

FCC PART 22, 74, 80 and 90

TEST REPORT

For

Hytera Communications Corporation Ltd.

HYT Tower, Hi-Tech Industrial Park North, Nanshan District, Shenzhen, China

FCC ID: YAMX1PU2

Report Type:		Product Type:
Original Report		Digital Portable Radio
Test Engineer:	Rocky Kang	Rocky Kang
Report Number:	RSZ130508003	-00B
-	2013-08-05	
	Alvin Huang	Hucard
Reviewed By:	RF Leader	
Prepared By:	Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn	

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

Report No.: RSZ130508003-00B

Bay Area Compliance Laboratories Corp. (Shenzhen)

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
Equipment Modifications Block Diagram of Test Setup	
SUMMARY OF TEST RESULTS	7
FCC §1.1307(b) & §2.1093 - RF EXPOSURE	8
APPLICABLE STANDARD	
FCC §2.1046 & § 22.727 & §74.461 & § 80.215 & §90.205 - RF Output Power	9
Applicable Standard	
Test Procedure	
TEST FROEDORE	
TEST DATA	
FCC §2.1047 & §74.463 & §80.213 & §90.207 - MODULATION CHARACTERISTIC	17
Applicable Standard	
TEST EQUIPMENT LIST AND DETAILS	
Test Procedure	
TEST DATA	17
FCC §2.1049 & §22.357 & § 22.731 & §74.462 & § 80.205 & § 80.207 & §90.209 & §90.210 – OCCUPH	
BANDWIDTH & EMISSION MASK	
Applicable Standard	
TEST EQUIPMENT LIST AND DETAILS	
Test Procedure Test Data	
	24
FCC §2.1051 & §22.861 & §74.461 & § 80.211 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	20
Applicable Standard	
TEST EQUIPMENT LIST AND DETAILS	
TEST EQUILMENT EIST AND DETAILS.	
TEST DATA	
FCC §2.1053 & §22.861 & §74.461 & § 80.211 & §90.210 - RADIATED SPURIOUS EMISSIONS	
Applicable Standard	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST DATA	33
FCC §2.1055 & § 22.355 & §74.464 & § 80.209 & §90.213- FREQUENCY STABILITY	35
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	35

FCC PART 22, 74, 80 and 90

Page 2 of 40

Report No.: RSZ130508003-00B

Test Procedure Test Data	
FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR	
APPLICABLE STANDARD	
Test Equipment List and Details	
Test Procedure	
TEST DATA	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Hytera Communications Corporation Ltd.*'s product, model number: X1p U(2) (*FCC ID: YAMX1PU2*) or the "EUT" in this report was a *Digital Portable Radio*, which was measured approximately: 21.0 cm (L) x 6.1 cm (W) x 2.4 cm (H), rated with input voltage: DC 7.4V battery.

* All measurement and test data in this report was gathered from production sample serial number: 1305031 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2013-05-08.

Objective

This test report is prepared on behalf of *Hytera Communications Corporation Ltd.* in accordance with Part 2, Part 22, Part 74, Part 80 and Part 90 of the Federal Communication Commissions rules.

Related Submittal(s)/Grant(s)

FCC Part 15.247 DSS submission with FCC ID: YAMX1PU2.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, Sub-part J as well as the following individual parts:

Part 22 – Public Mobile Service

- Part 74 Experimental Radio, Auxiliary, Special Broadcast and other Program Distributonal Service
- Part 80 Stantions in the Maritme Service

Part 90 - Private Land Mobile Radio Service

Applicable Standards: TIA 603-D and ANSI 63.4-2009.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement uncertainty with radiated emission is 5.91 dB for 30MHz-1GHz.and 4.92 dB for above 1GHz, 1.95dB for conducted measurement.

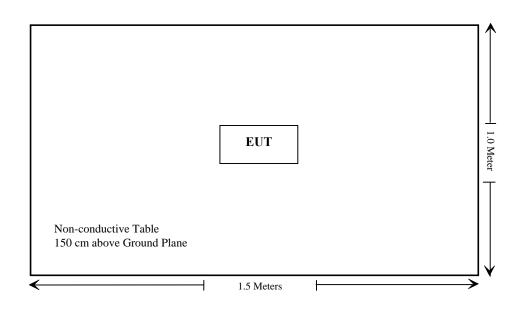
Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2010. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

SYSTEM TEST CONFIGURATION


Description of Test Configuration

The system was configured for testing in a test mode which has been done in the factory.

Equipment Modifications

No modification was made to the EUT tested.

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§1.1307 (b)(1), §2.1093	RF Exposure	Compliance
\$2.1046; \$ 22.727; \$74.461; \$ 80.215; \$90.205	RF Output Power	Compliance
§2.1047; §74.463; §80.213;§90.207	Modulation Characteristic	Compliance
\$2.1049;\$22.357;\$ 22.731; \$74.462; \$ 80.205; \$ 80.207;\$90.209; \$90.210	Occupied Bandwidth & Emission Mask	Compliance
§2.1051; §22.861; §74.461; § 80.211; §90.210	Spurious Emission at Antenna Terminal	Compliance
§2.1053; §22.861; §74.461; § 80.211;§90.210	Spurious Radiated Emissions	Compliance
\$2.1055; \$ 22.355; \$74.464; \$ 80.209; \$90.213	Frequency Stability	Compliance
§90.214	Transient Frequency Behavior	Compliance

Note: The uncertainty of any RF tests which use conducted method measurement is 0.96 dB.

The uncertainty of any radiation emissions measurement is 4.0 dB.

