205 124 124 128	Peak Average Peak Average Average Peak	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Temperature	24°C	Humidity	55%
Test Engineer	JC Yang	Configurations	IEEE 802.11g CH 11 / Chain 1 + Chain 2
Test Date	Jul. 09, 2015		

	Freq	Level	Limi t Line	Over Limit				Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	₫B	dBu∇	- dB	dB/m	<u>qb</u>	deg	Cm		
1 2 3 4	3282.55 3282.58 4923.30 4923.60	43.26 50.74	54.00 74.00	-10.74 -23.26	44.58 48.20	3.34 4.15	29.97 29.97 32.88 32.88	34.49	355 355 44 44	174 194	Peak Average Peak Average	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line		Read Level					A/Pos	Remark	Pol/Phase
,	MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	₫B	dBu∇	₫B	dB/m		deg	Cm		
1 2 3 4	3282.58 3282.61 4921.70 4924.00	46.35 48.98	74.00 74.00	-27.65 -25.02	47.67 46.44	3.34 4.15	29.97 32.88	34.63	175 175 41 41	157 150	Average Peak Peak Average	VERTICAL VERTICAL VERTICAL VERTICAL

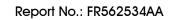
Page No. : 46 of 73

Issued Date : Aug. 24, 2015

Temperature	24 °C	Humidity	55%
Tost Engineer	JC Yang	Configurations	IEEE 802.11n MCS0 HT20 CH 1 /
Test Engineer	JC failg	Configurations	Chain 1 + Chain 2
Test Date	Jul. 09, 2015		

	Freq	Level	Limi t Line	Over Limit				Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	dB	dBu∇	dB	dB/m		deg	Cm		
1 2 3 4	3215.87 3215.95 4819.40 4823.60	45.58 46.63	74.00	-8.42 -27.37	47.15 44.36	3.30 4.10	29.78	34.65 34.52	250 250 358 358	134 153	Peak Average Peak Average	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

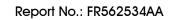
	Freq	Level	Limi t Line	Over Limit					T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	dB	dBu∀	₫B	dB/m	dB	deg	Cm		
1 2 3 4	3215.94 3215.98 4822.20 4823.80	48.29 47.92		-25.71 -26.08	49.86 45.65	3.30 3.30 4.10 4.10	29.78 29.78 32.69 32.69		172 172 350 350	199 136	Average Peak Peak Average	VERTICAL VERTICAL VERTICAL VERTICAL



Temperature	24°C	Humidity	55%
Tost Engineer	IC Vana	Configurations	IEEE 802.11n MCS0 HT20 CH 6 /
Test Engineer	JC Yang	Configurations	Chain 1 + Chain 2
Test Date	Jul. 09, 2015		

	Freq	Level	Limit Line	Over Limit				Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	₫B	dBu∇	₫B	dB/m	₫B	deg	Cm		
1 2 3 4 5 6	3249.30 3249.42 4872.40 4872.60 7314.60 7315.20	47.20 50.60 63.85	74.00 54.00 74.00 54.00	-12.10 -26.80 -3.40 -10.15 -9.25 -16.73	43.34 48.64 48.20 61.45 37.19 49.71	3.32 3.32 4.13 4.13 5.09 5.09	29.88 29.88 32.78 32.78 37.23 37.23	34.64 34.64 34.51 34.51 34.76 34.76	254 254 19 19 84 84	202 216 216 168	Average Peak Average Peak Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

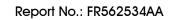
	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	₫B	dBu∇	₫B	dB/m	<u>dB</u>	deg	Cm		
1 2 3 4 5	3249.28 3249.31 4873.20 4873.60 7314.60 7317.00	41.77 46.94 52.38 37.12 43.17 56.37	74.00 74.00 54.00 54.00	-12.23 -27.06 -21.62 -16.88 -10.83 -17.63	43.21 48.38 49.98 34.72 35.61 48.77	3.32 3.32 4.13 4.13 5.09 5.10	29.88 29.88 32.78 32.78 37.23 37.26	34.51 34.51 34.76	179 179 75 75 80 80	184 154 154 157	Average Peak Peak Average Average Peak	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL



Temperature	24°C	Humidity	55%
Test Engineer	IC Vana	Configurations	IEEE 802.11n MC\$0 HT20 CH 11 /
Test Engineer	JC Yang	Configurations	Chain 1 + Chain 2
Test Date	Jul. 09, 2015		

	Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	₫B	dBuV	₫B	dB/m	- dB	deg	Cm		
1 2 3 4	3282.62 3282.66 4924.00 4924.60	48.16 34.34	74.00 54.00	-25.84 -19.66	49.48 31.80	3.34 4.15	29.97 32.88	34.49	356 356 220 220	174 154	Average Peak Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	₫B	dBu∀	₫B	dB/m	₫B	deg	Cm		
1 2 3 4	3282.51 3282.59 4919.56 4919.60	40.88 31.07	54.00 54.00	-13.12 -22.93	42.20 28.53	3.34 4.15	29.97 32.88	34.63 34.49	176 176 193 193	157 149	Peak Average Average Peak	VERTICAL VERTICAL VERTICAL VERTICAL



Temperature	24°C	Humidity	55%
Test Engineer	IC Vana	Configurations	IEEE 802.11n MCS0 HT40 CH 3 /
Test Engineer	JC Yang	Configurations	Chain 1 + Chain 2
Test Date	Jul. 09, 2015		

	Freq	Level	Limit Line	Over Limit				Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	₫B	dBu∇	₫B	dB/m	<u>qb</u>	deg	Cm		
1 2 3 4	3229.18 3229.26 4842.56 4845.08	43.46 42.28	54.00 74.00	-31.72	44.97 39.96	3.31 4.11			251 251 180 180	138 155	Peak Average Peak Average	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	₫B	dBuV	₫B	dB/m	₫B	deg	Cm		
1 2 3 4		47.24 30.47	74.00 54.00	-26.76 -23.53	48.75 28.15	3.31 4.11	29.83 29.83 32.72 32.72	34.65 34.51	177 177 185 185	200 123	Average Peak Average Peak	VERTICAL VERTICAL VERTICAL VERTICAL

Temperature	24°C	Humidity	55%		
Tost Engineer	JC Yang	Configurations	IEEE 802.11n MCS0 HT40 CH 6 /		
Test Engineer	JC fang	Configurations	Chain 1 + Chain 2		
Test Date	Jul. 09, 2015				

	Freq	Level	Limit Line					Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBuV/m	$\overline{\mathtt{dBuV/m}}$	₫B	dBuV	₫B	dB/m	- dB	deg	Cm		
1 2 3 4	3249.12 3249.31 4871.48 4873.64	42.11 30.98	54.00 54.00	-11.89 -23.02	43.55 28.58	3.32	29.88 32.78	34.64 34.51	248 248 168 168	147 144	Peak Average Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	₫B	dBuV	₫B	dB/m	₫B	deg	Cm	-	
1 2 3 4	3249.39 3249.51 4866.88 4868.72	49.23 43.16	74.00 74.00		50.67 40.80	3.32 3.32 4.12 4.13	29.88 29.88 32.75 32.78	34.64 34.51	331 331 175 175	151 173	Average Peak Peak Average	VERTICAL VERTICAL VERTICAL VERTICAL

Temperature	24°C	Humidity	55%		
Test Engineer	JC Yang	Configurations	IEEE 802.11n MCS0 HT40 CH 9 /		
lesi Erigirieei	30 lang	Comigurations	Chain 1 + Chain 2		
Test Date	Jul. 09, 2015				

Horizontal

	Freq	Level	Limit Line	Over Limit				Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
,	MHz	dBuV/m	$\overline{dBuV/m}$	₫B	dBu∇	<u>qB</u>	dB/m	₫B	deg	Cm		
1 2 3 4	3269.27 3269.31 4902.52 4908.92	48.01 43.33	74.00 74.00	-11.69 -25.99 -30.67 -23.38	49.39 40.85	3.33 4.14	29.92 32.84		350 350 156 156	168 167	Average Peak Peak Average	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	ЖHz	dBuV/m	dBuV/m	dB	dBu∀	dВ	dB/m	- dB	deg	Cm		
1 2 3 4	3269.29 3269.56 4898.92 4908.40	47.14 43.30	74.00 74.00	-26.86 -30.70	48.46 40.86	3.34 4.13	29.92 29.97 32.81 32.84	34.63 34.50	312 312 166 166	168 172	Average Peak Peak Average	VERTICAL VERTICAL VERTICAL VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Page No. : 52 of 73

Issued Date : Aug. 24, 2015

4.6. Emissions Measurement

4.6.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

·		
Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (30dBc in any 100 kHz bandwidth emission)	100 kHz / 300 kHz for Peak

4.6.3. Test Procedures

For Radiated band edges Measurement:

1. The test procedure is the same as section 4.5.3.

For Radiated Out of Band Emission Measurement:

 Test was performed in accordance with KDB558074 D01 v03r03 for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 10.1 Unwanted Emissions into Non-Restricted Frequency Bands Measurement Procedure.