FCC §1.1307(b) & §2.1093 - RF EXPOSURE

Applicable Standard

According to FCC §1.1307(b) and §2.1093, protable device operates Part 90 should be subjected to rountine environmental evaluation for RF exposure prior or equipment authorization or use.

Result: Compliance.

Please refer to SAR Report Number: RSZ130508003-20A.

FCC §2.1046 & § 22.727 & §74.461 & § 80.215 & §90.205 - RF Output Power

Applicable Standard

FCC §2.1046, § 22.727, §74.461, § 80.215 and §90.205

Test Procedure

Conducted RF Output Power:

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Spectrum Analyzer Setting:

R B/WVideo B/W100 kHz300 kHz

Test Equipment List and Details

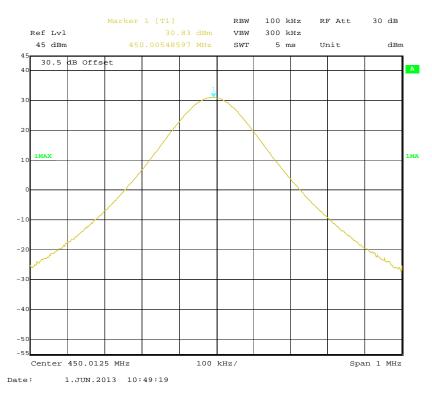
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

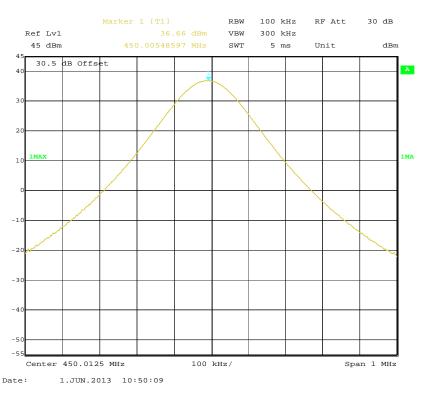
Environmental Conditions

Temperature:	24~25 ℃
Relative Humidity:	52~56 %
ATM Pressure:	100.1~100.9 kPa

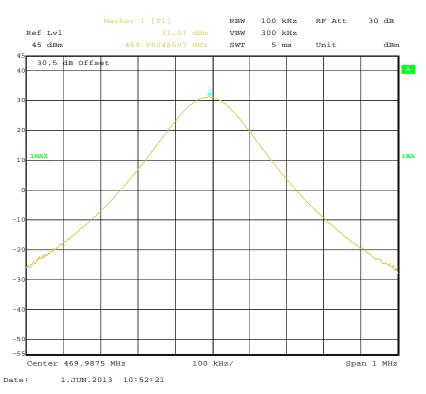

The testing was performed by Rocky Kang on 2013-05-30, 2013-06-01 and 2013-08-05.

Test Mode: Transmitting

Test Result: Compliance. Please refer to following table.


Report No.: RSZ130508003-00B

Frequency (MHz)	Modulation	Power level	Conducted Output Power (dBm)	Conducted Output Power (W)
	Analog	High	36.66	4.63
450.0125	Allalog	Low	30.83	1.21
450.0125	Digital	High	36.73	4.71
	Digital	Low	30.86	1.22
	Analog	High	36.72	4.70
469.9875	Analog	Low	31.01	1.26
409.9873	D: :/ 1	High	36.73	4.71
	Digital	Low	31.03	1.26
	Analog	High	36.76	4.74
519.9875	Analog	Low	30.83	1.21
Digital		High	36.76	4.74
	Digital	Low	30.85	1.22



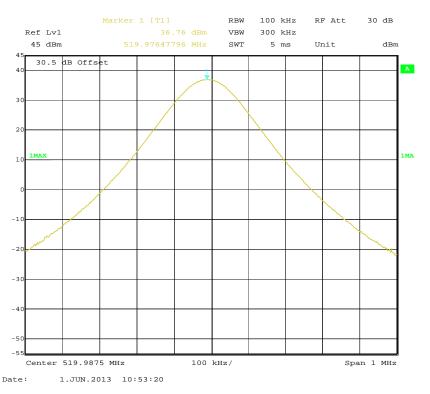
Analog Modulation - Low Power (450.0125 MHz)

Analog Modulation – High Power (450.0125 MHz)

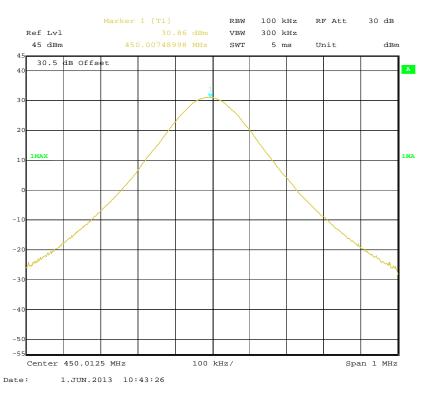
FCC PART 22, 74, 80 and 90

Analog Modulation - Low Power (469.9875 MHz)

Analog Modulation – High Power (469.9875 MHz)



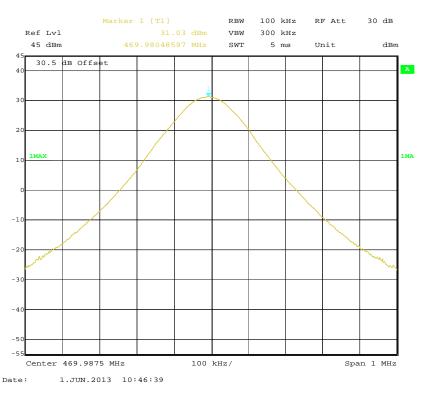
FCC PART 22, 74, 80 and 90


Analog Modulation - Low Power (519.9875 MHz)

Analog Modulation – High Power (519.9875 MHz)

FCC PART 22, 74, 80 and 90

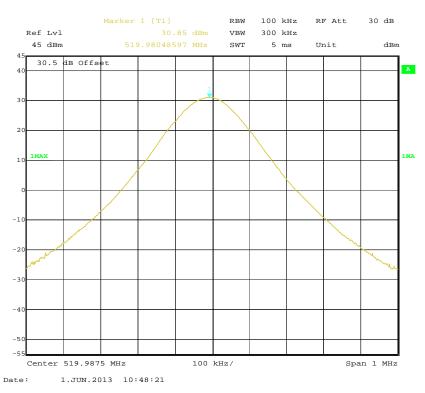
Page 13 of 40


Digital Modulation – Low Power (450.0125 MHz)

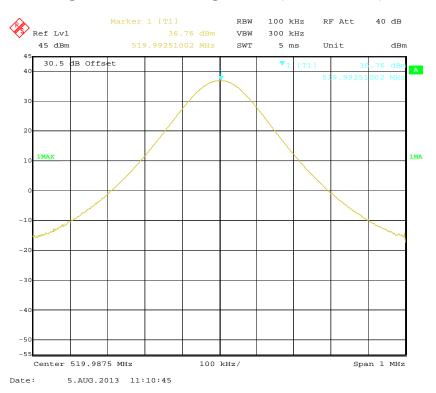
Digital Modulation – High Power (450.0125 MHz)

FCC PART 22, 74, 80 and 90

Page 14 of 40


Digital Modulation – Low Power (469.9875 MHz)

Digital Modulation – High Power (469.9875 MHz)


FCC PART 22, 74, 80 and 90

Page 15 of 40

Digital Modulation – Low Power (519.9875 MHz)

Digital Modulation – High Power (519.9875 MHz)

FCC PART 22, 74, 80 and 90

FCC §2.1047 & §74.463 & §80.213 & §90.207 - MODULATION CHARACTERISTIC

Applicable Standard

FCC§2.1047, §74.463, §80.213 and §90.207:

- (a) Equipment which utilizes voice modulated communication shall show the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz. for equipment which is required to have a low pass filter, the frequency response of the filter, or all of the circuitry installed between the modulation limited and the modulated stage shall be supplied.
- (b) Equipment which employs modulation limiting, a curve showing the percentage of modulation versus the modulation input voltage shall be supplied.

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
HP	RF Communication Test Set	8920A	3438A05201	2012-06-14	2013-06-13
LEADER	MILLIVOLTMETER	LMV-181A	6041126	2013-05-09	2014-05-08

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

Test Method: TIA/EIA-603 2.2.3

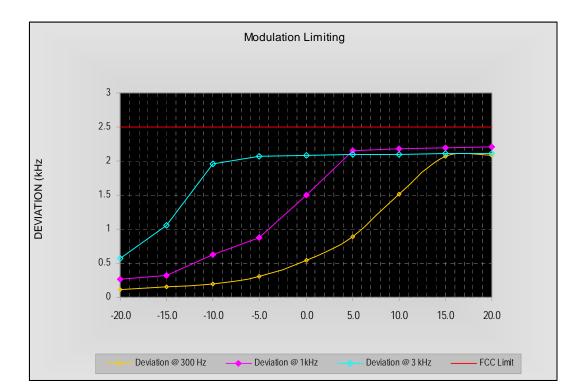
Test Data

Environmental Conditions

Temperature:	25°C
Relative Humidity:	56 %
ATM Pressure:	100.1 kPa

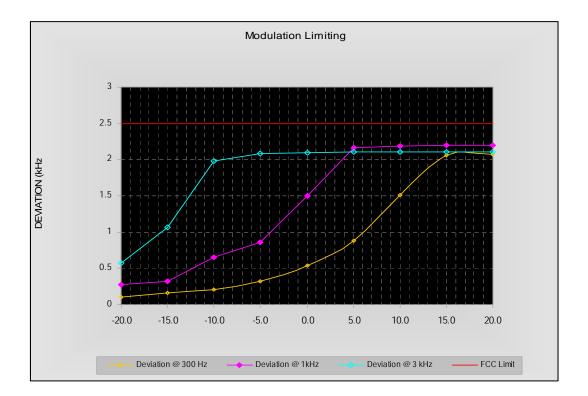
The testing was performed by Rocky Kang on 2013-06-01.

Test Mode: Transmitting


Result: Compliance.

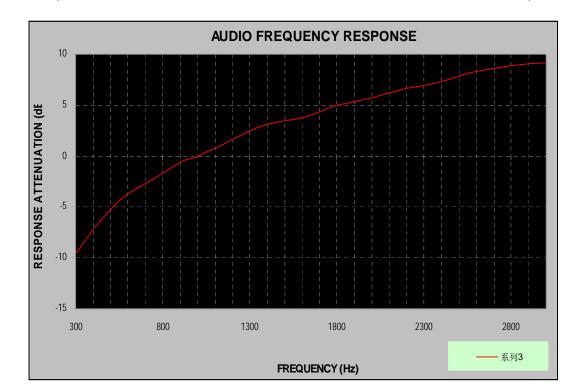
Analog Modulation:

MODULATION LIMITING


Carrier Frequency: 469.9875 MHz, Channel Separation=12.5 kHz, Low Power

Audio Input Frequency Deviation (kHz) Limit Level [kHz] @ 300 Hz @ 1kHz @ 3 kHz [dB] 20.0 2.085 2.211 2.107 2.5 15.0 2.074 2.189 2.106 2.5 10.0 1.516 2.1742.102 2.5 5.0 0.893 2.155 2.100 2.5 0.0 0.535 1.500 2.078 2.5 -5.0 0.311 0.872 2.075 2.5 -10.0 0.201 0.626 1.958 2.5 -15.0 0.156 0.324 1.053 2.5 -20.0 0.111 0.266 0.572 2.5

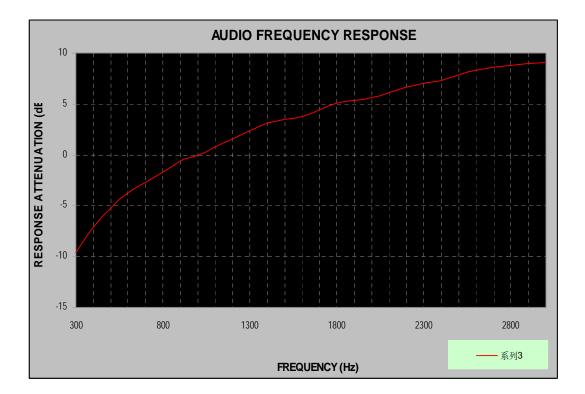
Audio Input	Frequency Deviation (kHz)			Limit
Level [dB]	@ 300 Hz	@ 1kHz	@ 3 kHz	[kHz]
20.0	2.068	2.201	2.110	2.5
15.0	2.066	2.196	2.108	2.5
10.0	1.517	2.185	2.106	2.5
5.0	0.876	2.163	2.103	2.5
0.0	0.534	1.500	2.096	2.5
-5.0	0.324	0.864	2.086	2.5
-10.0	0.211	0.653	1.986	2.5
-15.0	0.159	0.326	1.069	2.5
-20.0	0.098	0.275	0.568	2.5


Carrier Frequency: 469.9875 MHz, Channel Separation=12.5 kHz, High Power

Audio Frequency Response

Carrier Frequency: 469.9875 MHz, Channel Separation=12.5 kHz, Low Power

Audio Frequency (Hz)	Response Attenuation (dB)
300	-9.64
400	-7.15
500	-5.23
600	-3.78
700	-2.72
800	-1.69
900	-0.63
1000	0
1200	1.59
1400	3.15
1600	3.78
1800	5.01
2000	5.69
2200	6.68
2400	7.30
2600	8.35
2800	8.86
3000	9.15

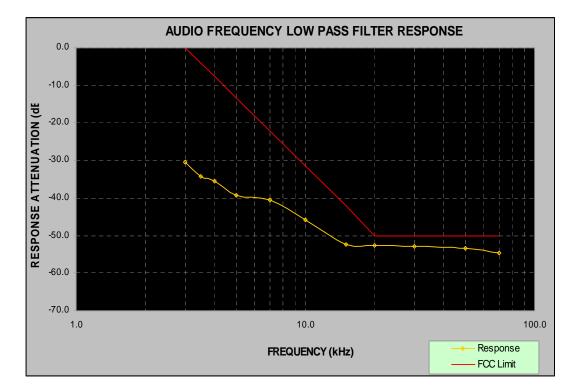


FCC PART 22, 74, 80 and 90

Page 20 of 40

Audio Frequency (Hz)	Response Attenuation (dB)
300	-9.60
400	-7.13
500	-5.26
600	-3.75
700	-2.76
800	-1.68
900	-0.61
1000	0
1200	1.56
1400	3.12
1600	3.77
1800	5.03
2000	5.65
2200	6.70
2400	7.28
2600	8.31
2800	8.82
3000	9.10

Carrier Frequency: 469.9875 MHz, Channel Separation=12.5 kHz, High Power


FCC PART 22, 74, 80 and 90

Page 21 of 40

Audio Frequency Low Pass Filter Response

Carrier Frequency: 469.9875 MHz, Channel Separ	ation=12.5 kHz
--	----------------

Audio Frequency (kHz)	Response Attenuation (dB)	FCC Limit (dB)
3.0	-30.3	0.0
3.5	-34.4	-4.0
4.0	-35.7	-7.5
5.0	-39.5	-13.3
7.0	-40.4	-22.1
10.0	-45.9	-31.4
15.0	-52.4	-42.0
20.0	-52.5	-50.0
30.0	-53.0	-50.0
50.0	-53.5	-50.0
70.0	-54.5	-50.0

FCC §2.1049 & §22.357 & § 22.731 & §74.462 & § 80.205 & § 80.207 & §90.209 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK

Applicable Standard

FCC §2.1049, §22.357, § 22.731, §74.462, § 80.205, § 80.207, §90.209 and §90.210

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0dB.

2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (f_d –2.88 kHz) dB.

3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least:

 $50+10\log P=50+10\log(1.574) = 51.97 \text{ dB}$

Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

1) For any frequency removed from the center of the assigned channel by more than 50 percent up to and including 100 percent of the authorized bandwidth, at least 25 dB.

2) On any frequency removed from the center of the assigned channel by more than 100 percent up to and including 250 percent, at least 35 dB.

3) On any frequency removed from the center of the assigned channel by more than 250 percent at least:

 $43+10\log P=43+10\log (1.622) = 45.10 \text{ dB}$

The resolution bandwidth was 300 Hz or greater for measuring up to 250 kHz from the edge of the authorized frequency segment, and 30 kHz or greater for measuring more than 250 kHz from the authorized frequency segment.