 Report Format Version: Rev. 01
 Page No. : 53 of 73

 FCC ID: YAW513402
 Issued Date : Aug. 24, 2015

4.6.4. Test Setup Layout

For Radiated band edges Measurement:

This test setup layout is the same as that shown in section 4.5.4.

For Radiated Out of Band Emission Measurement:

This test setup layout is the same as that shown in section 4.5.4.

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.6.7. Test Result of Band Edge and Fundamental Emissions

Temperature	24°C	Humidity	55%
Test Engineer	JC Yang	Configurations	IEEE 802.11b CH 1, 6, 11 / Chain 2
Test Date	Jul. 07, 2015 ~ Jul. 08,	2015	

Channel 1

	Freq	Level						Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHz	dBu\√/m	dBu\√/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	2386.09	47.49	54.00	-6.51	15.84	3.73	27.92	0.00	202	248	HORIZONTAL	Average
2	2387.68	60.86	74.00	-13.14	29.21	3.73	27.92	0.00	202	248	HORIZONTAL	Peak
3	2413.01	109.05			77.41	3.75	27.89	0.00	202	248	HORIZONTAL	Peak
4	2413.74	106.31			74.67	3.75	27.89	0.00	202	248	HORIZONTAL	Average

Item 3, 4 are the fundamental frequency at 2412 MHz.

Channel 6

	Freq	Level	Limit Line					Preamp Factor		T/Pos	Pol/Phase	Remark
,	MHz	dBu√/m	dBu√/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	2356.14	65.44	74.00	-8.56	33.78	3.70	27.96	0.00	171	108	HORIZONTAL	Peak
2	2357.87	48.72	54.00	-5.28	17.06	3.70	27.96	0.00	171	108	HORIZONTAL	Average
3	2435.26	106.57			74.93	3.77	27.87	0.00	171	108	HORIZONTAL	Average
4	2436.13	109.63			77.99	3.77	27.87	0.00	171	108	HORIZONTAL	Peak
5	2485.82	61.05	74.00	-12.95	29.41	3.82	27.82	0.00	171	108	HORIZONTAL	Peak
6	2496.33	46.93	54.00	-7.07	15.30	3.83	27.80	0.00	171	108	HORIZONTAL	Average

Item 3, 4 are the fundamental frequency at 2437 MHz.

Channel 11

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHz	dBu√/m	dBu∀/m	dB	dBu√	dB	dB/m	——dB		deg		
1	2461.13	108.56			76.93	3.79	27.84	0.00	200	249	HORIZONTAL	Peak
2	2461.28	105.64			74.01	3.79	27.84	0.00	200	249	HORIZONTAL	Average
3	2483.50	47.18	54.00	-6.82	15.54	3.82	27.82	0.00	200	249	HORIZONTAL	Average
4	2484.08	60.11	74.00	-13.89	28.47	3.82	27.82	0.00	200	249	HORIZONTAL	Peak

Item 1, 2 are the fundamental frequency at 2462 MHz.

Temperature	24°C	Humidity	55%
Test Engineer	IC Vana	Configurations	IEEE 802.11g CH 1, 6, 11 /
lesi Engineei	JC Yang	Configurations	Chain 1 + Chain 2
Test Date	Jul. 08, 2015		

Channel 1

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHz	dBu\//m	dBu\√/m	dB	dBu√	dB	dB/m	dB	cm	deg		
1	2389.71	73.09	74.00	-0.91	41.44	3.73	27.92	0.00	180	19	VERTICAL	Peak
2	2390.00	53.96	54.00	-0.04	22.31	3.73	27.92	0.00	180	19	VERTICAL	Average
3	2415.04	116.16			84.51	3.76	27.89	0.00	180	19	VERTICAL	Peak
4	2415.62	103.67			72.02	3.76	27.89	0.00	180	19	VERTICAL	Average

Item 3, 4 are the fundamental frequency at 2412 MHz.