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23
HP	RF Communication Test Set	8920A	3438A05201	2012-06-14	2013-06-13

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

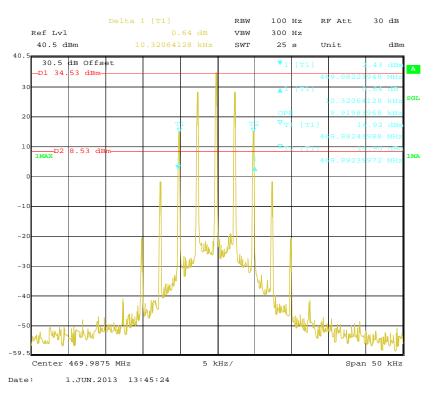
FCC PART 22, 74, 80 and 90

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

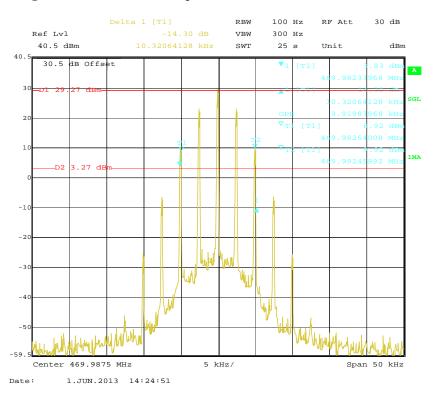
The resolution bandwidth of the spectrum analyzer was set at 300 Hz and the spectrum was recorded in the frequency band \pm 35 kHz from the carrier frequency.

Test Data

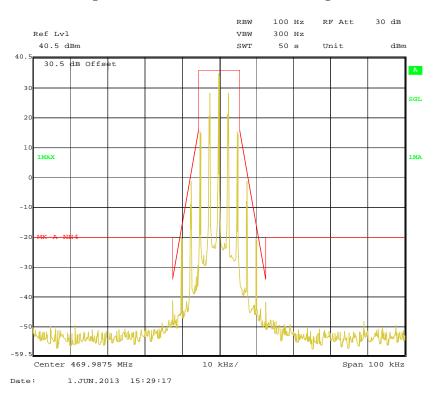

Environmental Conditions

Temperature:	25°C
Relative Humidity:	56 %
ATM Pressure:	100.1 kPa

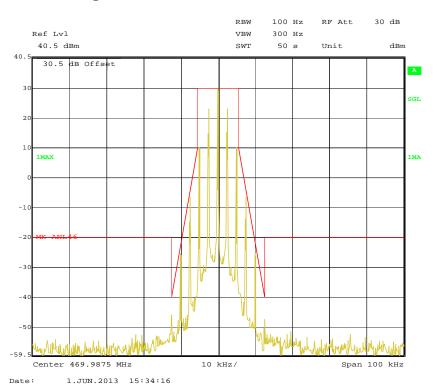
The testing was performed by Rocky Kang on 2013-06-01.


Test Mode: Transmitting

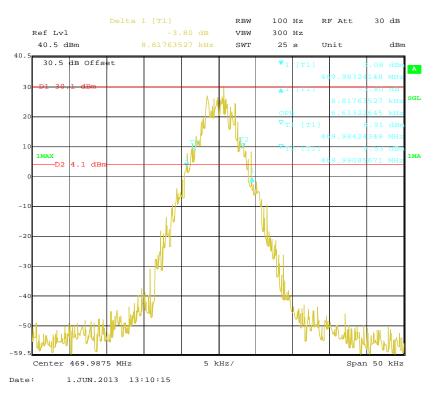
Modulation	Frequency (MHz)	99% Occupied Bandwidth (kHz)	26 dB Emissions Bandwidth (kHz)	Power Level
Analog Modulation	469.9875	9.92	10.32	High Power
Analog Wodulation	469.9875	9.92	10.32	Low Power
Digital Modulation	469.9875	6.61	8.82	High Power
Digital Wodulation	469.9875	6.31	8.32	Low Power


Analog Modulation: 99% Occupied & 26 dB Bandwidth with High Power

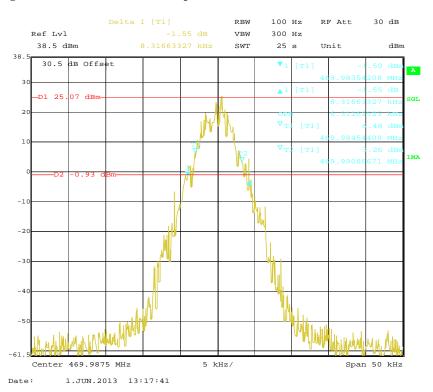
Analog Modulation: 99% Occupied & 26 dB Bandwidth with Low Power


FCC PART 22, 74, 80 and 90

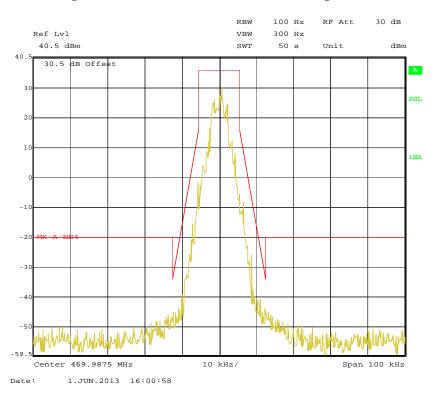
Page 25 of 40


Analog Modulation: Emission Mask with High Power

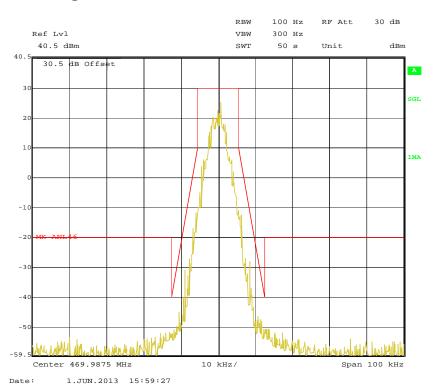
Analog Modulation: Emission Mask with Low Power


FCC PART 22, 74, 80 and 90

Page 26 of 40


Digital Modulation: 99% Occupied & 26 dB Bandwidth with High Power

Digital Modulation: 99% Occupied & 26 dB Bandwidth with Low Power


FCC PART 22, 74, 80 and 90

Page 27 of 40

Digital Modulation: Emission Mask with High Power

Digital Modulation: Emission Mask with Low Power

FCC PART 22, 74, 80 and 90

Page 28 of 40

FCC §2.1051 & §22.861 & §74.461 & § 80.211 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from $f_0, 0\mbox{ dB}.$

2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (f_d –2.88 kHz) dB.

3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least:

50+10logP=50+10log (P) dB

Emission Mask B. For transmitters that are equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as follows:

1) For any frequency removed from the center of the assigned channel by more than 50 percent up to and including 100 percent of the authorized bandwidth, at least 25 dB.

2) On any frequency removed from the center of the assigned channel by more than 100 percent up to and including 250 percent, at least 35 dB.

3) On any frequency removed from the center of the assigned channel by more than 250 percent at least:

43+10logP=43+10log (P) dB

The resolution bandwidth was 300 Hz or greater for measuring up to 250 kHz from the edge of the authorized frequency segment, and 30 kHz or greater for measuring more than 250 kHz from the authorized frequency segment.

Test Equipment List and Details

Manufacturer	IanufacturerDescriptionModel No.Serial No.		Calibration Date	Calibration Due Date	
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23

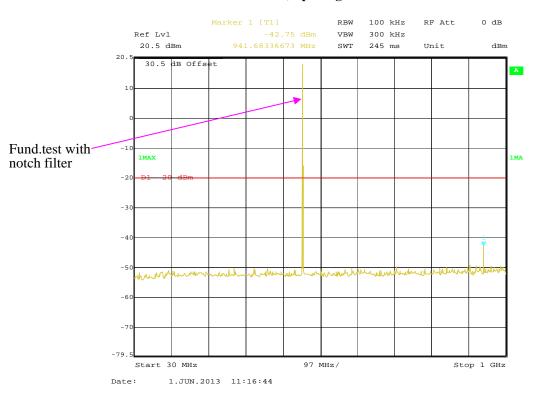
Test Procedure

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for below 1GHz, and 1MHz for above 1GHz. sufficient scans were taken to show any out of band emissions up to 10th harmonic.

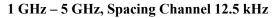
Test Data

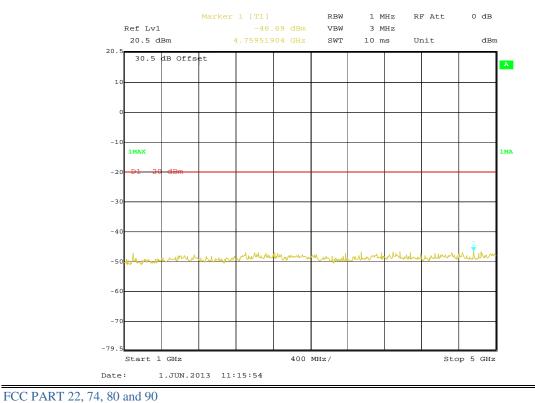
Environmental Conditions

Temperature:	25℃
Relative Humidity:	56 %
ATM Pressure:	100.1 kPa


The testing was performed by Rocky Kang on 2013-06-01.

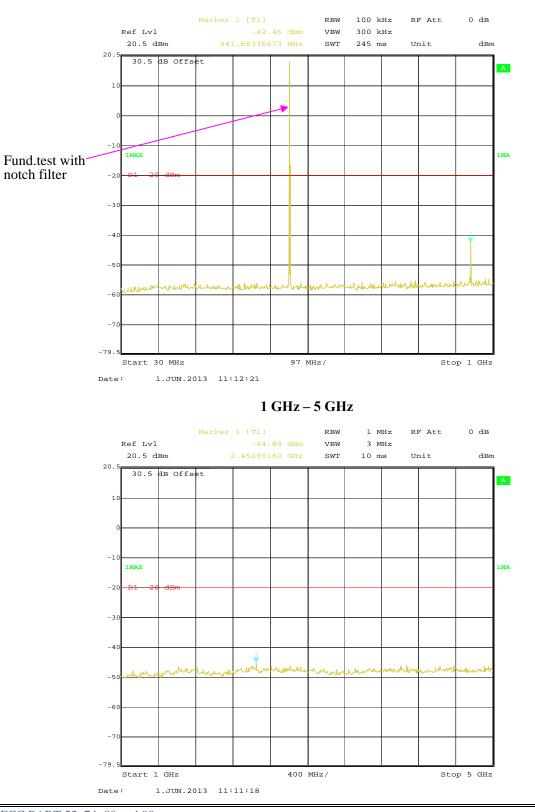
Test Mode: Transmitting


Please refer to the following plots.