Channel 6

	Freq	Level	Limit Line	Over Limit				Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHz	dBu\∕/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	2388.84	73.56	74.00	-0.44	41.91	3.73	27.92	0.00	168	19	VERTICAL	Peak
2	2390.00	53.69	54.00	-0.31	22.04	3.73	27.92	0.00	168	19	VERTICAL	Average
3	2439.89	110.98			79.34	3.78	27.86	0.00	168	19	VERTICAL	Average
4	2439.89	121.38			89.74	3.78	27.86	0.00	168	19	VERTICAL	Peak
5	2483.79	52.34	54.00	-1.66	20.70	3.82	27.82	0.00	168	19	VERTICAL	Average
6	2483.79	70.90	74.00	-3.10	39.26	3.82	27.82	0.00	168	19	VERTICAL	Peak

Item 3, 4 are the fundamental frequency at 2437 MHz.

Channel 11

	Freq	Level	Limit Line					Preamp Factor	A/Pos		hase Rema	rk
	MHz	dBu\√/m	dBu∀/m	dB	dBu√	dB	dB/m	dB		deg		
1	2455.34	103.36			71.72	3.79	27.85	0.00	206	14 ∀ERTI	CAL Aver	age
2	2455.34	114.89			83.25	3.79	27.85	0.00	206	14 ∀ERTI	CAL Peak	
3	2483.50	53.96	54.00	-0.04	22.32	3.82	27.82	0.00	206	14 ∨ERTI	CAL Aver	age
4	2484.22	73.14	74.00	-0.86	41.50	3.82	27.82	0.00	206	14 VERTI	CAL Peak	

Item 1, 2 are the fundamental frequency at 2462 MHz.

Temperature	24°C	Humidity	55%
Test Engineer	IC Vana	Configurations	IEEE 802.11n MC\$0 HT20 CH 1, 6, 11 /
Test Engineer	JC Yang	Configurations	Chain 1 + Chain 2
Test Date	Jul. 08, 2015		

Channel 1

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHz	dBu\//m	dBu∨/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	2389.71	73.46	74.00	-0.54	41.81	3.73	27.92	0.00	176	17	VERTICAL	Peak
2	2389.86	53.62	54.00	-0.38	21.97	3.73	27.92	0.00	176	17	VERTICAL	Average
3	2405.34	113.06			81.42	3.74	27.90	0.00	176	17	VERTICAL	Peak
4	2406.50	102.67			71.03	3.74	27.90	0.00	176	17	VERTICAL	Average

Item 3, 4 are the fundamental frequency at 2412 MHz.

Channel 6

	Freq	Level	Limit Line	Over Limit				Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHz	dBu\√/m	dBu√/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	2389.42	70.07	74.00	-3.93	38.42	3.73	27.92	0.00	168	25	VERTICAL	Peak
2	2390.00	53.76	54.00	-0.24	22.11	3.73	27.92	0.00	168	25	VERTICAL	Average
3	2431.21	109.80			78.15	3.77	27.88	0.00	168	25	VERTICAL	Average
4	2444.24	119.60			87.96	3.78	27.86	0.00	168	25	VERTICAL	Peak
5	2483.50	52.25	54.00	-1.75	20.61	3.82	27.82	0.00	168	25	VERTICAL	Average
6	2483.50	71.01	74.00	-2.99	39.37	3.82	27.82	0.00	168	25	VERTICAL	Peak

Item 3, 4 are the fundamental frequency at 2437 MHz.

Channel 11

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHz	dBu\//m	dBu∀/m	dB	dBu√	dB	dB/m	dB	cm	deg		
1	2463.59	101.18			69.54	3.80	27.84	0.00	190	113	VERTICAL	Average
2	2463.88	111.25			79.61	3.80	27.84	0.00	190	113	VERTICAL	Peak
3	2483.50	53.95	54.00	-0.05	22.31	3.82	27.82	0.00	190	113	VERTICAL	Average
4	2483.50	73.21	74.00	-0.79	41.57	3.82	27.82	0.00	190	113	VERTICAL	Peak

Item 1, 2 are the fundamental frequency at 2462 MHz.

Temperature	24°C	Humidity	55%
Tost Engineer	IC Vana	Configurations	IEEE 802.11n MCS0 HT40 CH 3, 6, 9 /
Test Engineer	JC Yang	Configurations	Chain 1 + Chain 2
Test Date	Jul. 08, 2015		

Channel 3

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark
	MHz	dBu\∕/m	dBu∀/m	dB	dBu√	dB	dB/m	dB	cm	deg		
1 2 3 4	2388.55 2390.00 2408.69 2437.92	53.78 96.72	54.00			3.73 3.75		0.00	168 168 168 168	15 15	VERTICAL VERTICAL VERTICAL VERTICAL	Peak Average Average Peak

Item 3, 4 are the fundamental frequency at 2422 MHz.

Channel 6

	Freq	Level	Limit Line					Preamp Factor		T/Pos	Pol/Phase	Remark
	MHz	dBu\∕/m	dBu√/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	2389.71	70.50	74.00	-3.50	38.85	3.73	27.92	0.00	155	11	VERTICAL	Peak
2	2390.00	53.81	54.00	-0.19	22.16	3.73	27.92	0.00	155	11	VERTICAL	Average
3	2422.53	100.70			69.05	3.76	27.89	0.00	155	11	VERTICAL	Average
4	2452.63	110.83			79.20	3.78	27.85	0.00	155	11	VERTICAL	Peak
5	2483.50	53.46	54.00	-0.54	21.82	3.82	27.82	0.00	155	11	VERTICAL	Average
6	2483.50	70.28	74.00	-3.72	38.64	3.82	27.82	0.00	155	11	VERTICAL	Peak

Item 3, 4 are the fundamental frequency at 2437 MHz.

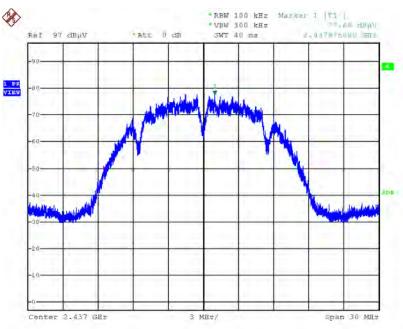
Channel 9

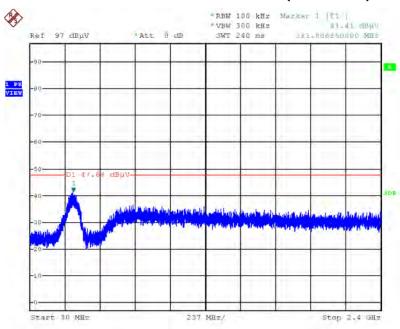
	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Pol/Phase	Remark	
	MHz	dBu\√/m	dBu∀/m	dB	dBu√	dB	dB/m	dB	cm	deg			-
1	2436.08	96.83			65.19	3.77	27.87	0.00	173	24	VERTICAL	Average	
2	2436.37	107.02			75.38	3.77	27.87	0.00	173	24	VERTICAL	Peak	
3	2483.50	52.96	54.00	-1.04	21.32	3.82	27.82	0.00	173	24	VERTICAL	Average	
4	2483.50	73.86	74.00	-0.14	42.22	3.82	27.82	0.00	173	24	VERTICAL	Peak	

Item 1, 2 are the fundamental frequency at 2452 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

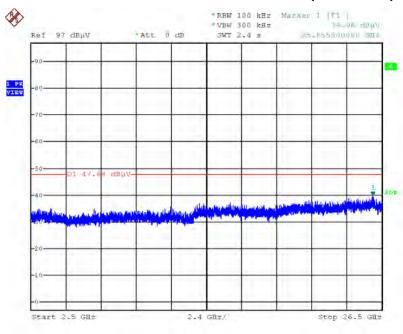

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.