Report No.: RSZ130508003-00B

Analog Modulation (469.9875 MHz):

30 MHz – 1 GHz, Spacing Channel 12.5 kHz



Page 31 of 40

Report No.: RSZ130508003-00B

Digital Modulation (469.9875 MHz):

30 MHz - 1 GHz

FCC PART 22, 74, 80 and 90

Page 32 of 40

FCC §2.1053 & §22.861 & §74.461 & § 80.211 & §90.210 - RADIATED SPURIOUS EMISSIONS

Applicable Standard

FCC §2.1053, §22.861, §74.461, § 80.211 and §90.210

Test Equipment List and Details

Manufacturer	Aanufacturer Description Model No		Serial No.	Calibration Date	Calibration Due Date
Sunol Sciences	Horn Antenna	DRH-118	A052304	2011-12-01	2014-11-30
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2011-11-28	2014-11-27
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23
HP	Signal Generator	8657A	3217A04699	2012-12-19	2013-12-18
A.H. System	Horn Antenna	SAS-200/571	135	2012-02-11	2015-02-10
HP	Synthesized Sweeper	8341B	2624A00116	2013-05-09	2014-05-09

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =10 1g (TXpwr in Watts/0.001)-the absolute level

Spurious attenuation limit in dB =43+10 Log_{10} (power out in Watts) Spurious attenuation limit in dB =50+10 Log_{10} (power out in Watts) for EUT with a 12.5 kHz channel bandwidth.

Test Data

Environmental Conditions

Temperature:	25°C
Relative Humidity:	56 %
ATM Pressure:	100.1 kPa

The testing was performed by Rocky Kang on 2013-06-01.

FCC PART 22, 74, 80 and 90

Report No.: RSZ130508003-00B

Test Mode: Transmitting

30MHz - 5GHz:

	Receiver	Turn	Rx An	tenna		Substitut	ed	Absolute	FC	CC
Frequency (MHz)	Reading (dBµV)	Table Angle Degree	Height (m)	Polar (H/V)	SG Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
		Analog N	/Iodulatior	n (469.987	75 MHz), 9	Channel S	pacing 12.5	kHz		
3760.0	48.36	147	1.3	Н	-47.7	2.96	10.40	-40.26	-20	20.26
3760.0	44.63	39	1.6	V	-50.1	2.96	10.40	-42.66	-20	22.66
940	41.75	147	1.4	V	-54.9	0.73	0.00	-55.63	-20	35.63
940	32.57	45	1.6	Н	-64.0	0.73	0.00	-64.73	-20	44.73
			Digit	al Modul	ation (469	.9875 MH	[z)			
3760.0	48.61	53	1.5	Н	-47.5	2.96	10.40	-40.06	-20	20.06
3760.0	43.41	132	1.2	V	-51.3	2.96	10.40	-43.86	-20	23.86
940	44.70	160	1.9	V	-51.9	0.73	0.00	-52.63	-20	32.63
940	33.66	170	1.7	Н	-62.9	0.73	0.00	-63.63	-20	43.63

Note:

Absolute Level = SG Level - Cable loss + Antenna Gain Margin = Limit- Absolute Level

FCC §2.1055 & § 22.355 & §74.464 & § 80.209 & §90.213- FREQUENCY STABILITY

Applicable Standard

FCC §2.1055, § 22.355, §74.464, § 80.209 and §90.213

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Hewlett-Packard	Frequency Counter	5343A	2232A00827	2013-05-09	2014-05-09
ESPEC	Temperature & Humidity Chamber	EL-10KA	09107726	2012-11-02	2013-11-01
Long Wei	DC Power Supply	TPR-6420D	398363	N/A	N/A

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a frequency counter via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.

Test Data

Environmental Conditions

Temperature:	25°C
Relative Humidity:	56 %
ATM Pressure:	100.1 kPa

The testing was performed by Rocky Kang on 2013-06-01.

Test Mode: Transmitting

For Analog Modulation

Reference Frequency: 469.9875 MHz, Limit: 2.5 ppm, 12.5 kHz				
Test Environment		Frequency Measure with Time Elapsed		
Temperature (℃)	Power Supplied (V _{DC})	Measured Frequency error (MHz)	Frequency Error (ppm)	
	Frequency Stability	y versus Input Temper	ature	
50	7.4	469.987576	0.162	
40	7.4	469.987565	0.138	
30	7.4	469.987577	0.164	
20	7.4	469.987565	0.138	
10	7.4	469.987569	0.147	
0	7.4	469.987598	0.209	
-10	7.4	469.987581	0.172	
-20	7.4	469.987576	0.162	
-30	7.4	469.987578	0.166	
Frequency Stability versus Input Voltage				
20	6.2	469.987543	0.091	

For Digital Modulation

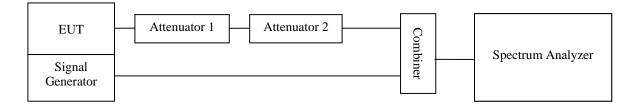
Reference Frequency: 469.9875 MHz, Limit: 2.5 ppm, 12.5 kHz				
Test Environment		Frequency Measure with Time Elapsed		
Temperature (°C)	Power Supplied (V _{DC})	Measured Frequency error (MHz)	Frequency Error (ppm)	
	Frequency Stability	y versus Input Temper	ature	
50	7.4	469.987581	0.172	
40	7.4	469.987577	0.164	
30	7.4	469.987574	0.157	
20	7.4	469.987573	0.155	
10	7.4	469.987581	0.172	
0	7.4	469.987576	0.162	
-10	7.4	469.987575	0.160	
-20	7.4	469.987573	0.155	
-30	7.4	469.987579	0.168	
Frequency Stability versus Input Voltage				
20	6.2	469.987576	0.162	

FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR

Applicable Standard

Regulations: FCC §90.214 Test method: ANSI/TIA-603-D 2010, section 2.2.19.3

Test Equipment List and Details


Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2012-11-24	2013-11-23
HP	RF Communication Test Set	8920A	3438A05201	2012-06-14	2013-06-13
HP	RF Communication Test Set	8920A	3438A05201	2013-06-14	2014-06-13
gilent	VECTOR SIGNAL ANALYZER	89441A	75182	2013-05-12	2014-05-11

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

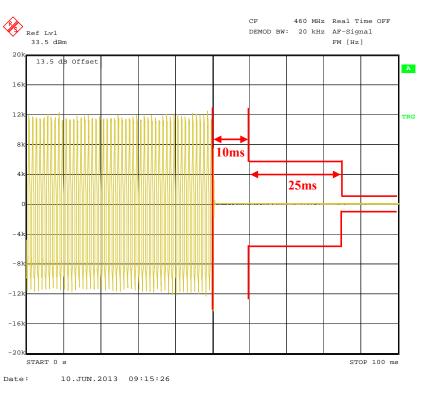
Test Procedure

- a) Connect the EUT and test equipment as shown on the following block diagram.
- b) Set the Spectrum Analyzer to measure FM deviation, and tune the RF frequency to the transmitter assigned frequency.
- c) Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at ± 12.5 kHz deviation and set its output level to -100dBm.
- d) Turn on the transmitter.
- e) Supply sufficient attenuation via the RF attenuator to provide an input level to the Spectrum Analyzer that is 40 dB below the maximum allowed input power when the transmitter is operating at its rated power level. Note this power level on the Spectrum Analyzer as P₀.
- f) Turn off the transmitter.
- g) Adjust the RF level of the signal generator to provide RF power equal to P_0 . This signal generator RF level shall be maintained throughout the rest of the measurement.
- h) Remove the attenuation 1, so the input power to the Spectrum Analyzer is increased by 30 dB when the transmitter is turned on.
- i) Adjust the vertical amplitude control of the spectrum analyzer to display the 1000 Hz at ±4 divisions vertically centered on the display. Set trigger mode of the Spectrum Analyzer to "Video", and tune the "trigger level" on suitable level. Then set the "tiger offset" to -10ms for turn on and -15ms for turn off.
- j) Turn on the transmitter and the transient wave will be captured on the screen of Spectrum Analyzer. Observe the stored display. The instant when the 1 kHz test signal is completely suppressed is considered to be t_{on} . The trace should be maintained within the allowed divisions during the period t_1 and t_2 .

k) Then turn off the transmitter, and another transient wave will be captured on the screen of Spectrum Analyzer. The trace should be maintained within the allowed divisions during the period t₃.

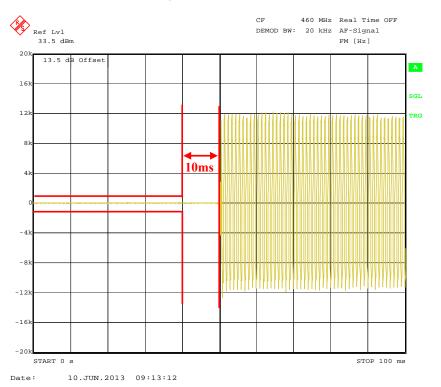
Test Data

Environmental Conditions


Temperature:	25~26℃	
Relative Humidity:	52~56 %	
ATM Pressure:	100.2~101.1 kPa	

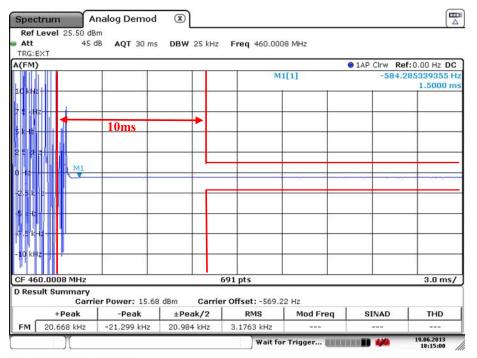
The testing was performed by Rocky Kang on 2013-06-10 and 2013-06-19.

Test Mode: Transmitting


Channel Separation (kHz)	Transient Period (ms)	Transient Frequency	Result
	<10 (t1)	+/-12.5 kHz	
12.5	<25 (t2)	+/-6.25 kHz	Pass
	<10 (t3)	+/-12.5 kHz	

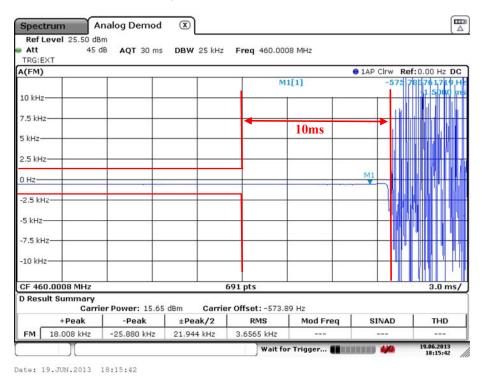
Please refer to the following plots.

Analog Modulation, Turn on



FCC PART 22, 74, 80 and 90

Page 39 of 40


Report No.: RSZ130508003-00B

Digital Modulation, Turn on

Date: 19.JUN.2013 18:14:59

Digital Modulation, Turn off

***** END OF REPORT *****

FCC PART 22, 74, 80 and 90

Page 40 of 40