For Emission not in Restricted Band

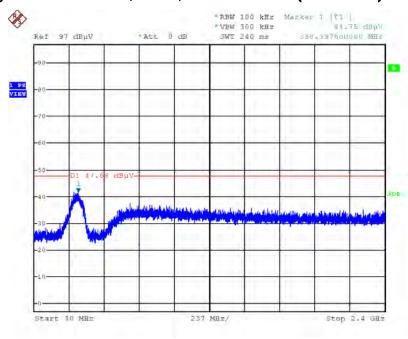
Plot on Configuration IEEE 802.11b / Reference Level

Date: 9.JUL.2015 22:56:27

Plot on Configuration IEEE 802.11b / CH 1 / 30MHz~2400MHz (down 30dBc)



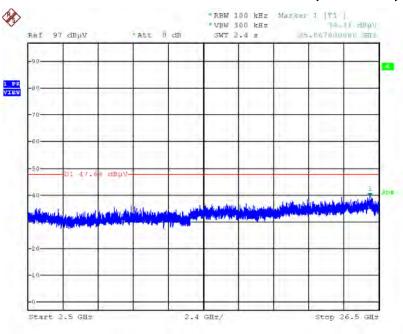
Date: 9.JUL.2015 22:57:02



Plot on Configuration IEEE 802.11b / CH 1 / 2500MHz~26500MHz (down 30dBc)

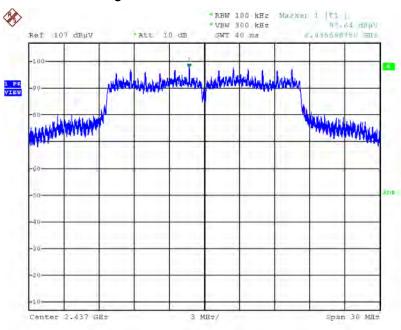
Date: 9.JUL.2015 22:57:33

Plot on Configuration IEEE 802.11b / CH 11 / 30MHz~2400MHz (down 30dBc)

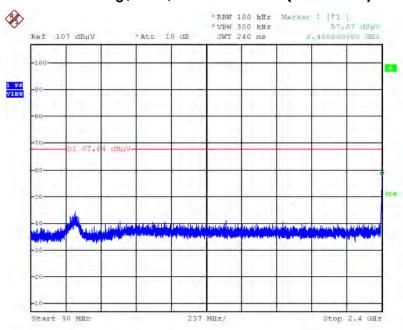


Date: 9.JUL.2015 22:58:14

Plot on Configuration IEEE 802.11b / CH 11 / 2500MHz \sim 26500MHz (down 30dBc)


Date: 9.JUL.2015 22:58:35

Page No. : 61 of 73 Issued Date : Aug. 24, 2015

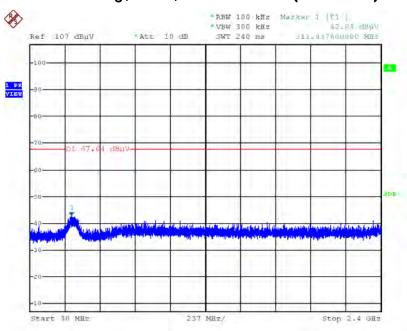


Plot on Configuration IEEE 802.11g / Reference Level

Date: 9.JUL.2015 22:53:05

Plot on Configuration IEEE 802.11g / CH 1 / 30MHz~2400MHz (down 30dBc)

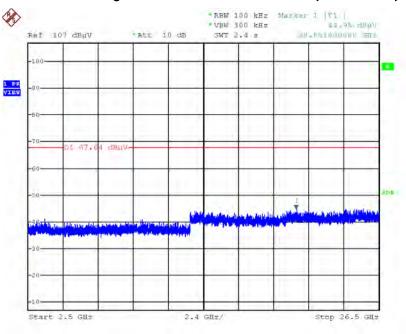
Date: 9.JUL.2015 22:53:58



Plot on Configuration IEEE 802.11g / CH 1 / 2500MHz~26500MHz (down 30dBc)

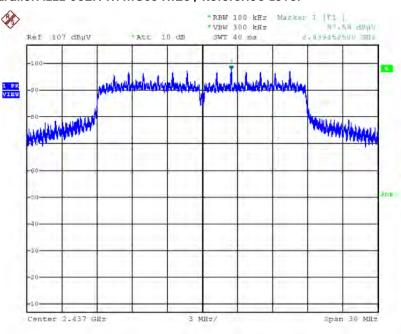
Date: 9.JUL.2015 22:54:21

Plot on Configuration IEEE 802.11g / CH 11 / 30MHz~2400MHz (down 30dBc)

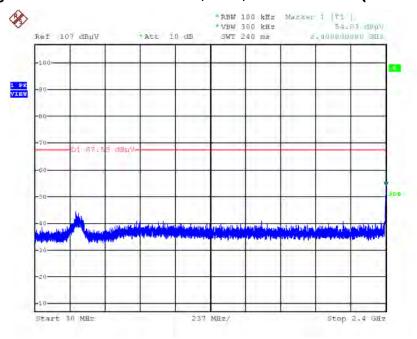


Date: 9.JUL.2015 22:54:56

Plot on Configuration IEEE 802.11g / CH 11 / 2500MHz \sim 26500MHz (down 30dBc)



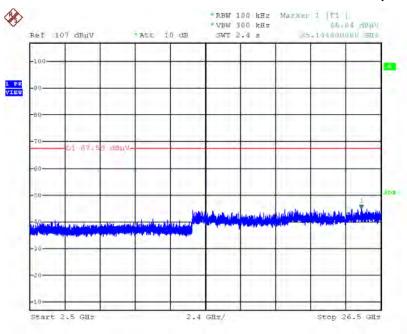
Date: 9.JUL.2015 22:55:18



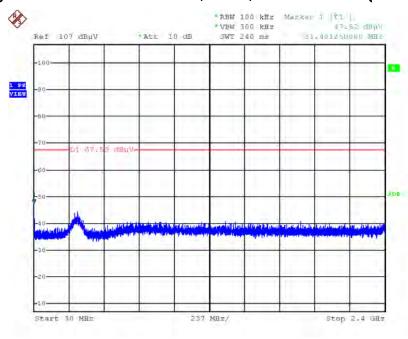
Plot on Configuration IEEE 802.11n MCS0 HT20 / Reference Level

Date: 9.JUL.2015 22:49:15

Plot on Configuration IEEE 802.11n MCS0 HT20 / CH 1 / 30MHz~2400MHz (down 30dBc)



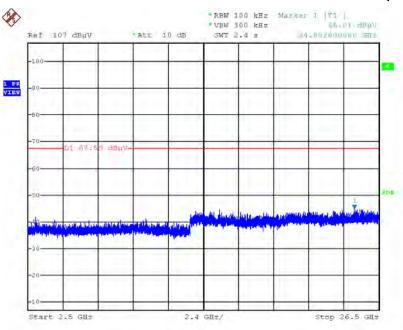
Date: 9.JUL.2015 22:50:25



Plot on Configuration IEEE 802.11n MCS0 HT20 / CH 1 / 2500MHz~26500MHz (down 30dBc)

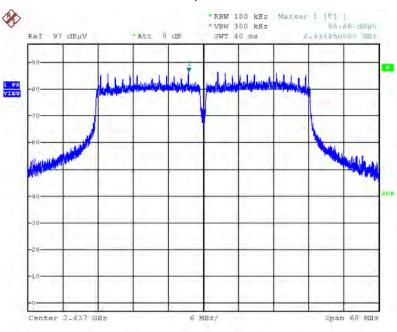
Date: 9.JUL.2015 22:50:49

Plot on Configuration IEEE 802.11n MCS0 HT20 / CH 11 / 30MHz~2400MHz (down 30dBc)

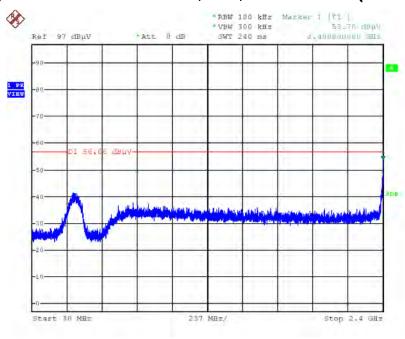


Date: 9.JUL.2015 22:51:40

Plot on Configuration IEEE 802.11n MCS0 HT20 / CH 11 / 2500MHz~26500MHz (down 30dBc)


Date: 9.JUL.2015 22:52:12

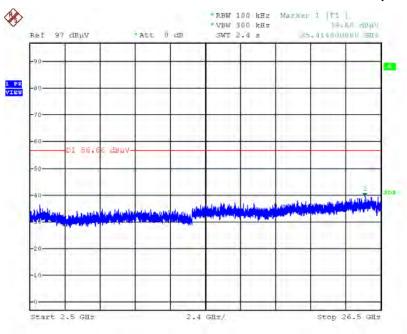
Page No. : 67 of 73 Issued Date : Aug. 24, 2015



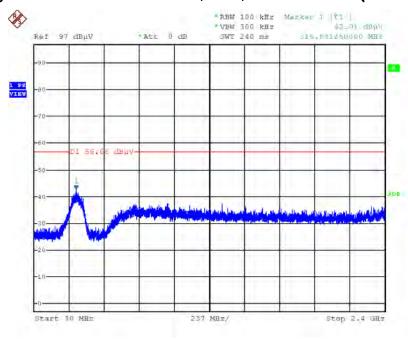
Plot on Configuration IEEE 802.11n MCS0 HT40 / Reference Level

Date: 9.JUL.2015 22:44:37

Plot on Configuration IEEE 802.11n MCS0 HT40 / CH 3 / 30MHz~2400MHz (down 30dBc)



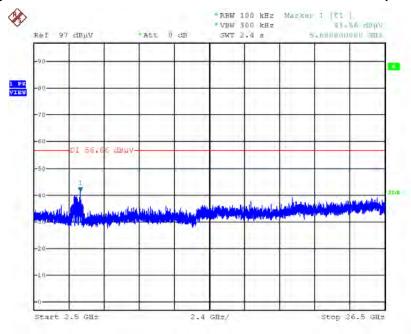
Date: 9.JUL.2015 22:46:06



Plot on Configuration IEEE 802.11n MCS0 HT40 / CH 3 / 2500MHz~26500MHz (down 30dBc)

Date: 9.JUL.2015 22:46:34

Plot on Configuration IEEE 802.11n MCS0 HT40 / CH 9 / 30MHz~2400MHz (down 30dBc)



Date: 9.JUL.2015 22:47:29

Plot on Configuration IEEE 802.11n MCS0 HT40 / CH 9 / 2500MHz~26500MHz (down 30dBc)

Date: 9.JUL.2015 22:47:52

4.7. Antenna Requirements

4.7.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.7.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver R&S		ESCS 30	100355	9kHz ~ 2.75GHz	Apr. 22, 2015	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150kHz ~ 100MHz	Dec. 02, 2014	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Dec. 02, 2014	Conduction
COND Cable	Woken	Cable	01	150kHz ~ 30MHz	Dec. 03, 2014	(CO01-CB) Conduction
Software	Audix	E3	5.410e	-	N.C.R.	(CO01-CB) Conduction
BILOG ANTENNA	Schaffner	CBL6112D	22021	20MHz ~ 2GHz	May 06, 2015	(CO01-CB) Radiation
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Mar. 12, 2015	(03CH01-CB) Radiation
Horn Antenna	EMCO	3115	00075790	750MHz ~ 18GHz	Oct. 28, 2014	(03CH01-CB) Radiation
Horn Antenna			BBHA9170252	15GHz ~ 40GHz	,	(03CH01-CB) Radiation
	Schwarzbeck	BBHA 9170			Aug. 22, 2014	(03CH01-CB) Radiation
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Feb. 24, 2015	(03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Jan. 12, 2015	(03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26GHz ~ 40GHz	Nov. 25, 2014	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	Nov. 06, 2014	Radiation (03CH01-CB)
EMI Receiver	Agilent	N9038A	MY52260123	9kHz ~ 8.4GHz	Jan. 21, 2015	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz ~ 1 GHz	Nov. 15, 2014	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-1	N/A	1 GHz ~ 40 GHz	Nov. 15, 2014	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-2	N/A	1 GHz ~ 40 GHz	Nov. 15, 2014	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSV40	100979	9kHz~40GHz	Dec. 12, 2014	Conducted (TH01-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	Jun. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-7	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-8	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-9	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-10	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-6	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
Power Sensor	Agilent	U2021XA	MY53410001	50MHz~18GHz	Nov. 03, 2014	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.

 Report Format Version: Rev. 01
 Page No.
 : 72 of 73

 FCC ID: YAW513402
 Issued Date
 : Aug. 24, 2015

6. MEASUREMENT UNCERTAINTY

Test Items	Uncertainty	Remark
Conducted Emission (150kHz \sim 30MHz)	2.4 dB	Confidence levels of 95%
Radiated Emission (30MHz \sim 1,000MHz)	3.6 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	3.7 dB	Confidence levels of 95%
Radiated Emission (18GHz \sim 40GHz)	3.5 dB	Confidence levels of 95%
Conducted Emission	1.7 dB	Confidence levels of 95%